びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS (HINGLISH)

LAWS OF THERMODYNAMICS

EXAMPLE

1. A thermally insulated, closed copper vessel contains
water at $15^{\circ} \mathrm{C}$. When the vessel is shaken vigorously for
15 minuts, the temperature rises to $17^{\circ} \mathrm{C}$. The mass of
the vessel is 100 g and that of the water is 200 g . The
specific heat capacities of copper and water are
$420 \frac{\mathrm{~J}}{\mathrm{~kg}-K}$ and $4200 \frac{\mathrm{~J}}{\mathrm{~kg}-K}$ resprectively. Neglect any thermal expansion.
(a) How much heat is transferred to the liquid vessel system?
(b) How much work has been doen on this system?
(c) How much is the increase in internal energy of the system?

2.

As shown in figure a paddle wheel coupled to a mass of
12 kg through fixed frictionless pulleys. The paddle is immersed in a liquid of heat capacity $4200 \frac{\mathrm{~J}}{\mathrm{~K}}$ kept in an adiabatic container. Consider a time interval in which the 12 kg block falls slowly through 70 cm .
(a) How much heat is given to the liquid?
(b) How much work is done on the liquid?
(c) Calculate the rise in the temperature of the liquid neglecting the heat capacity of the container and the paddle.

- Watch Video Solution

3. (a) An ideal gas contained in a cylinder is given 200 J of heat. The gas does 60 J of work in the expansion resulting from heating. Calculate the increase in internal energy in the process.
(b) Calculate the change in internal energy of a gas kept in a rigid container when 150 J of heat is supplied to it.

- Watch Video Solution

4. (a) 2 moles of an ideas gas is heated at constant pressure so that its temperature increases from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. Find work done by the gas.
(b) In a process, the volume of gas increases from 1000
cc to 2000 cc at constant pressure 100 kPa . Find work done by the gas.

- Watch Video Solution

5.

Calculate the work done by a gas as it is taken from 1 to
2,2 to 3 and 3 to 1 as shown. Also calculate the work done in cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$

D Watch Video Solution

6.

As shown in figure three paths through which a gas can be taken from the state A to the state B. Calculate the work done by the gas in each of the three paths.

D Watch Video Solution

7. The pressure of a gas changes linearly with volume from $10 \mathrm{kPa}, 200 \mathrm{cc}$ to $50 \mathrm{kPa}, 50 \mathrm{cc}$.
(a) Calculate the work done by the gas.
(b) If no heat is supplied or extracted from the gas, what is the changes in the internal energy of the gas?

- Watch Video Solution

8.

Calculate the heat rejected by a system in going through the cyclic process shown in figure.

9.

When a system is taken through the process abc shown
in figure, 80 J of heat is absorbed by the system and 30 J
of work is done by it. If the system does 10 J
of work during the process adc, how much heat flows into it during process?

D Watch Video Solution

10.

50 cal of heat should be supplied to take a system from the state A to the state B through the path $A C B$ as shown in Figure. The quantity of heat to be supplied to take it from A to B via ADB.

D Watch Video Solution

11. A gas is initially at a pressure of 100 kPa and its volume is $2.0 m^{3}$. Its pressure is kept constant and the volume is changes from $2.0 m^{3}$ to $2.5 \mathrm{~m}^{3}$. Its volume is
now kept constant and the pressure is increased from
100 kPa to 200 kPa . The gas is brought back to its initial state, the pressure verying linearly with its volume. Whether the heat is supplied to or extracted from the gas in the complete cycle?

D Watch Video Solution

12. A gas is enclosed in a cylindrical vessel fitted with a frictionless piston. The gas is slowly heated for some time. During the process, 10 J of heat is supplied and the piston is found to move out 10 cm . The area of crosssection of the cylinder $=4 \mathrm{~cm}^{2}$ and the atmospheric pressure $=100 \mathrm{kPa}$.

13.

Find the work done by an ideal gas during a closed cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$ as shown in figure.

- Watch Video Solution

14. Calculate the work done in the following processes, when gas expands from V_{0} to $2 V_{0}$
(a) $P=k V$, k is constant
(b) $T=T_{0}+\alpha V, T_{0}, \alpha$: constant n : number of moles of gas

D Watch Video Solution

15. Calculate the increase in internal energy of 1 kg of
water at $100^{\circ} \mathrm{C}$ when it is converted into steam at the same temperature and at 1 atm (100 kPa). The density of water and steam are $1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ and $0.6 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ resprectively.

The latent heat of vaporization of water $=2.25 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}}$

D Watch Video Solution

16. The internal energy of a gas is given by $U=1.5 p V$. It expands from $100 \mathrm{~cm}^{2}$ to $200 \mathrm{~cm}^{3}$ against a constant pressure of $1.0 \times 10^{5} \mathrm{~Pa}$. Calculate the heat absorbed by the gas in the process.

D Watch Video Solution

17. The internal energy of monoatomic ideal gas is 1.5
nRT. One mole of helium is kept in cylinder of cross section $8.5 \mathrm{~cm}^{2}$. The cylinder is closed by a light frictionless piston. The gas is heated slowly in a process during which a total of 42 J heat is given to the gas. If
the temperature rises through $2^{\circ} \mathrm{C}$ find the distance moved by the piston. Atmospheric pressure $=100 \mathrm{kPa}$

D Watch Video Solution

18.

A sample of an ideal gas in taken through the cyclic process abca in the given figure. It absorbs 50 J of heat during the parth ab , no heat during bc and rejects 70 J of
heat during ca, 40 J of work is done on the gas during the part bc.
(a) Find the internal energy of the gas at b adn c if it is

1500 J at a. Itbr. (b) Calculate the work done by the gas during the part ca.

$V \longrightarrow$

19.

When a system is taken from a state i to a state f in
Figure, along the path $i a f$, we find $\Delta Q=50 \mathrm{cal}$ and
$\Delta W=20 \mathrm{cal}$ while during the path $i b f, \Delta Q=36 \mathrm{cal}$. If
$U_{i}=10 \mathrm{cal}$.
(a) What is U ?

What is W along the path $i b f$?
(c) If $W=-13 c a l$, along the curved path $f i$, what is
ΔQ for this path?
(d) If $U_{b}=22 c a l$, what is ΔQ for the process $i b$? for $b f$?

D Watch Video Solution

20.
$V\left(m^{3}\right) \longrightarrow$

In the figure an ideal gas changes is state from state A
to state C by two paths $A B C$ and $A C$.
(a) Find the path along which the work done is least.
(b) The internal energy of the gas at A is 10 J and the amount of heat supplied to change its state to C through the path AC is 200 J . Calculate the internal energy at C .
(c) The internal energy of the gas at state B is 20 J . Fid the amount of the heat supplied to gas to go from A to B.

D Watch Video Solution

(a)

(c)
21.
(b)

Explain whether (i) $T_{2}>T_{1}$ (ii) $P_{2}>P_{1}$ and $V_{2}>V_{1}$ for given mass of gas.

- Watch Video Solution

22.

(a)

(b)

(c)

For given mass of an ideal gas, consider the following diagrams

What is variation of volume in (a), pressure in (b) and temperature in (c).

- Watch Video Solution

23.

In the
following cyclic process abca, find the net heat given to the system. Take number of moles of ideas gas n.

$$
T \rightarrow
$$

24.

A cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ shown in $P-T$ diagram is performed with a constant mass of an ideal gas. Show it on a (a) $P-V$ diagram (b) $V-T$
25. Three moles of an ideal gas $\left(C_{p}=\frac{7}{2} R\right)$ at pressure, P_{A} and temperature T_{A} is isothermally expanded to twice its initial volume. It is then compressed at constant pressure to its original volume.

Finally gas is compressed at constant volume to its original pressure P_{A}.
(a) Sketch P-V and P-T diagrams for the complete process.
(b) Calculate the net work done by the gas, and net heat supplied to the gas during the complete process.

D Watch Video Solution

26. When an ideal monoatomic gas is heated at constant pressure find
(a) Fraction of heat energy which increases the internal energy
(b) Fraction of heat energy which is utlized as work.

- Watch Video Solution

27. A sample of ideal gas $(\gamma=1.4)$ is heated at constant pressure. If an amount 140 J of heat is supplied to the gas, find (a) the changes in internal energy of the gas, (b) the work done by the gas.
28. (a) Show that internal energy of an ideal gas is expressed as
$\begin{aligned} U & =\frac{P V}{(\gamma-1)} \text { when } P=\text { pressure, } V=\text { volume and } \\ \gamma & =\frac{C_{P}}{C_{V}} .\end{aligned}$
(b) Hence find the internal energy of air in a room of volum $50 \mathrm{~m}^{3}$ at atmospheric pressure.
$\left(1 \mathrm{Atm}=10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)$

- Watch Video Solution

29. Figure shows a cylindrical container containing oxygen ($\gamma=1.4$) and closed by a 50 kg frictionless piston. The area of cross section is $100 \mathrm{~cm}(2)$, atmospheric pressure is 100 kPa and g is $10 \mathrm{~ms}^{-2}$. The
cylinder is slowly heated for some time. Find the amount of heat supplied to gas if the piston moves out through a distance of 20 cm .

30. About 0.014 kg nitrogen is enclosed in a vessel at temperature of $27^{\circ} C$ How much heat has to be transferred to the gas to double the rms speed of its molecules ? $(R=2 \mathrm{cal} / \mathrm{molK})$

- Watch Video Solution

31. Calculate the value of $\gamma=\frac{C_{P}}{C_{V}}$ for a gaseous mixture consisting of $n_{1}=2$ moles of O_{2} and $n_{2}=3$ moles of
CO_{2}. The gases are assumed to be ideal.
(b) Inside a container one mole of He and n moles of H_{2}.

The average value of γ for gaseous mixture is $\frac{19}{13}$. Find
n. Also find speed of sound in gaseous mixture at temperautre $27^{\circ} \mathrm{C}$

D Watch Video Solution

32. A monoatomic ideal gas of two moles is taken through a cyclic process starting from A as shown in figure. The volume ratios are $\frac{V_{B}}{V_{A}}=2$ and $\frac{V_{D}}{V_{A}}=4$. If the temperature T_{A} at A is $27^{\circ} C$.

Calculate,

(a) the temperature of the gas at point B,
(b) heat absorbed or released by the gas in each process,
(c) the total work done by the gas during the complete cycle. Express your answer in terms of the gas constant R.

- Watch Video Solution

33. One mole of an ideal monatomic gas is taken round the cyclic process $A B C A$ as shown in figure. Calculate

(a) the work done by the gas.
(b) the heat rejected by the gas in the path CA and the heat absorbed by the gas in the path $A B$,
(c) the net heat absorbed by the gas in the path $B C$,
(d) the maximum temperature attained by the gas during the cycle.

D Watch Video Solution

34. A sample of 2 kg of monatomic helium (assumed ideal) is taken through the process ABC another sample of 2 kg of the same gas is taken through the process

ADC as shown in Fig. Given molecular mass of helium $=4$.
a. What is the temperature of helium in each of the
states $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ?
b. Is there any way of telling afterwards which sample of
helium went through the process $A B C$ and which went
through the process ADC ? Write yes or no.
How much is the heat involved in each of the process

ABC and ADC ?

- Watch Video Solution

35. Three moles on an ideal gas at 300 K are isothermally expanded to five times its volume and heated at this constant volume so that the pressure is raised to its initial value before expansion. In the whole
process 83.14 kJ heat is required Calculate the ratio $\left(\frac{C_{P}}{C_{V}}\right)$ of the gas $\left[\log _{e} 5=1.61\right]$

- Watch Video Solution

36. Two moles of helium gas undergo a cyclic process as
shown in Fig. Assuming the gas to be ideal, calculate the following quantities in this process

(a) The net change in the heat energy
(b) The net work done
(c) The net change in internal energy

D Watch Video Solution

37. The pressure of one gram mole of a monoatomic gas increases linearly from $4 \times 10^{5} \mathrm{~N} / \mathrm{M}^{2}$ to $8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
. Calculate
(i) Work done by the gas,
(ii) increase in internal energy, (iii) amount of heat supplied,
(iv) molar heat capacity of the gas.

Take $R=8.31 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$.
38. Two moles of an ideal monoatomic gas are confined
within a cylinder by a massless and frictionless spring loaded piston of cross-sectional area $4 \times 10^{-3} \mathrm{~m}^{2}$. The spring is, initially in its relaxed state. Now the gas is heated by an electric heater, placed inside the cylinder, for some time. During this time, the gas expands and does 50 J of work in moving the piston through a distance 0.10 m . The temperature of the gas increases by
$50 K$. Calculate the spring constant and the heat

> supplied \quad by \quad the $P_{a t m}=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} R=8.314 \mathrm{~J} / \mathrm{mol}-K$ heater.

D Watch Video Solution

39. Figure shows two vessels with adiabatic walls, one containing $0.1 g$ of helium $\left(\gamma=1.67, M=4 \mathrm{gmol}^{-1}\right)$ and the other containing some amount of hydrogen ($\gamma=1.4, M=2 \mathrm{gmol}^{-1}$). Initially, the temperatures of the two gases are equal. The gases are electrically heated for some time during which equal amounts of heat are given to the gases. It is found that the temperatures rise through the same amount in the two vessels. Calculate the mass of hydrogen.

- Watch Video Solution

40. Two thermally insulated vessels 1 and 2 are filled with
air and connected by a short tube equipped with a valve.
The volumes of the vessels, the pressures and temperature of air in them are know (V_{1}, p_{1}, T_{1} and V_{2}, p_{2}, T_{2}). Find the air temperature and pressure established after the opening of the valve.

- Watch Video Solution

41. Figure shows a cylindrial tube of volume V with adiabatic walls containing an ideal gas. The internal energy of this ideal gas is given by $1.5 n R T$. The tube is divided into two equal parts by a fixed diathermic wall. Initially, the pressure and the temperature are p_{1}, T_{1} on
the left and p_{2}, T_{2} on the right. The system is left for sufficient time so that the temperature becomes equal on the two sides.
(a) How much work has been done by the gas on the left part?
(b) Find the final pressures on the two sides.
(c) Find the final equilibrium temperature.
(d) How much heat has flown from the gas on the right to the gas on the left ?

D Watch Video Solution

42. A quantity of air is kept in a container having walls
which are slightly conducting. The initial temperature
and volume are $27^{0} \mathrm{C}$ (equal to the temperature of the surrounding) and $800 \mathrm{~cm}^{3}$ respectively. Find the rise in the temperature of the gas is compressed to $200 \mathrm{~cm}^{3}$ (a) in a short time (b) in a long time . Take gamma=1.4.

(D) Watch Video Solution

43. A sample of gas $(\gamma=1.5)$ is taken through an adiabatic process in which the volume is compressed from $1600 \mathrm{~cm}^{3}$ to $400 \mathrm{~cm}^{3}$. If the initial pressure is $150 k P a$, (a) what is the final pressure and (b) how much work is done by the gas in the process?

D Watch Video Solution

44. A monoatomic gas is compressed adiabatically to $\frac{8}{27}$ of its initial volume if initial temperature is $27^{\circ} \mathrm{C}$, find increase in temperature

- Watch Video Solution

45. Four moles of oxygen being initially at temperature
$T_{0}=300 \mathrm{~K}$ is adiabatically compressed so the pressure becomes $128 P_{0}, P_{0}$ is initial pressure find
(a) the gas temperature after compression
(b) The work that has been performed on the gas.

- Watch Video Solution

46. 2 moles of a gaseous mixture having volume V and temperature T are compressed to $\frac{1}{4} t h$ of its initiall volume find the change in its adiabatic compressibility if $\gamma=\frac{3}{2}$.

- Watch Video Solution

47. An ideal gas having initial pressure P, volume V and temperature T is allowed to expands adiabatically until its volume becomes 5.66 V while its temperature falls to T/2.
(i) How many degrees of freedom do the gas molecules have?

Obtain the work done by the gas during the expansion as a function of the initial pressure P and volume V .

- Watch Video Solution

48. At $27^{\circ} \mathrm{C}$ two moles of an ideal monatomic gas occupy a volume V . The gas expands adiabatically to a volume $2 V$. Calculate
(a) final temperature of the gas
(b) change in its internal energy and
(c) the work done by the gas during the process. [
$R=8.31 \mathrm{~J} / \mathrm{mol}-K]$

D Watch Video Solution

49. Two samples A and B are initially kept in the same state. The sample B through an isothermal process. The final volumes of the samples are the same
(a) Compare final temperatures, final pressures and work doen in A and B.
(b) Repeat the part (i), If samples are compressed to same final volume.

- Watch Video Solution

50. Three samples A, B and C of the same gas
($\gamma=1.5$) have equal volumes and temperatures. The
volume of each sample is doubled, the process being isothermal for A, adiabatic for B and isobaric for C. If
the final pressures are equal for the three samples, Find the ratio of the initial pressures.

- Watch Video Solution

51. Two samples A and B of the same gas have equal volumes and pressures. The gas in sample A is expanded isothermally to double its volume and the the gas in B is expanded adiabatically to double its volume.

If the work done by the gas is the same for the two cases, show that gamma satisfies the equation $\left(1-2^{1-\gamma}\right)=(\gamma-1) 1 n 2$.

- Watch Video Solution

52. Two moles of helium gas $\left(\gamma=\frac{5}{3}\right)$ are initially at $27^{\circ} \mathrm{C}$ and occupy a volume of 20litres. The gas is first expanded at constant pressure until the volume is doubled. Then it undergoes an adiabatic change until the temperature returns to its initial value.
(a) Sketch the process in a p_{V} diagram.
(b) What is the final volume and pressure of the gas?
(c) What is the work done by the gas?

D Watch Video Solution

53. Figure shows an adiabatic cylindrical tube of volume
$\left(V_{0}\right)$ divided in two parts by a frictionless adiabatic separator. Initially, the separator is kept in the middle, an ideal gas at pressure $\left(P_{1}\right)$ and the temperatures $\left(T_{1}\right)$
is injected into the left part and the another ideal gas at
pressures $\left(P_{2}\right)$ and temperature $\left(T_{2}\right)$ is injected into
the right part. $\left(\frac{C_{p}}{C_{v}}=\gamma\right)$ is the same for both the gases. The separator is slid slowly and is released at a position where it can stay in equilibrium. Find
(a) the volumes of the parts,
(b) the heat given to the gas in the left part and
(c) the final common pressure of the gases.

p_{1}, T_{1}

$$
p_{2}, T_{2}
$$

D Watch Video Solution

54. A piston divides a closed gas cylinder into two parts. Initially the piston is kept pressed such that one part
has a pressure P and volume 5 V and the other part has pressure 8 P and volume V , the piston is now left free.

Find the new pressure and volume for the isothermal and aidabatic process. $(\gamma=1.5)$

- Watch Video Solution

55. A weightless piston divides a thermally insulated cylinder into two parts of volumes V and $3 V .2$ moles of
an ideal gas at pressure $P=2$ atmosphere are confined
to the part with volume $V=1$ litre. The remainder of
the cylinder is evacuated. The piston is now released and
the gas expands to fill the entire space of the cylinder.
The piston is then pressed back to the initial position.
Find the increase of internal energy in the process and
final temperature of the gas. The ratio of the specific heats of the gas, $\gamma=1.5$.

D Watch Video Solution

56. One mole of an ideal gas with adiabatic exponent γ undergoes the process
(a) $P=P_{0}+\frac{\alpha}{V}$
(b) $T=T_{0}+\alpha V$

Find Molar heat capacity of the gas as a function of its volume.
57. A heat enegine works on a carnot cycle with a heat sink at a temperature of $2700 K$. The efficiency of the engine 10%. Determine the temperature of heat source.
A. $T=3000 K$
B. $T=300 K$
C. $T=1000 K$
D. $T=30000 K$

Answer: A
58. A cornot engine in 1000 kilocal of heat from a reservoir at $627^{\circ} \mathrm{C}$ and exhausts it to sink at $27^{\circ} \mathrm{C}$. What is its efficiency? How much work does it perform?

D Watch Video Solution

59. The temperatures T_{1} and $T(2)$ of two heat reservoirs in an ideal carnot engine are
$1500^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$. Which of these (a) increasing $T_{1} b y 100^{\circ} C$ or (b) decreasing $T_{2} b y 100^{\circ} C$ would result in greater improvement of the efficiency of the engine?
60. An inventor claims to have developed an engine that during a certain time interval takes in 110 MJ of heat at 415 K , rejects 50 MJ of heat at 212 K while manages to do
16.7 kW of work. Do you agree with the inventors's claim?

- Watch Video Solution

61. A heat engine operates between a cold reservoir at temperature $T_{2}=300 \mathrm{~K}$ and a hot reservoir at temperature T_{1}. It takes 200 J of heat from the hot reservoir and delivers 120 J of heat from the hot reservoir and delivers 120 J of heat to the cold reservoir in a cycle. What could be the minimum temperature of the hot reservoir?
62. A refrigerator whose coefficient of performance η^{\prime} is

4, extracts heat from the cooling compartment at the rate of 400 J per cycle.
(a) How much work per cycle is required to operate the refrigerator cycle?
(b) How much heat per cycle is discharged to the room which acts as the high temperature reservoir?

D Watch Video Solution

63. Find relation between efficiency (η) of carnot engine and coefficient of performance $(\eta))$ ' of refrigerator.
64. An ideal gas is taken through a cyclic thermodynamic process through four steps. The amounts of heat involved in these steps are $Q_{1}=5960 J, Q_{2}=-5585 \mathrm{~J}$
, $Q_{3}=-2980 \mathrm{~J}$ and $Q_{4}=3645 \mathrm{~J}$ respectively. The corresponding quantities of work involved are $W_{1}=2200 J, W_{2}=-825 J, W_{3}=-1100 J$ and W_{4} respectively.
(a) Find the value of W_{4}.
(b) What are the efficiency of the cycle?

- Watch Video Solution

65. An ideal monoatomic gas $\left(\gamma=\frac{5}{3}\right)$ goes through a cyclic process consisting two isochoric and two isobaric lines. The absolute temperature of the gas rises two times both in isochoric heating and isobaric expansion.

If number of moles are three, find efficiency of cyclic process.

- Watch Video Solution

66.

During an integral number of complete cycles a
reversible carnot engine (shown by a cycle) absors 1200
joule from reservoir at 400 K and performs 200 Joule of mechanical work.
(a) Find the quantities of heat exchanged with the other
two reservoirs. State thether the reservoirs absorb or lose heat.
(b) Find the change in entropy of each reservoir.
(c) What is the change in entropy of the universe?

- Watch Video Solution

67. A sample of 100 g water is slowly heated from $27^{\circ} \mathrm{C}$
to $87^{\circ} \mathrm{C}$. Calculate the change in the entropy of the
water specific heat capacity of water $=4200 \frac{\mathrm{~J}}{\mathrm{~kg}-\mathrm{K}}$
68. 100 gram of ice at $0^{\circ} \mathrm{C}$ is converted into water vapour at $100^{\circ} C$ Calculate the change in entropy.

- Watch Video Solution

EXERCISE

1. The first law of thermodynamics incorporates are concept
(i) conservation of energy
(ii) convervation of heat
(iii) conservation of work
(iv) equivalence of heat and work
A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: D

The work done in the process $A B$ is
A. $8 \times 10^{5} J$
B. $10 \times 10^{5} \mathrm{~J}$
C. $7 \times 10^{5} J$
D. $12 \times 10^{5} \mathrm{~J}$

Answer: D

(i) $\Delta W_{A B}=5 P_{0} V_{0}$
(ii) $\Delta W_{B C}=0$
(iii) $\Delta W_{C A}=-2 P_{0} V_{0}$
(iv) $\Delta W_{A B C A}=3 P_{0} V_{0}$
A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. all

Answer: D

D Watch Video Solution

4.

Consider the process on a system shown in figure.

During the process, the work done by the system
A. continuously increases
B. continuously decreases
C. first increases then decreases
D. first decrease then increases

Answer: A

- Watch Video Solution

5. Consider two processes on a system as shown in figure.

The volumes in the initial states are the same in the two processes and the volume in the final states are also the same.Let ΔW_{1} and ΔW_{2} be the work done by the
system in the processes A and B respectively.

A. $\Delta W_{1}>\Delta W_{2}$
B. $\Delta W_{1}=\Delta W_{2}$
C. $\Delta W_{1}<\Delta W_{2}$
D. none

Answer: C

6. A system can be taken from the initial state p_{1}, V_{1} to the final state $p_{2, V_{2}}$ by two different methods, let
ΔQ and ΔW represent the heat given to the system and the work done by the system. Which of the following must be the same in both the method?
A. ΔQ
B. ΔW
C. $\Delta Q+\Delta W$
D. $\Delta Q-\Delta W$

Answer: D
7. In the figure given two processes A and B are shown by which a thermodynamic system goes from initial to final state F. if ΔQ_{A} and ΔQ_{B} are respectively the heats supplied to the systems then

A. $\Delta Q_{1}>\Delta Q_{2}$
B. $\Delta Q_{1}=\Delta Q_{2}$
C. $\Delta Q_{1}<\Delta Q_{2}$
D. $\Delta Q_{1} \leq \Delta Q_{2}$

Answer: A

- Watch Video Solution

8. Refer to figure in previous question, ΔU_{1} and ΔU_{2} be the changes in internal energy of the system in the processes A and B then
A. $\Delta U_{1}>\Delta U_{2}$
B. $\Delta U_{1}=\Delta U_{2}$
C. $\Delta U_{1}<\Delta U_{2}$
D. $\Delta U_{1} \neq \Delta U_{2}$

Answer: B

D Watch Video Solution

9. Refer to figure ΔU_{1} and ΔU_{2} be the changes in internal energy in the system in process $A+B$ and
ΔW be the net work done by the system in the process
$A+B$,

A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: A

- Watch Video Solution

10. In a given process on an ideal gas,
$d W=0$ and $d Q<0$. Then for the gas
A. the temperature will decrease
B. the volume will increase
C. the pressure will remain constant
D. the temperature will increase

Answer: A

- Watch Video Solution

11. Consider the following two statements.
(A) If heat is added to a system, its temperature must increase.
(B) If positive work is done by a system in a thermodynamic process, its volume must increase.
A. Both A and B are correct
B. A is correct but B is wrong
C. B is correct but A is wrong
D. Both A and B are wrong

Answer: C

D Watch Video Solution

12. In a process on a system, the initial pressure and volume are equal to the final pressure and volume
(i) The initial temperature must be equal to the final temperature
(ii) The initial internal energy must be equal to the final internal energy
(iii) The net heat given to the system in the process must be zero.
(iv) The net work done by the sytem in the process must be zero.
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: A

D Watch Video Solution

13. The pressure p and volume V of an ideal gas both increase in a process.
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: B

- Watch Video Solution

14. The state of a thermodynamic system is represented by
A. Pressure only
B. Volume only
C. Pressure, volume and temperature
D. Number of moles

Answer: C

D Watch Video Solution

15. Which of the following is not a thermodynamical
function
A. Enthalpy
B. work done
C. Gibb's energy
D. internal energy

- Watch Video Solution

16. If Q, E and W denote respectively the heat added, change in internal energy and the work done in a closed cycle process, then
A. $E=0$
B. $Q=0$
C. $W=0$
D. $Q=W=0$
17. For free expansion of the gas, which of the following is true?
A. $Q=W=0$ and $\Delta E_{\text {int }}=0$
B. $Q=0$ and $W>0$ and $\Delta E_{\text {int }}=-W$
C. $W=0, Q>0$ and $\Delta E_{\text {int }}=Q$
D. $W>0, Q<0$ and $\Delta E_{\text {int }}=0$

Answer: A
(D) Watch Video Solution
18. A system is given 300 calories of heat and it does 600 joules of work. How much does the internal energy of the system change in this process $(J=4.18$ joules $/ c a l)$
A. 654 joule
B. 156.5 joule
C. -300 joule
D. -528.2 joule

Answer: A
19. In thermodynamic process, pressure of a fixed mass of a gas is changes in such a manner that the gas molecules gives out 20 J of heat and 10 J of work is done in the gas. If the initial internal energy of the gas was 40 J, then the final internal energy will be
A. 30 J
B. 20 J
C. 60 J
D. 40 J

Answer: A

20. A perfect gas goes from a state A to another state B by absorbing $8 \times 105 \mathrm{~J}$ of heat and doing $6.5 \times 105 \mathrm{~J}$ of external work. It is now transferred between the same two states in another process in which it absorbs 105 J of heat. In the second process
A. Work done on the gas is $0.5 \times 10^{5} \mathrm{~J}$
B. Work done by gas is $0.5 \times 10^{5} \mathrm{~J}$
C. Work done on gas is $10^{5} \mathrm{~J}$
D. Work done by gas is $10^{5} \mathrm{~J}$

Answer: A

- Watch Video Solution

21. An ideal gas goes from the state i to the state f as shown in the figure.The work done by the gas during the process

A. is positive
B. is negative
C. is zero
D. none

Answer: C

- Watch Video Solution

22. A thermodynamic system is taken through the cycle $A B C D$ as shown in the figure. Heat rejected by the gas during the cycle is

A. $2 P V$
B. $4 P V$
C. $\frac{1}{2} P V$
D. $P V$

Answer: A

D Watch Video Solution

23.

A system is taken through a cyclic process represented by a circle as shown in the figure. The heat absorbed by the system is
A. $\pi \times 10^{3} J$
B. $\frac{\pi}{2} J$
C. $4 \pi \times 10^{2} J$
D. πJ

- Watch Video Solution

24. A thermodynamic process is shown in Fig. The pressures and volumes corresponding to some points in the figure are : $P_{A}=3 \times 10^{4} \mathrm{~Pa}, P_{B}=8 \times 10^{4} \mathrm{~Pa}$ and $V_{A}=2 \times 10^{-3} m^{3}, V_{D}=5 \times 10^{-3} m$.

In process $A B, 600 J$ of heat is added to the system and in process $B C, 200 J$ of heat is added to the system. The change in internal energy of the energy of the process
$A C$ would be.

A. 560 J
B. 800 J
C. 600 J
D. 640 J

Answer: A
25. When a system is taken from state f along path $i a f, Q=50 \mathrm{~J}$ and $W=20 \mathrm{~J}$. Along path $i b f, Q=35 \mathrm{~J}$.

If $W=-13 J$ for the curved return path $f I, Q$ for this path is

A. 33 J
B. 23 J
C. -7 J
D. -43 J

Answer: D

- Watch Video Solution

26. A thermodynamic system undergoes cyclic process
$A B C D A$ as shown in figure. The work done by the
system is

A. $P_{0} V_{0}$
B. $2 P_{0} V_{0}$
C. $\frac{P_{0} V_{0}}{2}$
D. zero

Answer: D

D Watch Video Solution

27. An ideal gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If the net heat supplied to the gas in the cycle is 5 J, the work done by the gas in the process CtoA is

A. $-5 J$
B. -10 J
C. $-15 J$
D. $-20 J$

Answer: C

- Watch Video Solution

28. Consider the cyclic process $A B C A$, shown in figure, performed on a sample of 2.0 mol of an ideal gas. A total of 1200 J of heat is withdrawn from the sample in the process. Find the work done by the gas during the part

BC.

A. $-2520 J$
B. $-3250 J$
C. $-4520 J$
D. $-5520 J$

Answer: C

(ii)

(iv) $V \quad$,
P
29.

The following are the $P-V$ diagrams for cyclic processes for a gas. In which of these processes is heat absorbed by the gas?
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(ii),(iii)

(D) Watch Video Solution

30.

In the cyclic process shown in the $V-P$ diagram the magnitude of the work is done is

$$
\text { A. } \pi\left(\frac{P_{1}-P_{2}}{2}\right)^{2}
$$

B. $\pi\left(\frac{V_{1}-V_{2}}{2}\right)^{2}$
C. $\frac{\pi}{4}\left(P_{2}-P_{1}\right)\left(V_{2}-V_{1}\right)$
D. $\pi\left(P_{2} V_{2}-P_{1} V_{1}\right)$

Answer: C

D Watch Video Solution

31. In the previous question
(i) work is done by the gas
(ii) work is done on the gas
(iii) heat is absorbed by the gas
(iv) heat is given out by the gas
B. (ii),(iii)
C. (iii),(iv)
D. (i),(ii)

Answer: C

- View Text Solution

32. Two different masses m and $3 m$ of an ideal gas are heated separately in a vessel of constant volume, the pressure P and absolute temperature T, graphs for these two cases are shown in the figure as A and B. The
ratio of slopes of curves B to A is

A. 3:1
B. 1:3
C. 9:1
D. 1:9

Answer: A

$$
33 .
$$

A pressure P , absolute temperature T , graph was obtained whe a given mass of a gas heated. During the heating process from the state 1 to the state 2 , the volume
A. remained same
B. decreased
C. increased
D. none

Answer: C

- Watch Video Solution

34. A volume V absolute temperature T diagram was
obtained when a given mass of gas was heated. During
the heating process from state 1 to 2 , the pressure

A. remained same
B. decreased
C. increased
D. none

Answer: B

35.

The adjoining figure shows graphs of pressure and volume of a gas at two temperature T_{1} and T_{2} Which of the following inferences is correct?
A. $T_{1}>T_{2}$
B. $T_{1}=T_{2}$
C. $T_{1}<T_{2}$
D. none

Answer: C

- Watch Video Solution

36.

$P-V$ graph was obtained from state 1 to state 2 when
a given mass of a gas is subjected to temperature changes during the process the gas is
A. Heated continuously
B. Cooled continuously
C. Heated in the beginning and cooled towards the end
D. cooled in the biginning and heated towards the end

Answer: C

- Watch Video Solution

37. A gas expands such that its initial and final temperature are equal. Also, the process followed by the gas traces a straight line on the $P-V$ diagram:-
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: D

- Watch Video Solution

38. An ideal gas is taken form the state $A(P, V)$ to the state $B\left(\frac{P}{2}, 2 V\right)$ along a straight line path in the $P-V$ diagram.

Select the correct options
(i) The work done by the gas in the process A to B exceeds the work that would be done by it if the system
were taken from A to B along the isotherm
(ii) In the $T-V$ diagram, the path AB becomes part of a hyperbola
(iii) In the $P-T$ diagram, the path AB becomes part of a hyperbola
(iv) In going from A to B , the temperature T of the first increases to maximum value and then decreases
A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(ii),(iv)

Answer: D
39. One mole of an ideal gas goes from an initial state A to final state B via two processs : It first undergoes isothermal expansion from volume V to $3 V$ and then its volume is reduced from $3 V$ to V at constant pressure.

The correct $P-V$ diagram representing the two process in (figure)

A.
(2)
B.

Answer: D

- Watch Video Solution

40. One mole of an ideal gas in initial state A undergoes
a cyclic process $A B C A$, as shown in the figure. Its pressure at A is P_{0}. Choose the correct option (s) from
the following

A. (i),(ii)
B. (ii),(iii),(iv)
C. (i),(ii),(iii)
D. all

Answer: D

41. Which of the following graphs correctly represents the variation of $\beta=-\frac{d V / d P}{V}$ with P for an ideal gas at constant temperature?
A.

B.
(2) β

C.

D.
(4) β

Answer: A

- Watch Video Solution

42. An ideal gas is initially at temperature T and volume
V. Its volume is increased by ΔV due to an increase in temperature ΔT, pressure remaining constant. The quantity $\delta=\frac{\Delta V}{V \Delta T}$ varies with temperature as

$$
\begin{aligned}
& \text { (1) } \delta \underbrace{T}_{T} \\
& \text { B. }
\end{aligned}
$$

Answer: C

- Watch Video Solution

43.

Six moles of an ideal gas performs a cycle shown in figure, the temperature are $T_{A}=600 K, T_{B}=800 K$, $T_{C}=2200 \mathrm{~K}$ and $T_{D}=1200 \mathrm{~K}$, the work done per cycle is
A. 20 kJ
B. 30 kJ
C. 40 kJ

D. 60 kJ

Answer: C

D Watch Video Solution

44. Assertion: The internal energy of an ideal gas does not change during an isothermal process.

Reason: The decrease in volume of a gas is compensated
by a corresponding increase in perssure, when its temp.
is held constant.
A. Both A and B are tue and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

- Watch Video Solution

45. For an isothermal expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is
A. $-\gamma^{\frac{1}{2}} \frac{\Delta V}{V}$
B. $-\frac{\Delta V}{V}$
C. $-\gamma \frac{\Delta V}{V}$
D. $\gamma^{2} \frac{\Delta V}{V}$

Answer: B

D Watch Video Solution

46. If heat is supplied to an ideal gas in an isothermal process.
A. the internal energy of the gas will increase
B. the gas will do positive work
C. the gas will do negative work
D. the said process is not possible

Answer: B

D Watch Video Solution

47. In an isothermal process on an ideal gas, the pressure increases by 0.5%. The volume decreases by about.
A. 0.25%
B. 0.50%
C. 0.7%
D. 1%

Answer: B
48. The internal energy of a system remains constant when it undergoes
(i) a cyclic process
(ii) an isothermal process
(iii) an adiabatic process
(iv) any process in which the heat given out by the
system equal to the work done on the system
A. (i),(iii)
B. (ii)
C. (ii),(iv)
D. (i),(ii),(iv)

Answer: B

- Watch Video Solution

49. When an ideal gas in a cylinder was compreswsed isothermally by a piston, the work done on the gas found to be 1.5×10^{4} cal. During this process about
A. $3.6 \times 10^{3} \mathrm{cal}$ of heat flowed out from the gas
B. $3.6 \times 10^{3} \mathrm{cal}$ of heat flowed into the gas
C. $1.5 \times 10^{4} \mathrm{cal}$ of heat flowed into the gas
D. 1.5×10^{4} cal of heat flowed out from the gas
50. During an isothermal expansion, a confined ideal gas does $-150 J$ of work aginst its surroundings. This implies that
A. 150 J of heat has been added to the gas
B. 150 J of heat has been removed from the gas
C. 300 J of heat has been added to the gas
D. No heat is transferred because the process is isothermal

Answer: B
51. A cyclic process is shown in the $P-T$ siagram.

Whech of the curves show the same process on a $P-V$ diagram?

(1)
A.
(2)
B.

(4)

D.

Answer: B

- Watch Video Solution

52. A cyclic process $A B C D$ is shown is shown in the following $P-V$ diagram. Which of the following curves
represent the same process ?

(1)

(3)

C.

Answer: A

D Watch Video Solution

53. A cyclic process is shown on the P-T diagram. Which of the curve shown the same process on a V-T diagram?

P

A.

(4)

 D.

Answer: C

D Watch Video Solution

54. A gas is contained in a metallic cylinder fitted with a piston.The piston is suddenly moved in to compress the gas and is maintained at this position. As time passes the pressure of the gas in the cylinder
A. increases
B. decreases
C. remains same
D. none

Answer: B

- Watch Video Solution

55.

A cylindrical tube of uniform cross-sectional area A is
fitted with two air tight frictionless pistons. The pistons
are connected to each other by a metallic wire. Initially
the pressure of the gas is P_{0} and temperature is T_{0},
atmospheric pressure is also P_{0}. Now the temperature of the gas is increased to $2 T_{0}$, the tension in the wire will be
A. $2 P_{0} A$
B. $P_{0} A$
C. $\frac{P_{0} A}{2}$
D. $4 P_{0} A$

Answer: B

- Watch Video Solution

56. The latent heat of vaporisation of water is $2240 \mathrm{~J} / \mathrm{gm}$.

If the work done in the process of expansion of 1 g of
water is 168 J , then increase in internal energy is
A. 2408 J
B. 2240 J
C. 2072 J
D. 1904 J

Answer: C

D Watch Video Solution

57. When 1 g of water at $0^{\circ} \mathrm{C}$ and $1 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$ pressure is converted into ice of volume $1.091 \mathrm{~cm}^{3}$. The external work done will e
A. 0.0091 Joule
B. 0.0182 Joule
C. -0.0091 Joule
D. -0.0 Joule

Answer: A

D Watch Video Solution

58. A vessel containing 5 litres of a gas at 0.8 m pressure is connected to an evacuated vessel of volume 3 litres.

The resultant pressure inside with be (assuming whole system to be isolated)
A. $\frac{4}{3} m$
B. $0.5 m$
C. 2.0 m
D. $\frac{3}{4} m$

Answer: B

- Watch Video Solution

59. A thermally insulated container is divided into two parts by a screen. In one part the pressure and temperature are P and T for an ideal gas filled. In the second part it is vacuum. If now a small hole is created in the screen, then the temperature of the gas will
A. decrease
B. increase
C. remains same
D. none of the above

Answer: C

D Watch Video Solution

60. Each molecule of a gas has f degrees of freedom.

The ratio γ for the gas is
A. $1+\frac{f}{2}$
B. $1+\frac{1}{f}$
C. $1+\frac{2}{f}$
D. $1+\frac{(f-1)}{3}$

Answer: C

- Watch Video Solution

61. The molar heat capacity of a gas at constant volumes
is C_{V}. If n moles of the gas under ΔT change in temperature it's internal energy will change by $n C_{V} \Delta T$
A. only if the change of temperature occurs at constant volume
B. only if the change of temperature occurs at constant pressure
C. in any process which is not adiabatic
D. in any process

Answer: D

D Watch Video Solution

62. Let $\left(C_{v}\right)$ and $\left(C_{p}\right)$ denote the molar heat capacities of an ideal gas at constant volume and constant pressure respectively . Which of the following is a universal constant?
A. $\frac{C_{p}}{C_{v}}$
B. $C_{p} C-v$
C. $C_{p}-C_{v}$
D. $C_{p}+C_{v}$

Answer: C

- Watch Video Solution

63. The molar heat capacity for an ideal gas cannot
A. cannot be negative
B. must be equal to either C_{v} or C_{p}
C. must lie in the range $C_{v} \leq C \leq C-p$
D. may have any value between $-\infty$ and $+\infty$

Answer: D

- Watch Video Solution

64. If for a gas, $\frac{R}{C_{V}}=0.67$, the gas is
A. diatomic
B. monoatomic
C. polyatomic
D. mixture of diatomic and polyatomic gases

Answer: B
65. For hydrogen gas $C_{p}-C_{v}=a$ and for oxygen gas
$C_{p}-C_{v}=b, C_{p}$ and C_{v} being molar specific heats. The relation between a and b is
A. $a=16$
B. $16 a=b$
C. $a=4$
D. $a=b$

Answer: D
66. If for hydrogen $s_{p}-s_{v}=a$ and oxygen $s_{p}-s_{v}=b$, where s_{p} and s_{v} refer to specific heats at constant pressure and at constant volume then
A. $a=b$
B. $a=16 b$
C. $b=16 a$
D. a and b are not related

Answer: B

67. The ratio $\frac{C_{p}}{C_{v}}=\gamma$ for a gas. Its molecular weight is M. Its specific heat capacity at constant pressure is
A. $\frac{R}{\gamma-1}$
B. $\frac{\gamma R}{\gamma-1}$
C. $\frac{\gamma R}{M(\gamma-1)}$
D. $\frac{\gamma R M}{\gamma-1}$

Answer: C

D Watch Video Solution

68. C_{p} is always greater than C_{v} for a gas, which of the following statements provide, partly or wholly, the
reason for this?
(i) No work is done by a gas at constant volume
(ii) When a gas absorbs heat at constant pressure, its
volume must change
(iii) For the same change in temperature, the internal
energy of a gas changes by a smaller amount at constant volume that at constant pressure
(iv) The internal energy of an ideal gas is a function only of its temperature
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. all

Answer: A

(D) Watch Video Solution

69. If one mole of a monatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole of a diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of gamma for mixture is
A. 1.4
B. 1.5
C. 1.53
D. 3.07

D Watch Video Solution

70. A mixture of n_{1} moles of monoatomic gas and n_{2} moles of diatomic gas has $\gamma=1.5$
A. $n_{1}=n_{2}$
B. $2 n_{1}=n_{2}$
C. $n_{1}=2 n_{2}$
D. $n_{1}=3 n_{2}$

Answer: A

- Watch Video Solution

71. When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied, which increases the internal energy of the gas, is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{7}$
D. $\frac{5}{7}$

Answer: D
72. A gas, for which γ is $\frac{4}{3}$ is heated at constant pressure. The percentage of heat supplied used for external work is
A. 25%
B. 15%
C. 60%
D. 40%

Answer: A
73. A monatomic gas expands at constant pressure on heating. The percentage of heat supplied that increases the internal energy of the gas and that is involed in the expansion is
A. $75 \%, 25 \%$
B. $25 \%, 75 \%$
C. $60 \%, 40 \%$
D. $40 \%, 60 \%$

Answer: C

74.70 calories of heat required to raise the temperature of 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}$. The amount of heat required (in calories) to raise the temperature of the same gas through the same range $\left(30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}\right)$ at constant volume is:
A. 30 cal
B. 50 cal
C. 70 cal
D. 90 cal

Answer: B
75. The average degrees of freedom per molecule for a gas are 6. The gas performs $25 J$ of work when it expands at constant pressure. The heat absorbed by gas is
A. 75 J
B. 100 J
C. 150 J
D. 125 J

Answer: B
76. A rigid container of negligible heat capacity contains one mole of an ideal gas. The temperatures of the gas increases by $1^{\circ} \mathrm{C}$ if 3.0 cal of heat is added to it. The gas may be
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: A

- Watch Video Solution

77. Work done by a sample of an ideal gas in a process A is double the work done in another process B. The temperature rises through the same amount in the two processes. If `(C_A and C_B) be the molar heat capacities for the two processes,
A. $C_{A}=C_{B}$
B. $C_{A}<C_{B}$
C. $C_{A}>C_{B}$
D. none

Answer: C

78. In case of water from 0 to $4^{\circ} \mathrm{C}$
(i) Volume decreases and density of water is maximum at $4^{\circ} C$
(ii) ΔW will be negative, since volume decreases
(iii) $C_{p}>C_{V}$
(iv) $C_{P}<C_{V}$
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(ii),(iv)

Answer: D
79. A monoatomic gas of n-moles is heated temperature
T_{1} to T_{2} under two different conditions
(i) at constant volume and
(ii) At constant pressure The change in internal energy of the gas is
A. More for (i)
B. More for (ii)
C. Same in both cases
D. Independent of number of moles

Answer: C

80. P-V diagram of a diatomic gas is a straight line passing through origin. The molar heat capacity of the gas in the process will be
A. 4 R
B. 2 R
C. 3 R
D. $\frac{4 R}{3}$

Answer: B
81. A monoatomic gas is supplied heat Q very slowly keeping the pressure constant. The work done by the gas is
A. $\frac{2}{3} Q$
B. $\frac{3}{5} Q$
C. $\frac{2}{5} Q$
D. $\frac{1}{5} Q$

Answer: C
82. Which of the following is correct regarding adiabatic process
(i) In adiabatic process, all the three variables, P, V and T changes
(ii) In adiabatic process, the heat exchanged between system and surrounding is zero i.e., $\Delta Q=0$
(iii) Since $\Delta Q=n C \Delta T$, therefore for adiabatic process molar specific heat $C=0$
(iv) If a gas is suddenly expanded adiabatically temperature falls and if gas is adiabatically compressed, temperature rises
A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. all

Answer: D

- Watch Video Solution

83. Which of the following is correct regarding adiabatic
process

C.

D. All option are correct

Answer: D

- Watch Video Solution

84. The molar heat capacity for an ideal gas (i) Is zero for an adiabatic process
(ii) Is infinite for an isothermal process
(iii) depends only on the nature of the gas for a process in which either volume or pressure is constant
(iv) Is equal to the product of the molecular weight and specific heat capacity for any process
A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. all

Answer: D
85. For an adiabatic expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is equal to
A. $-\gamma^{\frac{1}{2}} \frac{\Delta V}{V}$
B. $-\frac{\Delta V}{V}$
C. $-\gamma \frac{\Delta V}{V}$
D. $\gamma^{2} \frac{\Delta V}{V}$

Answer: C

D Watch Video Solution

86. In an adiabatic process on a gas with $(\gamma=1.4)$ the pressure is increased by 0.5%. The volume decreases
by about
A. 0.36%
B. 0.5%
C. 0.7%
D. 1%

Answer: A

- Watch Video Solution

87. Diatomic gas at pressure ' P ' and volume ' V ' is compressed adiabatically to $1 / 32$ times the original volume. Then the final pressure is
A. 32 P
B. 64 P
C. 128 P
D. 256 P

Answer: C

- Watch Video Solution

88. An ideal gas at $27^{\circ} C$ is compressed adiabatically to
$8 / 27$ of its original volume. If $\gamma=5 / 3$, then the rise in
temperature is
A. $450^{\circ} C$
B. $375^{\circ} \mathrm{C}$
C. $225^{\circ} \mathrm{C}$
D. $405^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

89. An ideal gas at pressure of 1 atmosphere and temperature of $27^{\circ} \mathrm{C}$ is compressed adiabatically until its pressure becomes 8 times the initial pressure, then the final temperature is $(\gamma=3 / 2)$
A. $627^{\circ} \mathrm{C}$
B. $527^{\circ} \mathrm{C}$
C. $427^{\circ} \mathrm{C}$
D. $327^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

90. The pressure and density of a diatomic gas
($\gamma=7 / 5$) change adiabatically from (p, d) to $\left(p^{\prime}, d^{\prime}\right)$. If $\frac{d^{\prime}}{d}=32$, then $\frac{P^{\prime}}{P}$ should be
A. $\frac{1}{128}$
B. 32
C. 128
D. none of the above

Answer: C

- Watch Video Solution

91. A monoatomic ideal gas, initially at temperature T_{1},
is enclosed in a cylinder fitted with a friction less piston.
The gas is allowed to expand adiabatically to a temperature T_{2} by releasing the piston suddenly. If
L_{1} and L_{2} are the length of the gas column before expansion respectively, then $\frac{T_{1}}{T_{2}}$ is given by

$$
\text { A. }\left(\frac{L_{1}}{L_{2}}\right)^{\frac{2}{3}}
$$

B. $\left(\frac{L_{1}}{L_{2}}\right)$
C. $\left(\frac{L_{2}}{L_{1}}\right)$
D. $\left(\frac{L_{2}}{L_{1}}\right)^{\frac{2}{3}}$

Answer: D

- Watch Video Solution

92. In an adiabatic change, the pressure p and temperature T of a diatomic gas are related by the relation $p \propto T^{\alpha}$, where α equals
A. $\frac{5}{3}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{5}{2}$

Answer: D

- Watch Video Solution

93. During an adiabatic process, the pressure of a gas is
found to be proportional to the cube of its absolute temperature. The ratio C_{P} / C_{V} for the gas is
A. 2
B. 1.5
C. $\frac{5}{3}$
D. $\frac{4}{3}$

Answer: B

D Watch Video Solution

94. The work of 146 kJ is performed in order to compress
one kilo mole of a gas adiabatically and in this process
the temperature of the gas increases by $7^{\circ} C$. The gas is
$\left(R=8.3 \mathrm{ml}^{-1} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. Triatomic
B. A mixture of monoatomic and idatomic
C. Monoatomic

D. Diatomic

Answer: D

- Watch Video Solution

95. The adiabatic elasticity of hydrogen gas $(\gamma=1.4)$ at
$N T P$
A. $1 \times 10^{5} \frac{N}{m^{2}}$
B. $1 \times 10^{8} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $1.4 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
D. $1.4 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

- Watch Video Solution

96. $1 \mathrm{~mm}^{3}$ of a gas is compressed at 1 atmospheric pressure and temperature $27^{\circ} \mathrm{C}$ to $627^{\circ} \mathrm{C}$. What is the final pressure under adiabatic condition (γ for the gas $=1.5$)
A. $27 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $80 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $36 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
D. $56 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer: A
97. For which of the following processes is the entropy
change zero,
A. Isobaric
B. Isothermal
C. Adiabatic
D. none of the above

Answer: C
98. If a cylinder containing a gas at high pressure explodes, the gas undergoes
A. reversible adiabatic change and fall of temperature
B. reversible adiabatic change and rise of temperature
C. Irreversible adiabatic change and fall of temperature
D. Irreversible adiabatic change and rise of temperature

99.

Consider the process A and B shown in the figure. It is possible that
A. both the processes are isothermal
B. both the processes are adiabatic
C. A is isothermal and B is adiabatic
D. A is adiabatic and B is isothermal

Answer: C

- Watch Video Solution

100. Two gases have the same initial pressure, volume and temperature. They expand to the same final volume, one adiabatically and the other isothermally
A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(ii),(iii)

- Watch Video Solution

101. Starting with the same initial conditions, an ideal gas expands from volume V_{1} to V_{2} in three different ways, the work done by the gas is W_{1} if the process is purely isothermal, W_{2} if purely isobaric and W_{3} if purely adiabatic, then
A. $W_{2}>W_{1}>W_{3}$
B. $W_{2}>W_{3}>W_{1}$
C. $W_{1}>W_{2}>W_{3}$
D. $W_{3}>W_{1}>W_{2}$

Answer: A

- Watch Video Solution

102. Four curves A, B, C and D are drawn in Fig. for a given amount of gas. The curves which represent adiabatic and isothermal changes

A. C and D respectively
B. D and C respectively
C. A and B respectively
D. B and A respectively

Answer: C

- Watch Video Solution

103. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ. It is moving with speed v and it's suddenly brought to rest.

Assuming no heat is lost to the surroundings, Its temperature increases by:

$$
\text { A. } \frac{(\gamma-1)}{2(\gamma+1) R} M v^{2}
$$

B. $\left(\frac{\gamma-1}{2 \gamma R}\right) M v^{2}$
C. $\frac{\gamma M v^{2}}{2 R}$
D. $\left(\frac{\gamma-1}{2 R}\right) M v^{2}$

Answer: D

- Watch Video Solution

104. Initial pressure and volume of a gas are P and V respectively. First it is expanded isothermally to volume

4 V and then compressed adiabatically to volume V . The
final pressure of gas will be (given $\gamma=\frac{3}{2}$)
A. $1 P$
B. $2 P$
C. $4 P$
D. $8 P$

Answer: B

- Watch Video Solution

105. An ideal gas expands isothermally from volume V_{1} to V_{2} and is then compressed to original volume V_{1} adiabatically. Initialy pressure is P_{1} and final pressure is P_{3}. The total work done is W. Then
A. $P_{3}>P_{1}, W>0$
B. $P_{3}<P_{1}, W<0$
C. $P_{3}>P_{1}, W<0$
D. $P_{3}=P_{1}, W=0$

Answer: C

- Watch Video Solution

106. One mole of an ideal gas at an initial temperature true of $T K$ does $6 R$ joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of the gas will be

$$
\text { A. }(T+2.4) K
$$

B. $(T-2.4) K$
C. $(T+4) K$
D. $(T-4) K$

Answer: D

- Watch Video Solution

107. If the ratio of specific heat of a gas of constant pressure to that at constant volume is γ, the change in internal energy of the mass of gas, when the volume changes from V to $2 V$ at constant pressure p is
A. $\frac{R}{\gamma-1}$
B. $P V$
C. $\frac{P V}{(\gamma-1)} K$
D. $(T-4) K$

Answer: C

- Watch Video Solution

108. For an ideal gas,
(i) the change in internal energy in a constant pressure process from temperature T_{1} to T_{2} is equal to ${ }_{n} C_{V}\left(T_{2}-T_{1}\right)$, where C_{V} is the molar heat capacity at constant volume and n is the number of moles of the gas
(ii) The change in internal enregy of the gas and the work done by the gas are equal in magnitude in an adiabatic process.
(iii) The internal energy does not change in an isothermal process. Itbr. (iv) no heat is added or removed in an adiabatic process
A. (i),(iii)
B. (ii),(iii)
C. (iii),(iv)
D. all

Answer: D

109. A gas may expand either adiabatically or isothermally. A number of $p-V$ curves are drawn for the two processes over different ranges of pressure and volume, it will be found that
(i) Two adiabatic curves do not intersect
(ii) two isothermal curves do not intersect
(iii) an adiabatic curve and an isothermal curve may intersect.
(iv) the magnitude of the slope of an adiabatic curve is greater thanthe magnitude of the slope of an isothermal curve
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. all

Answer: D

- Watch Video Solution

110. The internal energy of an ideal gas decreases by the same amount as the work done by the system
(i) The process must be adiabatic
(ii) The process must be isothermal
(iii) The process must be isobaric
(iv) The temperature must decrease
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: D

- Watch Video Solution

111. Three identical adiabatic containers A, B and C

Contain helium, neon and oxygen respectively at equal pressure. The gases are pushed to half their original volumes.
A. (i),(ii)
B. (ii),(iii)
C. (iii),(iv)
D. (i),(iv)

Answer: C

- Watch Video Solution

112. P-V plots for two gases during adiabatic processes are shown in the figure. Plots 1 and 2 should
corresponds respectively to

A. He or O_{2}
B. O_{2} and He
C. $H e$ and $A r$
D. O_{2} and N_{2}

Answer: B
113. A gas undergoes a process in which its pressure P and volume V are related as $V P^{n}=$ constant. The bulk modulus of the gas in the process is:
A. $n p$
B. $p^{\frac{1}{n}}$
C. $\frac{p}{n}$
D. p^{n}

Answer: C

114.

In the figure shown, the processes leveled 1,2,3 and 4 are
A. isothermal, adiabatic, isobaric, isochoric
B. isothermal, adiabatic, isochoric, isobaric
C. adiabatic, isothemal, isobaric, isochoric
D. adiabatic, isobaric, isothermal, isochoric

- Watch Video Solution

115. "Heat cannot by itself flow from a body at lower temperature to a body at higher temperature" is a statement or consequence of
A. Second law of thermodynamics
B. Conservation of momentum
C. Conservation of mass
D. First law of thermodynamics
116. A carnot cycle has the reversible process in the following order:
A. Isothermal expansion, adiabatic expansion,
isothermal compression and adiabatic
compression
B. Isothermal compression, adiabatic expansion, isothermal expansion and adiabatic compression
C. Isothermal expansion, adiabatic compression, isothermal compression and adiabatic expansion
D. Adiabatic expansion, isothermal expansion, adiabatic compression and isothermal compression.

Answer: A

- Watch Video Solution

117. Choose the incorrect statement from the following:

S1: The efficiency of a heat engine can be 1 , but the coefficient of performance of a refrigerator can never be infinity

S2: The first law of thermodynamics is basically the principle of conservation of energy

S3: The second law of thermodynamics does not allow
S4: A process, whose sole result is the transfer of heat from a colder object to hotter object is impossible
A. S1
B. 53
C. S2
D. S4

Answer: A

- Watch Video Solution

118. An ideal gas is subjected to cyclic process involving
four thermodynamics thates, the amounts of heat (Q)
and work (W) involved in each of these states.
$Q_{1}=6000 \mathrm{~J}, Q_{2}=-5500 \mathrm{~J}, Q_{3}=-3000 \mathrm{~J}, Q_{4}=3500 \mathrm{~J}$
$W_{1}=2500 J, W_{2}=-1000 J, W_{3}=-1200 J, W_{4}=x J$
The ratio of the net work done by the gas to the total heat absorbed by the gas is η. The values of x and η respectively are
A. $500,7.5 \%$
B. $700,10.5 \%$
C. 1000, 21 \%
D. $1500,15 \%$

Answer: B

119. Helium gas goes through a cycle ABCDA (consisting of two isochoric and isobaric lines) as shown in figure Efficiency of this cycle is nearly: (Assume the gas to be close to ideal gas)

A. 15.4%
B. 9.1%
C. 10.5%
D. 12.5%

- Watch Video Solution

120. The maximum possible efficiency of an engine that
aborbs hat at $327^{\circ} \mathrm{C}$ and exhausts heat at $127^{\circ} \mathrm{C}$ is
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{4}$

Answer: A
121. The efficiency of a carnot engine is $\frac{1}{6}$. If the temperature of the sink is reduced by 62 K , the efficiency becomes $\frac{1}{3}$. The temperature of the source and the sink in the first case are respectively.
A. $372 \mathrm{~K}, 290 \mathrm{~K}$
B. $372 \mathrm{~K}, 310 \mathrm{~K}$
C. $744 \mathrm{~K}, 310 \mathrm{~K}$
D. $744 \mathrm{~K}, 290 \mathrm{~K}$

Answer: B

122. Efficiency of a Carnot engine is 50% when temperature of outlet is 500 K . In order to increase efficiency up to 60% keeping temperature of intake the same what is temperature of outlet?
A. 200 K
B. 400 K
C. 600 K
D. 800 K

Answer: C

- Watch Video Solution

123. An ideal refrigerator has a freezer at a temperature of $-13^{\circ} \mathrm{C}$. The coefficient of performance of the engine is 5 . The temperature of the air (to which heat is rejected) will be
A. $325^{\circ} C$
B. $325 K$
C. $39^{\circ} C$
D. $320^{\circ} \mathrm{C}$

Answer: C
(D) Watch Video Solution
124. An ideal refrigerator is used to transfer heat from a freezer at $-23^{\circ} C$ to the surrounding at $27^{\circ} C$. Its coefficient of performance is
A. 2.5
B. 5
C. 7.5
D. 10

Answer: B
125. In a refrigerator, heat from inside at 277 K is transferred to a room at 300K. How many joules of heat shall be delivered to the room for each joule of electrical energy consumed ideally?
A. 12 J
B. 1 J
C. 13 J
D. 25 J

Answer: C

- Watch Video Solution

126. If the door of a refrigerator is kept open, then which of the following is true
A. Room is cooled
B. Room is heated
C. Room is either cooled or heated
D. Room is neither cooled nor heated

Answer: B

D Watch Video Solution

127. A Carnot engine, having an efficiency of $\eta=1 / 10$ as
heat engine, is used as a refrigerator. If the work done
on the system is 10 , the amount of energy absorbed from the reservoir at lower temperature is
A. 99 J
B. 90 J
C. 1 J
D. 100 J

Answer: B

D Watch Video Solution

128. Which of the following statements is correct for any thermodynamic system
A. The internal energy changes in all process
B. Internal energy and entropy are state function
C. The change in entropy can never be zero
D. The work done in an adiabatic process is always

zero

Answer: B

D Watch Video Solution

129. A mearsure of the degree of disorder of a system is
known as
A. Isobaric
B. Isotropy
C. Enthalpy
D. Entropy

Answer: D

D Watch Video Solution

130. The change in the entropy of a 1 mole of an ideal gas which went through an isothermal process form an initial state $\left(P_{1}, V_{1}, T\right)$ to the final state $\left(P_{2}, V_{2}<T\right)$ is equal to
A. zero
B. $R \ln T$
C. $\mathrm{R} \ln \frac{V_{1}}{V_{2}}$
D. $R \frac{\ln \left(V_{2}\right)}{V_{1}}$

Answer: D

D Watch Video Solution

131. If heat Q is added reversibly to a system at temperature T and heat Q^{\prime} is taken away from it reversibly at temperature T^{\prime}, then which one of the following is correct

$$
\text { A. } \frac{Q}{T}-\frac{Q^{\prime}}{T^{\prime}}=0
$$

B. $\frac{Q}{T}-\frac{Q^{\prime}}{T^{\prime}}>0$
c. $\frac{Q}{T}-\frac{Q^{\prime}}{T^{\prime}}<0$
D. $\frac{Q}{T}-\frac{Q^{\prime}}{T^{\prime}}=$ change in internal energy of the system

Answer: B

- Watch Video Solution

