©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS
 (HINGLISH)

MOTION IN A PLANE

Example

1. A particle is given velocity $3 m / s$ along the
to constant
accelaration $4 m / s^{2}$ along the positive y-axis.

Find the distaplacement of the particle in $2 s$ and trajectory followed by the particle.

D Watch Video Solution

2. At $t=0$, the particle is at the origin and its
velocity is $10 \mathrm{~m} / \mathrm{s}$ at an angle 37° with the x -
axis. The particle moves in $x-y$ plane with a constant acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ along the y axis. Find the magnitude and direction of the velocity after $2 s$.

Watch Video Solution

3. A particle is given velocity $4 m / s$ along the positive y-axis subjected to constant accelaration $10 \mathrm{~m} / \mathrm{s}^{2}$ at 53° with the x -axis.

Find the distaplacement of a particle along the coordinate axes after $3 s$.

D Watch Video Solution

4. A particle moves in the $x-y$ plane under acceleration $\vec{a}=3 \hat{i}+4 \hat{j} m / s^{2}$. If the initial
velocities is $\vec{u}=6 \hat{i}+8 \hat{j} m / s$. Find the velocity and the position vector of a particle after $2 s$.

- Watch Video Solution

5. A particle moves in the $x-y$ plane such
that its coordinates are given
$x=10 \sqrt{3} t, y=10 t-t^{2}$ and t is time, find the initial velocity of the particle.
6. The position vector of a particle is given by
$\vec{r}=k \cos \omega \hat{i}+k \sin \omega \hat{j}=x \hat{i}+y \hat{j}$, where k and ω are constants and t time. Find the angle between the position vector and the velocity
vector. Also determine the trajectory of the particle.

- Watch Video Solution

7. Two particles A and B are moving in the $x-y$ plane such that their velocity components are $v_{x}=1 m / s, v_{y}=\frac{1}{\sqrt{3}} m / s$
(for A) and $v_{x}=2 m / s, v_{y}=2 m / s$ (for B). If both the particles start moving from the same point, what is the angle between their paths ?

- Watch Video Solution

8. A particle is moving in a plane with velocity
$\vec{v}=u_{0} \hat{i}+k \omega \cos \omega t \hat{j}$. If the particle is at origin at $t=0$, (a) determine the trajectory of the particle. (b) Find its distance from the origin at $t=3 \pi / 2 \omega$.
9. A radius vector of a point A relative to the origin varies with time t as $r=a t i-b t^{2} j$, where a and b are positive constants, and i and j are the unit vectors of the x and y axes.

Find:
(a) the equation of the point's trajectory $y(x)$, plot this function,
(b) the time dependence of the velocity v and acceleration w vectors, as well as of the moduli of these quantities,
(c) the time dependence of the angle α
between the vectors w and v,
(d) the mean velocity vector averaged over the
first t seconds of motion, and the modulus of this vector.

- Watch Video Solution

10. A point moves in the plane $x y$ according to
the law $\quad x=\alpha \sin \omega t, y=\alpha(1-\cos \omega t)$,
where α and ω are positive constant and t is
time. Find the distance traversed by point in
time t_{0}.

Watch Video Solution

11. A particle is thrown with speed of $50 \mathrm{~m} / \mathrm{s}$ at an angle of projection 37° with the horizontal. Find (a) the time of flight, (b) the maximum height attained and (c) the horizontal range.
$\left(\sin 37^{\circ}=\frac{3}{5}, \cos 37^{\circ}=\frac{4}{5}\right)$

- Watch Video Solution

12. A particle is thrown with a velocity $10 \mathrm{~m} / \mathrm{s}$ and its horizontal range is 5 m . Find angle/angles of the projection.

- Watch Video Solution

13. If in a projection motion, the maximum
height is equal to a horizontal range, find the angles of projection $\left[\tan ^{-1}(4)=76^{\circ}\right]$

- Watch Video Solution

14. An object is projected so that its horizontal range R is maximum. If the maximum height of projectile is H, find the value of H / R.

- Watch Video Solution

15. If an object is thrown at an angle of 60°
with horizontal, find elevation angle of the object at its highest point as seen from the point of projection.
16. A ball is thrown such that the time of flight
is $5 s$ and the horizontal range is 200 m . Find
the magnitude and direction of velocity of projection.

- Watch Video Solution

17. A large number of bullets are fired in all
directions with the same speed v. Find the maximum area on the ground on which these bullets will spread.
18. A particle is thrown with speed u at an angle θ with horizontal.

Find the average velocity of particle:
(a) O to C (b) A to B (c) O to H

D Watch Video Solution
19. For a projectile if the time of flight is T, the maximum height is H and the horizontal range is R. Find the (a) the maximum height in terms of T and (b) the maximum horizontal range in terms of R and H.

D Watch Video Solution

20. A particle is thrown such that for two angles of projection range R is same. If T_{1} and
T_{2} are the time of flights and H_{1} and H_{2} are
the maximum hrights corresponding to these angles, find (a) $\frac{T_{1} T_{2}}{R}$ and (b) $\frac{4 \sqrt{H_{1} H_{2}}}{R}$.

D Watch Video Solution

21. A projectile is aimed at a mark on the horizontal plane through the point of projection and falls $12 m$ short when the angle of projection is 15°, white it overshoots the mark by $24 m$ when the angle of projection is
45°. Find the angle of projection to hit the
mark.

- Watch Video Solution

22. A shell bursts on contact with the gorund and pieces from it fly in all directions with velocities up to $60 \mathrm{~m} / \mathrm{s}$. Show that a man $180 m$ away is in danger for $6 \sqrt{2} s$.
23. A ball is thrown horizontally with speed $20 \mathrm{~m} / \mathrm{s}$ from a tower of height 80 m .
(a) After how much time and at what horizontal distance from the foot of tower it strikes the ground.
(b) Find the magnitude and direction of the velocity with which it strikes the ground.
(c) Find the velocity vector of ball after $1 s$.
(d) Trajectory followed by the ball.
24. A bomb is released from an aeroplane
flying at a speed of $720 \mathrm{~km} / \mathrm{h}$ in the horizontal direction 8000 m above the gorund.

At what horizontal distance from the initial position of areoplane it strikes the ground.

D Watch Video Solution

25. A body is thrown horizontally from the top
of a tower of height 5 m . It touches the ground
at a distance of 10 m from the foot of the tower. Find the initial velocity of the body.

D Watch Video Solution

26. A ball rolls off top of a staircase with a horizontal velocity $u m s^{-1}$. If the steps are h metre high and b mere wide, the ball will just hit the edge of $n t h$ step. Find the value of n.
27. A staircase contains four steps each 20 cm high and 40 cm wide. What should be the minimum horizontal velocity of a ball rolling off the uppermost plane so as to hit directly the lowest plane?

- Watch Video Solution

28. A ball is projected horizontally with a speed u from the top of inclined plane of
inclination α with horizontal. At what distance along the plane, the ball will strike the plane ?

D Watch Video Solution

29. From the top of the tower, two balls are thrown horizontally in opposite directions with velocities u_{1} and u_{2}. Find the distacne between the balls at the moment when their velocity vectors becomes mutually
perpendicular. (Assume the height of tower very large)

Watch Video Solution

30. A person standing on the top of a tower $36 m$ high has to throw a packet to his friend standing on the ground $48 m$ horizontally away. If the throws a packet directly aiming the friend with a speed of $10 \mathrm{~m} / \mathrm{s}$, how short will the packet fall ?

D Watch Video Solution

31. Consider the situation as shown in the figure.

Two balls are thrown simultaneously with
same speed $10 \mathrm{~m} / \mathrm{s}$, one horizontally and another at angle 60° in downward direction.

After sometime balls cllide in mid-air, find distance d.
32. A ball is thrown with velocity $40 \mathrm{~m} / \mathrm{s}$ at angle 30° with horizontal from the top of a tower of height 60 m . At what horizontal distance from the foot of tower, the ball will strike the gorund ?

D Watch Video Solution

33. Two guns situated at the top of a hill of
height $10 m$ fire one shot each with the same
speed $5 \sqrt{3} \mathrm{~m} / \mathrm{s}$ at some interval of time. One gun fires horizontal and the other fores upwards at an angle of 60° with the horizontal. Two shots collide in air at a poit P.

Find (i) time-interval between the firing and (ii) coordinates of the point P. Take the origin of coordinates system at the foot of the hill right below the muzzle and trajectorise in the $x-y$ plane.

D Watch Video Solution

34. A particle is thrown at an angle with horizontal from the ground. After $4 s$ it reaches to a point P and after 5 more seconds it strikes the ground. Find the height of P the maximum height attained by the particle.

D Watch Video Solution

35. A particle is thrown with speed u at an
angle α with horizontal from the ground. After how much time, the velocity of particle will make an angle β with horizontal.

D Watch Video Solution

36. Two second after projection, a projectile is
travelling in a direction inclined at 30° to the
horizontal. After one more second, it is travelling horizontally. Find the magnitude and direction of the velocity of projection.

- Watch Video Solution

37. A ball is thrown with speed u at an angle θ with horizontally. After how much time it will move perpendicular to the initial direction of motion.

- Watch Video Solution

38. Two bodies are thrown simultaneously
from the same point. One thrown straight up
and the other at an angle α with the horizontal. Both the bodies have velocity equal to u. Find the separation between the bodies at time t.

D Watch Video Solution

39. A gun kept on a striaght horizontal is used
to hit a car, traveling along the same road away form the gun with a unfrom speed
$20 \mathrm{~m} / \mathrm{s}$. The car is at a distance Of 160 m from
the gun, when the gun is fired at an angle of
45° with the horizontal Find the distance of the car from the gun when the shell hits it and the speed of projection of the shell from the gun.

D Watch Video Solution

40. Shots are fired simultaneously from the top and the bottom of a vertical cliff with elevation 37° and 53° respectively, strike an object at the ground simultaneously.If the
horizontal distance of the object from the cliff is 60 m , find the height of the cliff.

D Watch Video Solution

41. The trajectory of a projectile in a vertical
plane is $y=a x-b x^{2}$, where a and b are constantsn and x and y are respectively horizontal and vertical distances of the projectile from the point of projection. The maximum height height attained by the
particle and the angle of projection form the horizontal are:

D Watch Video Solution

42. A particle moves in the $x y$ plane with a constant acceleration ω directed along the negative y-axis. The equation of motion of particle has the form $y=c x-d x^{2}$, where c and d are positive constants. Find the velocity of the particle at the origin of coordinates.
43. A ball is thrown from a point at a distance 40 m from a wall of height 15 m . It just clears the wall and then attains maximum height.

Find the maximum height the angle of projection is 45°.

D Watch Video Solution

44. A ball is projected at an angle 45° with
horizontal. It passes through a wall of height
h at horizontal distance d_{1} from the point of
projection and strikes the ground at a horizontal distance $\left(d_{1}+d_{2}\right)$ from the point of projection, then

D Watch Video Solution

45. Consider an object P on an inclined plane of inclination β.

A shot is fired O at an angle α with horizontal.
Find the relation between α and β, if the shot
hits the object horizontally.

D Watch Video Solution

46. A particle is thrown over a triangle from one end of a horizontal base and after grazing the vertex falls on the other end of the base. If
α and β be the base angles and θ the angle of projection, prove that $\tan \theta=\tan \alpha+\tan \beta$.

D Watch Video Solution

47. A particle is projected from origin with speed u. Find the minimum value of u if the particle passes through a poiny $P(a, \sqrt{3} a)$.

- Watch Video Solution

48. A body falling freely from a given height H hits an inclined plane in its path at a height h.

As a result of this impact the direction of the velocity of the body becomes horizontal. For what value of h / H, the body will take the maximum time to reach the ground.

- Watch Video Solution

49. A stone is projected from the ground in such a direction so as to hit a bird on the top
of a telegraph post of height h and attains the maximum height of 2 h above the ground. If at the insatant of projection, the bird were to fly away horizontally with a uniform speed, find the ratio between the horizontal velocity of bird and the horizontal component of velocity of stone, if the stone hits the bird while descending.

Watch Video Solution

50. Consider the situation as shown.

When a ball is thrown aiming the monkey, at
the same time the monkey drops himself. Will the ball hit the monkey?

D Watch Video Solution

51. A ball with projection velocity $10 \mathrm{~m} / \mathrm{s}$ is to
hit a target $6 m$ away in the same horizontal
line. How high above the target must the ball be aimed so that the ball will hit the target ?
$\left(\tan 18.5^{\circ}=1 / 3, \tan 71.5^{\circ}=3\right)$

- Watch Video Solution

52. A ball is thrown from a point O aiming a target at angle 37° with the horizontal so that the ball hits the target at C but the ball
hits at point D, a vertical distance y_{0} below C.
If the initial velocity of the ball is $10 \mathrm{~m} / \mathrm{s}$ and
the horizontal distance between O and C is $5 m$. Find y_{0}.

D Watch Video Solution

53. A boy is standing on a truck moving with a constant velocity of $15 \mathrm{~m} / \mathrm{s}$ on the horizontal road. The boy throws a ball in such a way that it returns to the truck after the truck has moved 60 m . Find the speed and the angle of
projection (a) as seen by the truck and (b) as seen from the road.

D Watch Video Solution

54. A man standing on a long rail road car throws a ball vertically upward with speed $20 \mathrm{~m} / \mathrm{s}$. The car starts from rest and moves with acceleration $2 m / s^{2}$. How far behind the man will the ball fall on the car ?
55. The path of one projectile as seen by an observer on another projectile is a/an:

D Watch Video Solution

Exercises

1. Two balls are rolling on a flat surface. One
has velocity components m / s and $\sqrt{3} m / s$ along the rectangular axes x and y, respectively and the other has component $2 m / s$ and $2 m / s$, respectively. If both the
balls start moving from the same point, the angle between their directions of motion is
A. 15°
B. 30°
C. 45°
D. 60°

Answer: A
(Watch Video Solution
2. A particle moving with a velocity equal to
$0.4 m / s$ is subjected to an acceleration of
$0.15 m / s^{2}$ for $2 s$. in a direction at the right angle to its direction of motion. The resultant velocity is
A. $0.7 m / s$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $0.1 m / s$
D. Between 0.7 and $0.1 \mathrm{~m} / \mathrm{s}$

Answer: B
3. The height y and distance x along the horizontal plane of a projectile on a certain planet are given by $x=6 \mathrm{tm}$ and $y=\left(8 t^{2}-5 t^{2}\right) m$. The velocity with which the projectile is projected is
A. $8 m / s$
B. $6 m / s$
C. $10 \mathrm{~m} / \mathrm{s}$
D. 0

Answer: C

- Watch Video Solution

4. In the above problem the direction of the initial velocity with the x-axis is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{3}{4}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{4}{3}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

D. $\cos ^{-1}\left(\frac{3}{4}\right)$

Answer: B

D Watch Video Solution

5. The coordinates of a moving particle at any
time t are given by $x=\alpha t^{3}$ and $y=\beta t^{3}$. The
speed of the particle at time t is given by

$$
\begin{aligned}
& \text { A. } \sqrt{\alpha^{2}+\beta^{2}} \\
& \text { B. } 3 t \sqrt{\alpha^{+} \beta^{2}}
\end{aligned}
$$

C. $3 t^{2} \sqrt{\alpha^{2}+\beta^{2}}$
D. $t^{2} \sqrt{\alpha^{2}+\beta^{2}}$

Answer: C

D Watch Video Solution

6. A body starts from rest from the origin with an acceleration of $3 m / s(2)$ along the x-axis
and $4 m / s^{2}$ along the y-axis. Its distance from
the origin after $2 s$ will be
A. $5 m$
B. $10 m$
C. $15 m$
D. 20 m

Answer: B

D Watch Video Solution

7. A ball is thrown upwards and returns to the ground describing a parabolic path. Which of the following quantities remains constant ?
A. Kinetic energy of the ball
B. The speed of the ball
C. The vertical component of velocity
D. The horizontal component of velocity

Answer: D

D Watch Video Solution
8. At what angle to the horizontal should an object be projected so that the maximum
height reached is equal to the horizontal range.
A. $\tan \theta=2$
B. $\tan \theta=4$
C. $\tan \theta=3$
D. $\tan \theta=3$

Answer: B
(Watch Video Solution
9. The velocity at the maximum height of a projectile is half of its velocity of projection u.

Its range on the horizontal plane is

$$
\begin{aligned}
& \text { A. } \frac{3 u^{2}}{g} \\
& \text { B. } \frac{\sqrt{3} u^{2}}{2 g} \\
& \text { C. } \frac{3 u^{2}}{g^{2}} \\
& \text { D. } \frac{u^{2}}{3 g}
\end{aligned}
$$

Answer: B

- Watch Video Solution

10. The range of a projectile, thrown with an initial speed u at the angle of projection 15°
is R. What will be the range if it is thrown with an initial speed $2 u$ at an angle 30° ?
A. $4 \sqrt{3} R$
B. $2 \sqrt{3} R$
C. \sqrt{R}
D. $5 \sqrt{3} R$

Answer: A
11. A projectile is projected with a kinetic energy K. If it has the maximum possible
horizontal range, then its kinetic energy at the highest point will be
A. $K / 4$
B. $K / 2$
C. $3 K / 4$
D. K

Answer: B

D Watch Video Solution

12. A projectile is projected with the initial velocity $(6 i+8 j) m / s$. The horizontal range is $\left(g=10 m / s^{2}\right)$
A. $96 m$
B. 960 m
C. $9.6 m$
D. 4.8 m

Answer: C

D Watch Video Solution

13. A projectile is thrown at an angle of 40°
with the horizontal and its range is R_{1}.

Another projectile is thrown at an angle of
40° with the vertical and its range is R_{2}. What
is the relation between R_{1} and R_{2} ?
(projection speed is same in both cases)
A. $R_{=} R_{2}$
B. $R_{1}=2 R_{2}$
C. $2 R_{1}=R_{2}$
D. $R_{1}=0.8 R_{2}$

Answer: A

D Watch Video Solution
14. Two projectiles A and B are projected with an angle of projection 15° for the projectile A and 45° for the projectile B. If R_{A} and R_{B} be
the horizontal range for the two projectiles, then
A. $R_{A}<R_{B}$
B. $R_{A}=R_{B}$
C. $R_{A}>R_{B}$
D. the information is insufficient to decide
the relation of R_{A} with R_{B}

Answer: D

D Watch Video Solution
15. It was calculated that a shell when fired
from a gun with a certain velocity and at an angle of elevation $5 \pi / 36$ radius should strike a given target. In actual practice it was found that a hill just intervened in the trajectory. At what angle of elevation should the gun be fired to hit the target ?
A. $\frac{5 \pi}{36}$ radius
B. $\frac{7 \pi}{36}$ radius
C. $\frac{11 \pi}{36}$ radius
D. $\frac{13 \pi}{36}$ radius

Answer: D

- Watch Video Solution

16. Galileo writes that for angles of projection
of a projectile at angles $(45+\theta)$ and $(45-\theta)$
, the horizontal ranges described by the projectile are in the ratio of (if $\theta \leq 45$)
A. 2:1
B. $1: 2$
C. $1: 1$

D. $2: 3$

Answer: C

D Watch Video Solution

17. Choose the correct option
(i) The speed of a projectile at its maximum
height is half of its initial speed. The angle of projection is 60°.
(ii) A missile is fired for maximum range with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$, the range of the
missile is 40 m .
(iii) A ball is projected with a kinetic energy E at an angle of 45° to the horizontal. At the highest point during its flight, its kinetic energy will be $E / 2$.
(iv) An object is projected at an angle of 45°
with horizontal. The horizontal range and the
maximum height will be in the ratio $4: 1$
A. (i), (ii)
B. (ii), (iii)
C. (i), (iv)

D. all option are correct

Answer: D

D Watch Video Solution

18. If a body A of mass m is thrown with
velocity v at an angle of 30° to the horizontal
and another body B of mass $2 m$ is thrown
with the same speed at an angle of 60° to the
horizontal. Then

$$
\text { A. } \frac{R_{A}}{R_{B}}=\frac{1}{1}
$$

B. $\frac{\left(H_{A}\right)_{\max }}{\left(H_{B}\right)_{\max }}=\frac{1}{3}$
C. $\frac{T_{A}}{T_{B}}=\frac{1}{\sqrt{3}}$
D. (1), (2), (3)

Answer: D

D Watch Video Solution

19. A particle is thrown such that its time of flight is 10 s and horizontal range is 500 m .
(i) $H_{\text {max }}=125 m$
(ii) $u=50 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(iii) $\theta=45^{\circ}$
(iv) velocity at highest point $=50 \mathrm{~m} / \mathrm{s}$
A. (i), (ii), (iii)
B. (ii), (iii), (iv)
C. (i), (ii), (iv)
D. all option are correct

Answer: D
(Watch Video Solution
20. A ball of mass m is thrown vertically
upwards. Another ball of same mass is thrown
at an angle θ to the horizontal. If the time if
flights for both is same, the ratio of maximum
height attained by them
A. 1: 2
B. $1: \sin ^{2} \theta$
C. $1: 1$
D. $\cos ^{2} \theta: 1$

Answer: C

- Watch Video Solution

21. A particle is thrown with speed u at an angle of projection θ with horizontal as shown.

(i) The avergae velocity of particle from O to A is $u \cos \theta$
(ii) The average velocity of particle from O to H (highest point) is $\frac{u}{2} \sqrt{1+3 \cos ^{2} \theta}$
(iii) The average velocity of particle from J to
K is $u \cos \theta$
(iv) The angle between the velocity and the acceleration between O and H is greater than
90°, between H to A is less than 90° and at highest point is 90°
A. (i), (ii)
B. (i), (iii)
C. (ii), (iv)
D. all option are correct

- Watch Video Solution

22. A projectile is thrown into air so as to have
the maximum possible range equal to 200 .
Taking projection point as origin, the coordinates of the point where the velocity of the projectile is minimum, are
A. $(200,50)$
B. $(100,50)$
C. $(100,50)$

D. $(100,100)$

Answer: B

- Watch Video Solution

23. Two projectiles, one fired from from surface of earth with velocity $10 \mathrm{~m} / \mathrm{s}$ and other fired
from the surface of another planet with initial speed $5 m / s$ trace idential trajectories. The value of acceleration due to the gravity on the planet is
A. $2.5 m / s^{2}$
B. $3.6 m / s^{2}$
C. $4.9 \mathrm{~m} / \mathrm{s}^{2}$
D. $6.4 m / s^{2}$

Answer: A

D Watch Video Solution

24. A projectile is fired at an angle of 45° with
the horizontal. Elevation angle of the
projection at its highest point as seen from
the point of projection is
A. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. 45°
C. 60°
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

Answer: D

D Watch Video Solution
25. A large number of bullets are fired in all directions with the same speed v. Find the maximum area on the ground on which these bullets will spread.

$$
\begin{aligned}
& \text { A. } \frac{\pi v^{2}}{g} \\
& \text { B. } \frac{\pi v^{4}}{g^{2}} \\
& \text { C. } \frac{\pi v^{2}}{g^{2}} \\
& \text { D. } \frac{\pi v^{2}}{g^{4}}
\end{aligned}
$$

Answer: B
26. Four balls A, B, C and D are projected with equal velocities having angles of projection $15^{\circ}, 30^{\circ}, 45^{\circ}$ and 60° with the horizontal, respectively. The ball having the smallest range is
A. A
B. B
C. C
D. D

Answer: A

D Watch Video Solution

27. A ball A is projected with speed $20 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the horizontal from the ground. Another ball B is released simultaneously from a point on the vertical
line along the maximum height of the projectile. Both the balls collide at the maximum height of the first ball. The initial height of ball B is
A. $5 m$
B. $10 m$
C. $15 m$
D. 20 m

Answer: B

D Watch Video Solution

28. A boy can throw a stone up to a maximum
height of 10 m . The maximum horizontal
distance that the boy can throw the same stone up to will be :
A. $20 \sqrt{2} m$
B. $10 m$
C. $10 \sqrt{2} m$
D. 20 m

Answer: D
(Watch Video Solution
29. A cricketer can throw a ball to a maximum
horizontal distance of 100 m . With the same
speed how much high above the ground can
the cricketer throw the same ball?
A. $100 m$
B. 80 m
C. 60 m
D. 50 m

Answer: D

30. A bullet is to be fired with a speed of $2000 \mathrm{~m} / \mathrm{s}$ to hit a target 200 m away on a level ground. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the gun should be aimed
A. Directly at the target
B. 5 cm below the target
C. 5 cm above the target
D. 2 cm above the target

Answer: C

D Watch Video Solution

31. A particle is projected at an angle with
horizontal. If T is the time of flight and R is a
horizontal range, then θ is
A. $\cot ^{-1}\left(\frac{g T^{2}}{R}\right)$
B. $\cot ^{-1}\left(\frac{g T^{2}}{2 R}\right)$
C. $\tan ^{-1}\left(\frac{2 R}{g T^{2}}\right)$
D. $\tan ^{-1}\left(\frac{g T^{2}}{2 R}\right)$

Answer: D

D Watch Video Solution

32. For a given velocity, a projectile has the same range R for two angles of rpojection if
t_{1} and t_{2} are the times of flight in the two cases then
A. $t_{1} t_{2} \propto R^{2}$
B. $t_{1} t_{\alpha} R$
C. $t_{1} t_{2} \propto \frac{1}{R}$
D. $t_{1} t_{2} \propto \frac{1}{R^{2}}$

Answer: B

D Watch Video Solution

33. In the previous problem, if H_{1} and H_{2} are the maximum heights in the two cases, then

$$
\begin{aligned}
& \text { A. } R=2 \sqrt{H_{1} H_{2}} \\
& \text { В. } R=4 \sqrt{H_{1} H_{2}} \\
& \text { С. } R=\sqrt{H_{1}^{2}+H_{2}^{2}}
\end{aligned}
$$

$$
\text { D. } R=H_{1}-H_{2}
$$

Answer: B

- Watch Video Solution

34. A ball is thrown horizontally with speed
$10 \mathrm{~m} / \mathrm{s}$ from the top of tower of height 80 m .

After how much time and at what horizontal distance from the tower it strikes the ground ?
A. $2 s, 40 m$
B. $2 s, 20 m$
C. $4 s, 40 m$
D. $4 s, 80 m$

Answer: C

D Watch Video Solution

35. A body is projected horizontally from a height of 20 m . It reaches the ground at a horizontally distance of 40 m . The speed of practicle when it hits the ground is
A. $10 m / s$
B. $10 \sqrt{m} / s$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: d

D Watch Video Solution
36. A body thrown horizontally from the top of a building with a speed $20 \mathrm{~m} / \mathrm{s}$, strikes the
ground 40 m away from the foot of tower. The height of the tower is
A. $5 m$
B. 10 m
C. $15 m$
D. 20 m

Answer: D
(Watch Video Solution
37. An areoplane is flying horizontally with a velocity $720 \mathrm{~km} / \mathrm{h}$ at a height of 2000 m . When
it is vertically at a point A on the ground, a bomb is released from it. The bomb strikes the gound at point B. The distance $A B$ is
A. 1 km
B. 2 km
C. 3 km
D. 4 km

- Watch Video Solution

38. A bomber plane moves horizontally with a speed of $600 \mathrm{~m} / \mathrm{s}$ and a bomb released from
it, strikes the ground in 10 s . The angle with horizontally at which it strikes the ground will be
A. $\tan ^{-1}(1 / 2)$
B. $\tan ^{-1}(1 / 6)$
C. $\tan ^{-1}(4 / 5)$

D. $\tan ^{-1}(3 / 4)$

Answer: B

D Watch Video Solution

39. At the height 320 m , an aeroplane is moving with $100 \mathrm{~m} / \mathrm{s}$. A bomb is droped from
it so as to hit a target. At what horizontal distance from the target should the bomb be dropped
A. 200 m
B. 400 m
C. 600 m
D. 800 m

Answer: D

D Watch Video Solution

40. A ball is rolled off the edge of a horizontally table at as speed of $4 \mathrm{~m} / \mathrm{s}$. It hits the ground after $0.8 s$.
(i) it hits the ground at a horizontal distance
$3.2 m$ from the edge of the table
(ii) The speed with which it hits the ground is
$4 \sqrt{5} m / s$
(iii) Height of the table is $3.2 m$
(iv) it hits the ground at an angle of $\tan ^{-1}(2)$ to the horizontally
A. (i), (ii)
B. (ii), (iii), (iv)
C. (i), (ii), (iii)
D. all option are correct

- Watch Video Solution

41. A body, rpojected horizontally with a speed
u from the top of a tower of height h, reaches
the ground at a horizontally distance R from
the tower. Another body, projected
horizontally from the top of a tower of height
$4 h$, reaches the ground at horizontal distance
$2 R$ from the tower. The initial speed of the second body is
A. u
B. $2 u$
C. $3 u$
D. $4 u$

Answer: A

D Watch Video Solution
42. From the top of the tower, a ball A is dropped and another ball B is thrown horizontally at the same time. Which ball strikes the ground first?
A. A
B. B
C. simultaneously
D. depends on the masses

Answer: C

D Watch Video Solution
43. A ball rolls off the top of a stairway with a horizontal velocity u. If the height and width
of steps are b and h respectively and the ball hits the edge of $n^{\text {th }}$ step, then n is equal to
A. $\frac{h u^{2}}{g b^{2}}$
B. $\frac{h u^{2}}{2 g b^{2}}$
C. $\frac{2 h u^{2}}{g b^{2}}$
D. $\frac{h u^{2}}{4 g b^{2}}$

Answer: C

D Watch Video Solution

44. A staircase contains four steps each 10 cm high and 20 cm wide. The minimum horizontal velocity of a ball rolling off the uppermost plane so as to hit directly the lowest plane is

A. $1 m / s$
B. $2 m / s$
C. $3 m / s$
D. $4 m / s$

Answer: B

D Watch Video Solution

45. A ball is thrown with speed $40 \mathrm{~m} / \mathrm{s}$ at an angle 30° with horizontally from the top of a tower of height 60 m . Choose the correct option
A. the vertical component of velocity first decreases to zero and then increases
B. the ball reaches the ground after $6 s$
C. if the ball strikes the ground at maximum horizontal distance from the
tower for this the angle of projection
should be less than 45°
D. all option are correct

Answer: D

46. Two balls are thrown horizontally from the top of a tower with velocities v_{1} and v_{2} in opposite directions at the same time. After how much time the angle between velocities of balls becomes 90° ?
A. $\frac{2 \sqrt{v_{1} v_{2}}}{g}$
B. $\frac{\sqrt{v_{1} v_{2}}}{g}$
C. $\frac{\sqrt{v_{1} v_{2}}}{2 g}$
D. $\frac{g}{\sqrt{v_{1} v_{2}}}$

Answer: B

D Watch Video Solution

47. In the previous problem, the distance between the balls when their velocity vectors are perpendicular is

$$
\text { A. } \frac{2\left(v_{+} v_{2}\right) \sqrt{v_{1} v_{2}}}{g}
$$

B. $\frac{v_{1}+v_{2} \sqrt{v_{1} v_{2}}}{g}$
C. $\frac{v_{1}+v_{2} \sqrt{v_{1} v_{2}}}{g}$
D. $\frac{v_{1}+v_{2} \sqrt{v_{1} v_{2}}}{2 g}$

Answer: C

- Watch Video Solution

48. Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths according to the initial horizontal velocity component, highest first.

A. $1,2,3,4$
B. $2,3,4,1$
C. $3,4,1,2$
D. $4,3,2,1$

Answer: A

D Watch Video Solution

49. A projectile is projected and it takes $9 s$ to reach in the horizontal plane through the point of projection. In its path it passes a
point P after $4 s$. The height of P above the horizontal plane is
A. $10 m$
B. 50 m
C. 100 m
D. 200 m

Answer: C

- Watch Video Solution

50. A projectile is projected with a speed u at an angle θ with the horizontal. What is the speed when its direction of motion makes an angle $\theta / 2$ with the horizontal

$$
\text { A. } \frac{u \cos \theta}{2}
$$

B. $u \cos \theta$

$$
\begin{aligned}
& \text { C. } u\left(2 \frac{\cos (\theta)}{2}-\frac{\sec (\theta)}{2}\right) \\
& \text { D. } u\left(\frac{\cos (\theta)}{2}-\frac{\sec (\theta)}{2}\right)
\end{aligned}
$$

Answer: C

51. Choose the correct option

Two seconds after the projection, a projectile is moving at 30° above the horizontal, after one more second it moves horizontally
$\left(g=10 m / s^{2}\right)$.
A. the magnitude of the initial velocity is
$20 \sqrt{3} \mathrm{~m} / \mathrm{s}$
B. the angle of projection is 60°
C. the maximum height attained by the projectile is $45 m$

D. the horizontal range is 60 m

Answer: D

D Watch Video Solution

52. A hose lying on the ground shoots a stream of water at an angle 30° to the horizontal. The speed of water is $20 \mathrm{~m} / \mathrm{s}$ as it
leaves the hose. How high will it strike a wall
$8 \sqrt{3} m$ away from the hose $\left(g=10 m / s^{2}\right)$
A. $4 m$
B. $4.8 m$
C. $9.6 m$
D. $2.4 m$

Answer: B
53. A particle I projected at an angle of elevation α after time t it makes angle β with horizontal. The velocity of projection is

$$
\begin{aligned}
& \text { A. } \frac{2 g t \cos \beta}{\sin (\alpha-\beta)} \\
& \text { B. } \frac{g t \cos \beta}{\sin (\alpha-\beta)} \\
& \text { C. } \frac{g t}{2 \sin (\alpha-\beta)} \\
& \text { D. } \frac{4 g t}{\sin (\alpha-\beta)}
\end{aligned}
$$

Answer: B
54. A particle is thrown with a speed u at an
angle θ with horizontal. After how much time
the velocity of particle will be perpendicular to
the initial motion of direction

$$
\begin{aligned}
& \text { A. } \frac{u}{g \cos \theta} \\
& \text { B. } \frac{u}{g \sin \theta} \\
& \text { C. } \frac{u \sin \theta}{g} \\
& \text { D. } \frac{u \cos \theta}{g}
\end{aligned}
$$

Answer: B
55. The equation of trajectory of an oblique
projectile $y=\sqrt{3} x-\frac{g x^{2}}{2}$. The angle of projection is
A. 30°
B. 45°
C. 60°
D. 15°

Answer: C

Watch Video Solution

56. An object is projected with a velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle 45° with horizontal. The equation of trajectory followed by the projectile is $y=a x-\beta x^{2}$, the ratio α / β is
A. 5
B. 10
C. 15
D. 20

Answer: B

- Watch Video Solution

57. A ball is thrown from a point with a speed
' $v^{\wedge}(0)$ ' at an elevation angle of θ. From the
same point and at the same instant, a person
starts running with a constant speed ' $\frac{v_{0}}{2}$ ' to
catch the ball . Will the person be able to
catch the ball ? If yes, what should be the angle of projection θ ?
A. Yes, 60°
B. Yes, 30°
C. No
D. Yes 45°

Answer: A

- Watch Video Solution

58. A particle starts from the origin of coordinates at time $t=0$ and moves in the $x y$ plane with a constant acceleration α in the y -
direction. Its equation of motion is $y=\beta x^{2}$.
Its velocity component in the x-direction is
A. $\sqrt{\frac{\alpha}{\beta}}$
B. $\sqrt{\frac{\beta}{\alpha}}$
C. $\sqrt{\frac{\alpha}{2 \beta}}$
D. $\sqrt{\frac{\beta}{2 \alpha}}$

Answer: D

- Watch Video Solution

59. A particle moves in a plane with constant
acceleration in a direction different from the initial velocity. The path of the particle will be
A. A straight will be
B. An arc of a circle
C. A parabola
D. An ellipse

Answer: C

D Watch Video Solution
60. A boy throws a ball vertically upwards froma moving open car on a horizontal straight road
(i) The ball will fall behind the boy, if car is accelerating
(ii) The ball will fall in front of the boy, if car is decelerating
(iii) The ball will fall in the hands of boy if car is moving with uniform velocity
(iv) The path of ball as seen by the boy will be vertical straight line if car is moning uniformly
(v) The path of ball as seen by observer on ground will be parabola
A. (i), (ii), (iii)
B. (ii), (iii), (iv)
C. (i), (ii), (iv)
D. All option are correct

Answer: D

- Watch Video Solution

61. Two particles are projected simultaneously
in the same vertical plane, from the with speed
u_{1} and u_{2} at angle of projection θ_{1} and θ_{2} respectively with the horizontal. The path followed by one, as seen by other (as long as both are in flight), is
A. an inclined straight line
B. a vertical straight line if
$u_{1} \cos \theta_{1}=u_{\cos \theta-}(2)$
C. both (1), (2)

D. none

Answer: C

D Watch Video Solution

62. A person is standing on an open car moving with a constant velocity of $30 \mathrm{~m} / \mathrm{s}$ on
a striaght upward direction and it returns to person after the car has moved 240 m . The speed and the angle of projection
A. as seen from the car is $40 \mathrm{~m} / \mathrm{s}, 90^{\circ}$
B. as seen from the road is $50 \mathrm{~m} / \mathrm{s}$,

$$
\tan ^{-1}(4 / 3)
$$

C. both (1) and (2)
D. none

Answer: C

D Watch Video Solution

63. In the previous problem if the car is moving with a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$
, the ball will fall behind the person at a distance
A. $32 m$
B. $64 m$
C. $96 m$
D. $16 m$

Answer: B
(Watch Video Solution
64. A ball is projected at an angle 45° with
horizontal. It passes through a wall of height
h at horizontal distance d_{1} from the point of
projection and strikes the ground at a
horizontal distance $\left(d_{1}+d_{2}\right)$ from the point of projection, then

$$
\begin{aligned}
& \text { A. } h=\frac{2 d_{d-}-(2)}{d_{+} d_{2}} \\
& \text { B. } h=\frac{d_{1} d_{2}}{d_{1}+d_{2}} \\
& \text { C. } h=\frac{\sqrt{2} d_{1} d_{2}}{d_{1}+d_{2}} \\
& \text { D. } h=\frac{d_{1} d_{2}}{2\left(d_{1}+d_{2}\right)}
\end{aligned}
$$

Answer: B

D Watch Video Solution

65. A ball is thrown from the ground so as to
just clear a wall 10 m high at a distance of 20 m and falls at a distance of 40 m from the wall.

The magnitude and direction of the projection
velocity is
A. $10 m / s, 30^{\circ}$
B. $25 m / s, 60^{\circ}$

> C. $25 m / s, \tan ^{-1}(3 / 4)$
> D. $10 m / s, \tan ^{-1}(3 / 4)$

Answer: C

D Watch Video Solution

66. Two balls are thrown with the same speed
from a point O at the same time so that their
horizontal ranges are same. If the difference of
the maximum height attained by them is equal
to half of the sum of the maximum heights,
then the angles of projection for the balls are
A. $15^{\circ}, 75^{\circ}$
B. $30^{\circ}, 60^{\circ}$
C. $0^{\circ}, 90^{\circ}$
D. $37^{\circ}, 53^{\circ}$

Answer: B

- Watch Video Solution

67. In ain oblique projectile motion if the velocity of projection is increased by 2%, the percentage increase in horizontal range will be
A. 1%
B. 2%
C. 3%
D. 4%

Answer: D

68. A particle has an initial velocity $(2 \hat{i}+3 \hat{j})$ and an accelaration $(0.3 \hat{i}+0.2 \hat{j})$. The magnitude of velocity after $10 s$ will be
A. $9 \sqrt{2}$ units
B. $5 \sqrt{u}$ nits
C. 5units
D. 9units

Answer: B
69. a projectile is fired from the surface of the earth with a velocity of $5 m s^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a velocity of $3 \mathrm{~ms}^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth.The value of the acceleration due to gravity on the planet is in $m s^{-2}$ is given $\left(g=9.8 m s^{-2}\right)$
A. 5.9
B. 16.3
C. 110.8
D. 3.5

Answer: D

- Watch Video Solution

