©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS
 (HINGLISH)

RELATIVE MOTION

Solved Example

1. The rain is falling vertically downward with
velocity $6 \mathrm{~m} / \mathrm{s}$ and a man is moving
horizontally with velocity $8 \mathrm{~m} / \mathrm{s}$. Find the velocity of rain with respect to the man.

D Watch Video Solution

2. From a light-house an observer two ships A and B. Ship A proceeding towards north at a speed $20 \sqrt{2} k m / h$ and ship B proceeding towards north-east at a speed of $20 \mathrm{~km} / \mathrm{h}$.

Find in which direction and at what speed the ship B would appear to move to an observer standing on the deck of the ship A.

Watch Video Solution

3. A man is walking due west with a velocity $3 \mathrm{~km} / \mathrm{h}$ and rain appears to be falling vertically with a velocity $4 k m / h$. Find the velocity of rain with respect to the ground.

D Watch Video Solution

4. A person travelling east wards at the rate of
$4 k m h^{-1}$ finds that the wind seems to blow directly from the north . On doubling its
speed, the wind appears to come from 45° north of east. Find the actual velocity of the wind.

D Watch Video Solution

5. A man running on a horizontal road at $6 \mathrm{~km} / \mathrm{h}$ finds the rain falling vertically. He doubles his speed and find that the raindrops make an angle 37° with the vertical. Find the velocity of rain with respect to the ground.
6. Two cars A and B are running with same speed v. A along east and B towards north.

Car A is at origin O and B is at distance d as
shown. After how much time, the distance between cars is minimum and what is the minimum distance?

- Watch Video Solution

7. Two straight roads meet an angle of 60°.

Initially one man is at a distance of 10 m on
one road from the crossing and the other at a distance of 20 m on the other road from the crossing. They starts moving at the same instant with the same speed towards the crossing. find the minimum distance between them.

D Watch Video Solution

8. Two particles, 1 and 2 , move with constant
velocities v_{1} and v_{2} along two mutually perpendicular straight lines toward the
intersection point O . At the moment $t=0$ the particles were located at the distances l_{1} and l_{2} from the point O . How soon will the distance between the particles become the smallest? What is it equal to?

D Watch Video Solution

9. Three particles A, B and C are situated at the vertices of an equilateral triangle $A B C$ of side d
at time $t=0$. Each of the particles moves
with constant speed v. A always has its velocity
along $A B, B$ along $B C$ and C along $C A$. At what time will the particles meet each other?

D Watch Video Solution

10. Repeat the previous problem in the following cases:

2

- View Text Solution

11. A motorboat coverse a distance between two points in $4 h$ along the flow and in $8 h$ opposite to the flow. In how much time, distance can be covered in still water?

- Watch Video Solution

12. A motorboat going downstream overcome
a raft at a point $\mathrm{A}, \tau=60 \mathrm{~min}$ later it turned back and after some time passed the raft at a distance $l=6.0 \mathrm{~km}$ from the point A. Find the
flow velocity assuming the duty of the engine to be constant.

D Watch Video Solution

13. A man can swim in still water with speed v.

He wants to cross a river of width d that flows
with speed u and reaches the point directely opposite to his starting point. (a) In which direction should he try to swim (i.e., find the angle the makes with the river flow)? (b) much time will he take to cross the river ?

Watch Video Solution

14. In the previous problem, the man wants to cross the river in the minimum time. In which
directions, he should move? Find the minimum
time to cross the river and his displacement
(drift) along the flow.

- Watch Video Solution

15. If $v=\frac{u}{2}$, in which direction the man should swim so that his drift along the flow is
minimum and find value of the minimum drift.

D Watch Video Solution

16. Two boats, A and B, move away from a point P at the middle of a river along the mutually perpendicular straight lines. Boat A moves along the river and boat B across the river. Having moved off equal distance from point P the boats returned. find the ratio of times of motion of boats $\frac{t_{A}}{t_{B}}$ if $v=\eta u(\eta>1)$
. (v : velocity of boat with respect to water. u : stream velocity)

- Watch Video Solution

17. Two swimmers leave point A on one bank of the river to reach point B lying right across on the other bank. One of them crosses the river along the straight line $A B$ while the other swims at right angles to the stream and
them walks the distance that he has been carried by the stream to get to point B. what
was the velocity v_{0} of his walking if both

swimmers reach the destination

simultaneously? The stream velocity is u and v is the velocity of swimmer in still water.

D Watch Video Solution

18. A man can swim at a speed of $5 \mathrm{~km} / \mathrm{h}$ in
the still water. He wants to cross a $1600 m$ wide river flowing at $4 \mathrm{~km} / \mathrm{h}$. He keeps himself at an angle 127° with the river flow while swimming.
(a) Find the time he takes to cross the river. (b)

Find the distance traveled by him along the flow.

D Watch Video Solution

19. An aeroplane has to go from a point O to another point A, at distance d due 37° east of north. A wind is blowing due north at a speed of $20 \mathrm{~m} / \mathrm{s}$. The air speed of the plane is v. (a)

Find the direction in whihc the pilot should head the plane to reach the point A. (b) Find
the time taken by the plane to go from O to A

D Watch Video Solution

20. Two particles start simulataneously from
the same point and moves along two straight
lines inclined at angle α, one with uniform
velocity v_{0} and other from the rest with uniform acceleration, a_{0}. After how much time
their relative velocity is minimum and what is
it equal to?

Watch Video Solution

21. Two trains A and B of length 100 m and 200 m , respectively, are approaching each other on parallel tracks. If they take 15 s to pass each other and velocity of A is three that of B, find their velocities.
A. 5,15
B. 30,10
C. 12,4
D. 15,5

Answer: D

- Watch Video Solution

22. In how much time trains will pass each other if they are moving in the same direction.

- Watch Video Solution

23. A car travelling at $72 \mathrm{~km} / \mathrm{h}$ overtakes
another car traveling at $54 \mathrm{~km} / \mathrm{h}$. Assuming
each car to be 5.0 m long, find the time taken
during overtake and the total road distance used for the overtake.

D Watch Video Solution

24. The driver of a train moving at a speed v_{1}
sights another train at a disane d, ahead of
him moving in the same direction with a
slower speed v_{2}. He applies the brakes and gives a constant teradation a to his train.

Show that here will be no collision if $d>\left(v_{1}-v_{2}\right)^{2} / 2 a$.
25. Two trucks are moving in a straight line towards each other at initial velocities u_{1} and u_{2} and with constant retardations a_{1} and a_{2}. If the initial separation between them is d, find the minimum value of d for no collision.

D Watch Video Solution

26. A car 2 m long and 3 m wide is moving at $10 \mathrm{~m} / \mathrm{s}$ when a bullet hits it in a direction
making an angle of $\tan ^{-1}(3 / 4)$ with the car as seen from the ground. The bullet enters one edge of the car at the corner and passes out at diagonally opposite corner. Neglecting gravity, the time for the bullet to cross the car is

D Watch Video Solution

27. A gun is fired from a moving platform and ranges of the shot are observed to be
R_{1} and R_{2} when the platform is moving
forwards and backwards, respectively, with velocity v_{P}. Find the elevation of the gun \propto in terms of the given quantities.

D Watch Video Solution

Exercise

1. A 120 m long train is moving in a direction
with speed $20 \mathrm{~m} / \mathrm{s}$. A traing B moving with 30
m / s in the opposite direction and 130 m long
crosses the first train in a time
A. $6 s$
B. $36 s$
C. $38 s$
D. None of these

Answer: D

D Watch Video Solution

2. Two trains are moving with equal speed in opposite directions along two parallel railway tracks. If the wind is blowing with speed u
along the track so that the relative velocities
of the trains with respect to the wind are in
the ratio $1: 2$, then the speed of each train must be
А. $3 u$
B. $2 u$
C. $5 u$
D. $4 u$

Answer: A
3. A train of 150 m length is going toward north direction at a speed of $10 \mathrm{~ms}^{-1}$. A parrot flies at a speed of $5 m s^{-1}$ toward south direction parallel to the railway track. The time taken by the parrot to cross the train is equal to.
A. $30 s$
B. $15 s$
C. $8 s$
D. $10 s$

Answer: D

D Watch Video Solution

4. Two cars are moving in the same direction with the same speed $30 \mathrm{~km} / \mathrm{hr}$. They are separated by a distance of $5 k m$, the speed of a car moving in the opposite direction of it meets these two cars at an interval of 4 minutes, will be.
A. $40 \mathrm{~km} / \mathrm{h}$
B. $45 \mathrm{~km} / \mathrm{h}$
C. $30 \mathrm{~km} / \mathrm{h}$
D. $15 \mathrm{~km} / \mathrm{h}$

Answer: B

D Watch Video Solution

5. An express train is moving with a velocity v_{1}. Its driver finds another train is movig on the same track in the same direction with velocity
v_{2}. To escape collision, driver applies a
retardation a on the train. The minimum time of escaping collision be

$$
\begin{aligned}
& \text { A. } t=\frac{v_{1}-v_{2}}{a} \\
& \text { B. } t=\frac{v_{1}^{2}-v_{2}^{2}}{2}
\end{aligned}
$$

C. None
D. Both

Answer: A

- Watch Video Solution

6. Two car A and B travelling in the same direction with velocities v_{1} and $v_{2}\left(v_{1}>v_{2}\right)$.

When the $\operatorname{car} A$ is at a distance d ahead of the
car B, the driver of the car A applied the brake producing a uniform retardation a.

There wil be no collision when.

$$
\begin{aligned}
& \text { A. } d<\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a} \\
& \text { B. } d<\frac{\left(v_{1}^{2}-v_{2}^{2}\right)}{2 a} \\
& \text { C. } d>\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a} \\
& \text { D. } d>\frac{\left(v_{1}^{2}-v_{2}^{2}\right)}{2 a}
\end{aligned}
$$

Answer: C

D Watch Video Solution

7. A ball A is thrown up vertically with a speed
u and at the same instant another ball B is
released from a height h. At time t, the speed
A relative to B is
A. u
B. $2 u$
C. $u-g t$

$$
\text { D. } \sqrt{u^{2}-g t}
$$

Answer: A

D Watch Video Solution

8. A car ' A ' moves due north at a speed of $40 \mathrm{~km} / \mathrm{hr}$, while another 'B' moves due east at a speed of $30 \mathrm{~km} / \mathrm{hr}$. Find the velocity of car B relative to car A (both in magnitude and direction).
A. $50 \mathrm{~km} / \mathrm{hNE}$
B. $50 \mathrm{~km} / \mathrm{hNW}$
C. $50 \mathrm{~km} / \mathrm{hat}$ angle $\tan ^{-1}(3 / 4) W o f N$
D. $50 \mathrm{~km} / \mathrm{hat}$ angle $\tan ^{-1}(4 / 3) W o f N$

Answer: C

D Watch Video Solution

9. A car A going north-east at $80 \mathrm{~km} / \mathrm{h}$ and another car B is going south-east at $60 \mathrm{~km} / \mathrm{h}$. The direction of the velocity of A
relative to B makes an angle with the north equal to:
A. $\tan ^{-1}(2 / 7)$
B. $\tan ^{-1}(7 / 2)$
C. $\tan ^{-1}(7)$
D. $\tan ^{-1}(1 / 7)$

Answer: D
(Watch Video Solution
10. Rain is falling vertically downward with
velocity $4 m / s$. A man is moving horizontally with velocity $3 \mathrm{~m} / \mathrm{s}$, the velocity of rain with respect to man is
A. $5 m / s$ at an angle $\tan ^{-1}(4 / 3)$ with horizontal
B. $5 m / s$ at an angle $\tan ^{-1}(3 / 4)$ with
vertical
C. $5 m / s$ at an angle $\tan ^{-1}(4 / 3)$ with

D. Both (1) and (2)

Answer: D

- Watch Video Solution

11. Two boys are standing at the ends A and B of a ground, where $A B=a$. The boy at B
starts running in a direction perpendicular to

AB with velocity v_{1}. The boy at A starts running simultaneously with velocity v and catches the other boy in a time t, where t is :
A. $\frac{a}{v+v_{1}}$
B. $\frac{a}{v-v_{1}}$
C. $\frac{a}{\sqrt{v^{2}+v_{1}^{2}}}$
D. $\frac{a}{\sqrt{v^{2}-v_{1}^{2}}}$

Answer: D

D Watch Video Solution

12. A ship is travelling due east at a speed of
$15 \mathrm{~km} / \mathrm{h}$. Find the speed of a boat heading
30° east of north if it appears always due north from the ship.
A. $30 \mathrm{~km} / \mathrm{h}$
B. $\frac{15 \sqrt{3}}{2} \mathrm{~km} / \mathrm{h}$
C. $10 \sqrt{3} \mathrm{~km} / \mathrm{h}$
D. $20 \mathrm{~km} / \mathrm{h}$

Answer: A
(Watch Video Solution
13. Three particles A, B and C are situated at
the vertices of an equilateral triangle ABC of side d at time $t=0$. Each of the particles moves with constant speed v . A always has its
velocity along $A B, B$ along $B C$ and C along $C A$.
At what time will the particles meet each other?
A. $2 d / 3 v$
B. $d / 3 v$
C. $3 d / 2 v$

D. $4 d / 3 v$

Answer: A

D Watch Video Solution

14. Four particles A, B, C and D are situated at the cornerst of a square $A B C D$ of side aatt - 0. Each of particles moves with constant speed (v). A always has its velocity along $A B, B$ along $B C, C$ along $C B \sim$ and D
along $D A$. At what time will these particles

meet each other ?

A. $2 d / 3 v$
B. d / v
C. $3 d / 2 v$
D. $4 d / 3 v$

Answer: B
(Watch Video Solution
15. Six particles situated at the corners of a regular hexagon of side a move at a constant
speed v. Each particle maintains a direction towards the particle at the next corner.

Calculate the time the particles will take to meet each other.
A. $2 d / 3 v$
B. $2 d / v$
C. $3 d / 2 v$
D. $4 d / 3 v$

Answer: B

D Watch Video Solution

16. A particle A is at origin and particle B is at distance $y=-d$ at $t=0$. They move with constant velocity v, A towards positive x-axis and B towards origin. The time at which distance between them is minimum and minimum distance will be

$$
\text { A. } \frac{d}{2 v}, d
$$

B. $\frac{d}{v}, \frac{d}{\sqrt{2}}$
C. $\frac{d}{2 v}, \frac{d}{\sqrt{2}}$
D. $\frac{d}{v}, d$

Answer: C

D Watch Video Solution

17. A police jeep is chasing with, velocity of $45 \mathrm{~km} / \mathrm{h}$ a thief in another jeep moving with velocity $153 \mathrm{~km} / \mathrm{h}$. Police fires a bullet with
muzzle velocity of $180 \mathrm{~m} / \mathrm{s}$. The velocity it will strike the car of the thief is.
A. $150 m / s$
B. $27 m / s$
C. $450 \mathrm{~m} / \mathrm{s}$
D. $250 \mathrm{~m} / \mathrm{s}$

Answer: A
(Watch Video Solution
18. A cart is moving horizontally along a straight line with constant speed $30 m s^{-1}$. A particle is to be fired vertically upwards from the moving cart in such a way that it returns
to the cart at the same point from where it was projected after the cart has moved 80 m .

At what speed (relative to the cart) must the projectile be fired? (Take $g=10 m s^{-2}$)
A. $10 m / s$
B. $10 \sqrt{8} \mathrm{~m} / \mathrm{s}$
C. $\frac{40}{3} m / s$

D. $250 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

19. A boat is moving with a velocity $3 \hat{i}+4 \hat{j}$ with respect to ground. The water in the river is moving with a velocity $-3 \hat{i}-4 \hat{j}$ with respect to ground. The relative velocity of the boat with respect to water is.
A. $8 j$
B. $-6 i-8 j$
C. $6 i+8 j$
D. $5 \sqrt{2}$

Answer: C

D Watch Video Solution

20. A boat crosses a river with a velocity of $8 \frac{k m}{h}$. If the resulting velocity of boat is $10 \frac{\mathrm{~km}}{\mathrm{~h}}$ then the velocity of river water is
A. $12.8 \mathrm{~km} / \mathrm{h}$
B. $6 \mathrm{~km} / \mathrm{h}$
C. $8 \mathrm{~km} / \mathrm{h}$
D. $10 \mathrm{~km} / \mathrm{h}$

Answer: B

D Watch Video Solution

21. A man takes $3 h$ to cover a certain distance along the flow and takes $6 h$ to cover the same
distance opposite to flow. In how much time, he will cross this distance in still water.
A. $3.5 h$
B. $4 h$
C. $4.5 h$
D. $5 h$

Answer: B
(Watch Video Solution
22. A river 500 m wide is flowing at a rate of
$4 m / s$. A boat is sailing at a velocity of $10 \mathrm{~m} / \mathrm{s}$ with respect to the water, in a direction perpendicular to the river. The time taken by the boat to reach the opposite bank
A. $30 s$
B. $40 s$
C. $50 s$
D. 60 s

Answer: C
23. In the previous problem, the distance travelled by boat along the flow is
A. 50 m
B. 100 m
C. $150 m$
D. 200 m

Answer: D
24. A boat having a speed of $5 k m / h r$. in still
water, crosses a river of width 1 km along the shortest possible path in 15 minutes. The speed of the river in $K m / h r$.
A. $1 \mathrm{~km} / \mathrm{h}$
B. $3 \mathrm{~km} / \mathrm{h}$
C. $4 \mathrm{~km} / \mathrm{h}$
D. $5 \mathrm{~km} / \mathrm{h}$

Answer: B

- Watch Video Solution

25. A man crosses a 320 m wide river perpendicular to the current in 4 min . If in still water he can swim with a speed $5 / 3$ times that of the current, then the speed of the current, in m / \min is
A. 30
B. 40

C. 50

D. 60

Answer: D

D Watch Video Solution

26. A man can swim in still water ast a speed of
$3 \mathrm{~km} / \mathrm{h}$. He wants to cross a river that flows at
$2 \mathrm{~km} / \mathrm{h}$ and reach the point directly oposite to
his starting point. A. In which diretionshoeld he try to swim (that is, find the angle his body
makes wilth the river flow)? b. How much time
will he take to cross the river if the river is 500 m wide?

$$
\text { A. } \sin ^{-1}(2 / 3)
$$

B. $\sin ^{-1}(2 / 5)$
C. $\sin ^{-1}(3 / 4)$
D. $\sin ^{-1}(3 / 5)$

Answer: A

D Watch Video Solution
27. A man can swim in still water ast a speed of
$3 \mathrm{~km} / \mathrm{h}$. He wants to cross a river that flows at
$2 \mathrm{~km} / \mathrm{h}$ and reach the point directly oposite to
his starting point. A. In which diretionshoeld he try to swim (that is, find the angle his body makes wilth the river flow)? b. How much time will he take to cross the river if the river is 500 m wide?
A. $6 \sqrt{5}$ min
B. $3 \sqrt{5} m i n$
C. $2 \sqrt{5} \mathrm{~min}$

D. $5 \sqrt{3}$ min

Answer: A

- Watch Video Solution

28. A man can swim at a speed of $3 \mathrm{kmh}^{-1}$ in
still water. He wants to cross a 500 m wide river
flowing at $2 k m h^{-1}$. He keeps himself always at an angle to 120° with the river flow while swimming.

The time taken to cross the river is.
A. $10 / \sqrt{3} \min$
B. $20 / \sqrt{3} \min$
C. $30 / \sqrt{3}$ min
D. $40 / \sqrt{3} \min$

Answer: B

D Watch Video Solution

29. In the previous problem, How far from the point directly opposite to the starting point does the man reach the opposite bank
A. $1 / 6 \sqrt{3} \mathrm{~km}$
B. $2 / 3 \sqrt{3} \mathrm{~km}$
C. $4 / 3 \sqrt{3} k m$
D. $5 / \sqrt{3} \mathrm{~km}$

Answer: A

D Watch Video Solution

30. A person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of $0.5 \frac{\mathrm{~m}}{\mathrm{~s}}$ at an angle
of 120° with the direction of flow of water. The

speed of water in the stream is

A. $1 m / s$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $0.25 \mathrm{~m} / \mathrm{s}$
D. $0.433 m / s$

Answer: C
(Watch Video Solution
31. A river is flowing from west to east with a speed of $5 \mathrm{~m} / \mathrm{min}$. A man can swim in still water with a velocity $10 \mathrm{~m} / \mathrm{min}$. In which direction should the man swim so as to take the shortest possible path to go to the south.
A. 30° with downstream
B. 60° with downstream
C. 120° with downstream
D. South

- Watch Video Solution

32. A river is flowing from east to west at a speed of $5 \frac{m}{\min }$. A man on south bank of river, capable of swimming $\frac{10 m}{\min }$ ini still water, wants to swim across the river in shortest time. He should swim
A. Due north
B. Due north-east
C. Due north-east with double the speed of river
D. None of these

Answer: A

D Watch Video Solution

33. A man can swim with velocity v relative to
water. He has to cross a river of width d flowing with a velocity $u(u>v)$. The distance traveled by man along the flow is x, when he
reaches to opposite bank. For x to be minimum the person should swim at angle α with the direction of the flow of water, where α is
A. $\sin ^{-1}(v / u)$
B. $\sin ^{-1}(u / v)$
C. $\frac{\pi}{2}+\sin ^{-1}(v / u)$
D. $\frac{\pi}{2}+\sin ^{-1}(u / v)$

Answer: C

