©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS

 (HINGLISH)

 (HINGLISH)}

SOUND WAVES

Example

1. The speed of sound in dry air at $N T P$ is
$332 m / s$. Assuming air as composed of 4 parts
of nitrogen and one parts of oxygen in volume. Calculate the velocity of sound in oxygen under similar conditions. Given density of oxygen and nitrogen at $N T P$ are in the ratio 16: 14 respectively.

D Watch Video Solution

2. The equation of a sound wave in air is given by
$\rho=\left(0.01 N / m^{2}\right)\left[\sin \left(1000 s^{-1}\right) t-\left(3.0 m^{-1}\right) x\right]$
(a) Find the frequency, wavelength and the
speed of sound wave in air.
(b) If the equilibrium pressure of air is $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, what are the maximum and minimum pressure at a point as the wave passes through that point ?

D Watch Video Solution

3. A source of sound operates at $2.0 \mathrm{kHz}, 20 \mathrm{~W}$ emitting sound uniformly in all direction. The speed of sound in air is $340 m s^{-1}$ at a distance of air is $1.2 \mathrm{kgm}^{-3}$ (a) What is the
intensity at a distance of 6.0 m from the source ? (b) What will be the pressure amplitude at this point ? (c) What will be the displacement amplitude at this point?

D Watch Video Solution

4. (a) Sound with intensity larger than $120 d B$
appears painful to a person. A small speaker delivers $2.0 W$ of audio output. How close can
the person get to the speaker without hurting his ears?
(b) If the sound level in a room is increased from $50 d B$ to $60 d B$, by what factor level is the pressure amplitude increased?

- Watch Video Solution

5. A sound wave of frequency 100 Hz is travelling in air. The speed of sound in air is $350 \mathrm{~ms}^{-1}$ (a) By how much is the phase changed at a given point in 2.5 ms ? (b) What is the phase difference at a given instant
between two points separated by a distance of 10.0 cm along the direction of propagation ?

- Watch Video Solution

6. Figure shows a tube structure in which a sund signal is sent from one end and is received at the other end.The semicircular part has a radius of 20.0 cm . The frequency ohet sound source can be varied elertronically between 1000 and 4000 Hz . Find the
frequencies at which maxima of intensity are
detected. The speed of sound in air = $3400 \mathrm{~ms}^{-1}$.

- Watch Video Solution

7. In a large room, a person receives waves
from the same source which reach , being reflected from the $25 m$ high ceiling at a point halfway between them . The two waves interfere constructively for a wavelength of

- Watch Video Solution

8. Two sources are placed from a person P as shown in figure. The speed of sound in air is $320 \mathrm{~m} / \mathrm{s}$.

If sound signal is continuously varied from
500 Hz to 2500 Hz , for which frequency
listener will hear minimum sound intensity.

$$
1-6.4 \mathrm{~m} \longrightarrow
$$

(b)

Find the frequencies in audible range $(20-20000 H z)$ for which listener will hear maximum sound intensity.

D
 Watch Video Solution

9. (a) A source of sound S and a detector D
are placed at some distance from one another.

A big cardboard is placed near the detector and perpendicular to the line $S D$ as shown in
figure. It is gradually moved away and it is found that the intensity changes from a maximum to a minimum as the board is moved through a distance of 20 cm . Find the
frequency of the sound emitted. Velocity of sound in are is $336 \mathrm{~m} / \mathrm{s}$.

(b) A source emitting sound of frequency 180 Hz is placed in front of a wall at a distance of $2 m$ from it. A detector is also placed in front of the wall at the same distance from it.
find the minimum distance between the source and the detector for which the detector detects a maximum of sound . Speed of sound in air $=360 \mathrm{~m} / \mathrm{s}$.
10. A source S and a detector D are placed at
a distance d apart. A big cardboard is placed at a distance $\sqrt{2} d$ from the source and the detector as shown in figure. The source emits
a wave of wavelength $=d / 2$ which is received by the detector after reflection from
the cardboard. It is found to be in phase with
the direct wave received from the source. By what minimum distance should the cardboard be shifted away so that the reflected wave
becomes out of phase with the direct wave?
$|-\sqrt{2} d \rightarrow|$

D Watch Video Solution

11. Figure shows two coherent sources S_{1} and S_{2} which emit sound of wavelength λ in
phase. The separation between the sources is
3λ. A circular wire of large radius is placed in
such a way that $S_{1} S_{2}$ lies in its plane and the middle point of $S_{1} S_{2}$ is at the centre of the wire. Find the angular positions θ, on the wire for which constructive interference takes place.

- Watch Video Solution

12. Three sources of sound S_{1}, S_{2} and S_{3} of equal intensity are placed in a straight line with $S_{1} S_{2}=S_{2} S_{3}$ shown in the figure. At a point P, far away from the sources, the wave coming from S_{2} is 120° ahead in phase of that from S_{1}, Also, the wave coming from S_{3} is 120° ahead of that from S_{2}. What would be the resultant intensity of sound at P ?

13. Two radio stations broadcast their programmes at the same amplitude A and at slightly different frequencies ω_{1} and ω_{2} respectively, where $\quad \omega_{1}-\omega_{2}=10^{3} \mathrm{~Hz} . \quad \mathrm{A}$ detector receives the signals from the two stations simultaneously, it can only detect signals of intensity $\geq 2 A^{2}$.
(i) Find the time interval between successive maxima of the intensity of the signal received by the detector.
(ii) Find the time for which the detector remains idle in each cycle of the intensity of the signal.

D Watch Video Solution

14. (a) A tuning fork produces 4 beats per second with another tuning fork of frequency

256 Hz . The first one is now loaded with a little wax and the beat frequency is found to increase to 6 per second. What was the original frequency of the tuning fork?
(b) A plano wire A vibrates at a fundamental
frequncy of 600 Hz . A second identical wire B
produces 6 betas per second with it, when of the tension in A is slightly increased. Find the ratio of the tension in A to the tension to B.
(c) A tunnig fork if frequency 256 Hz produces

4 beats per second with a wire of length 25 cm
vibrating in its fundamental mode. The beat
frequency decreases when the length is
slightly shortened. What could be the minimum length by whech the wire be
shortened so that it produces no beats with the tuning fork?

- Watch Video Solution

15. A man standing in front of a mountain beats a drum at regular intervals. The drumming rate is gradually increased and he finds that echo is not heard distinctly when the rate becomes 40 per minute. He then moves near to the mountain by 90 metres and
finds that echo is again not heard distinctly when the drumming rate becomes 60 per minute. Calculate (a) the distance between the
mountain and the initial position of the man and (b) the velocity of sound.

D Watch Video Solution

16. A engine is approaching a hill at constant speed. When it is at a distance of 0.9 km , it blows a whistle, whose echo is heard by the driver after $5 s$. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, calculate the speed of the engine.

D Watch Video Solution

17. (a) A cylindrical metal tube has a length of 50 cm and is open at both ends. Find the frequencies between 1000 Hz and 2000 Hz at which the air is $340 \mathrm{~m} / \mathrm{s}$.
(b) Find the greatest length of an organ pipe open at both ends that will have its
fundamental frequency in the normal hearing range ($20-20000 \mathrm{~Hz}$). Speed of sound in air $=340 \mathrm{~m} / \mathrm{s}$.
(c) Two successive resonance frequencies in an open organ pipe are 1944 Hz and 2592 Hz .

Find the length of the tube. The speed of sound in air is $324 m / s$.

D Watch Video Solution

18. The air column in a pipe closed at one end is made to vibrate in its second overtone by a tuning fork of frequency 440 Hz . The speed of sound in air is $330 \mathrm{~ms}^{-1}$. End corrections may be neglected. Let P_{0} denote the mean pressure at any point in the pipe, and ΔP the maximum amplitude of pressure variation.
(a) What the length L of the air column.
(b) What is the amplitude of pressure variation at the middle of the column?
(c) What are the maximum and minimum pressures at the open end of the pipe?
(d) What are the maximum and minimum pressures at the closed end of the pipe?

- Watch Video Solution

19. The first overtone of an open orgen pipe beats with the first ouertone of a closed orgen
pipe with a beat frequency of $2.2 H_{Z}$. The
fundamental frequency of the closed organ pipe is $110 H_{Z}$. Find the lengths of the pipes. Speed of sound in air $u=330 m / s$.

D Watch Video Solution

20. Two narrow cylindrical pipes A and B
have the same length. Pipe A is open at both ends and is filled with a monoatomic gas of molar mass M_{A}. Pipe B is open at one end and closed at the other end, and is filled with a
diatomic gas of molar mass M_{B}. Both gases are at the same temperature.
(a) If the frequency of the second harmonic of
the fundamental mode in pipe A is equal to
the frequency of the third harmonic of the
fundamental mode in pipe B, determine the value of M_{B} / M_{B}.
(b) Now the open end of pipe B is also closed
(so that the pipe is closed at both ends). Find
the ratio of the fundamental frequency in pipe
A to that in pipe B.
21. $A B$ is a cylinder of length $1 m$ fitted with a
thin flexible diaphragm C at the middle and other thin flexible diaphragms A and B at the ends. The portions $A C$ and $B C$ contain hydrogen and oxygen gases respectively. The diaphragms A and B are set into vibrations of same frequency. What is the minimum frequency of these vibrations for which diaphragms C is a node? (Under the conditions of experiment $v_{H_{2}=1100 \mathrm{~m} / \mathrm{s}}, v_{0_{2}}=$
$300 \mathrm{~m} / \mathrm{s}$).

- Watch Video Solution

22. A string $1 m$ long and having linear mass density $10 g / m$ is sounded with a closed pipe of length 75 cm . When string is vibrating in its
first overtone and the air in the pipe in its
fundamental frequency, 5beats / s are heard. It is observed that decreasing the tension in the string decreases the beat frequency. If the speed of sound in air is $315 m / s$, Find the tension in the string.

D Watch Video Solution

23. Consider the situation shown in figure. The wire which has a mass of 4.00 g oscillates in
its second harmonic and sets the air column in
the tube into vibrations in its fundamental
mode. Assuming that the speed of sound in air
is $40 \mathrm{~ms}^{-1}$, find the tension in the wire.

24. A column of air at $51^{\circ} \mathrm{C}$ and a tuning fork produce 4 beats per second when sounded together. As the temperature of the air column is decreased, the number of beats per second tends to decrease and when the temperature is $16^{\circ} \mathrm{C}$ the two produce 1 beat per second. Find the frequency of the tuning fork.

- Watch Video Solution

25. (a) In a resonance column experiment, a
tuning fork of frequency 400 Hz is used. The
first resonant is observed when the air column
has a length of 20.0 cm and the second resonance is observed when the air column
has a length of 62.0 cm . (i) Find the speed of sound in air. (ii) How much distance above the open end does the pressure mode form?
(b) A piston is fitted in a cylindrical tube of small crosssection with the other end of the
tube open. The tube resonates with a tuning
fork of frequency 512 Hz . The piston is
gradually pulled out of the tube and it is
found that a second resonance occurs when
the piston is pulled out through a distance of 32.0 cm . Calculate the speed of sound in the air of the tube.

D Watch Video Solution

26. In a resonance tube experiment to determine the speed of sound in air, a pipe of diameter 5 cm is used. The column in pipe resonates with a tuning fork of frequency
$480 \mathrm{H}_{Z}$ when the minimum length of the air column is 16 cm . Find the speed in air column at room temperature.

- Watch Video Solution

27. A metal wire of diameter 1 mm is held on
two knife edges by a distance 50 cm . The tension in the wire is 100 N . The wire vibrating
with its fundamental frequency and a
vibrating tuning fork together produce
5 beats $/ s$. The tension in the wire is then
reduced to $81 N$. When the two are excited,
beats are heard at the same rate. Calculate
(a) frequency of a fork and
(b) the density of material of wire.

D Watch Video Solution

28. When $1 m$ long metallic wire is stressed, an extension of $0.02 m$ is produced. An organ pipe
$0.5 m$ long and open at both ends, when sounded with this stressed metallic wire, produced 8 beats in its fundamental mode. By
decreasing the stress in the wire, the number of beats are found to decrease. Find the Young's modulus of the wire. The density of metallic wire is $10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ and velocity of sound in air is $292 m / s$.

D Watch Video Solution

29. A car moving at $108 \mathrm{kmh}^{-1}$ finds another
car in front of it going in the same direction at
$72 \mathrm{kmh}^{-1}$. The first car sounds a horn that has
a dominant frequency of 800 Hz . What will be
the apparent frequency heard by the driver in
the front car ? Speed of sound in air $=330 \mathrm{~ms}^{-1}$

D Watch Video Solution

30. An observer standing on a railway crossing receives frequencies 2.2 kHz and 1.8 kHz when
the tran approaches and recedes from the observer. Find the velocity of the train (speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$).
31. A bullet passes past a person at a speed of
$220 \mathrm{~ms}^{-1}$. Find the fractional change in the frequency of the whistling sound heard by the person as the bullet crosses the person. Speed of sound in air $=330 \mathrm{~ms}^{-1}$.

- Watch Video Solution

32. A person going away from a factory on his scooter at a speedof $36 \mathrm{kmh}^{-1}$ listens to the
siren of the factory. If the main frequency of
the siren is 600 hz and a wind is blowing alongthe direction of the scooter at $36 \mathrm{kmh}^{-1}$, find the main frequency as heard by the person.

- Watch Video Solution

33. Two tuning forks with natural frequencies
of 340 Hz each move relative to a stationary
observer. One fork moves away form the observer, while the other moves towards him at the same speed. The observer hears beats
of frequency $3 H z$. Find the speed of the tuning fork.

D Watch Video Solution

34. Two electric trains run at the same speed of $72 \mathrm{kmh}^{-1}$ along the same track and in the same direction with a separation of 2.4 kin between them. The two trains simultaneously sound brief whistles. A person is situated at a perpendicular distance of 500 m from the track and is equidistant from the two trains at
the instant of the whistling. If both the whistles were at 500 Hz and the speed of sound in air is $340 \mathrm{~ms}^{-1}$, find the frequencies heard by the person.

- Watch Video Solution

35. A small source of sound vibrating at frequency 500 Hz is rotated in a circle of radius $100 / \pi c m$ at a constant angular speed of 5.0 revolutions per second. A listener situates himself in the plane of the circle. Find
the minimum and the maximum frequency of the sound observed. Speed of sound in air $=332 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

36. A source of sound is moving along a circular orbit of radius 3 meter with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$. A sound detector located far away from the source is executing
linear simple harmonic motion along the line
$B D$ with an amplitude $B C=C D=6$ meters
.The frequency of oscillation of the detector is 5 $\frac{5}{\pi}$ per second. The source is at the point A when the detector is at the point B. If the source emits a continuous sound wave of frequency 340 Hz , Find the maximum and the minimum frequencies recorded by the detector.

37. A small source of sound S of frequency 500

Hz is attached to the end of a light string and is whirled in a vertical circle of radius 1.6 in .

The string just remains tight when the source
is at the highest point. (a) An observer is located in the same vertical plane at a large distance and at the same height as the centre of the circle. The speed of sound in air $=330 m s^{-1}$ and $\mathrm{g}=10 m s^{\wedge}-2^{\wedge}$. Find the maximum frequency heard by the observer. (b)

An observer is situated at a large distance
vertically above the centre of the circle. Find the frequencies heard by the observer corresponding to the sound emitted by the source When it is at the same height as the centre. Itbr.

D Watch Video Solution

38. The driver of as car approaching a vertical wall notices that the frequency of his car's
horn charges from 440 Hz to 480 Hz when it gets reflected from the wal. Find the speed of the car if that of the sound is $330 \mathrm{~ms}^{-1}$.

D Watch Video Solution

39. A band playing music at a frequency f is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed
v_{m}. If v is the speed of sound, obtain an expression for the beat frequency heard by the motorist.

Watch Video Solution

40. A bat emitting an ultrasonic wave of frequecy $4.5 \times 10^{4} \mathrm{~Hz}$ flies at a speed of $6 \mathrm{~ms}^{-1}$ between two parallel walls. Find the two frequecies heard by the bat and the beat frequecy between the two. The speed of sound is $330 \mathrm{~ms}^{-1}$

- Watch Video Solution

41. A car moves with a speed of $54 k m h^{-1}$ towards a cliff. The horn of the car emits sound of frequency 400 Hz at a speed of $335 \mathrm{~ms}^{-1}$. (a) Find the wavelength of the sound emitted by the horn in front of the car.
(b) Find the wavelength of the wave reflected
from the cliff (c) What frequency does a person sitting in the car hear for the reflected
sound wave ? (d) How many beats does he hear in 10 seconds between the sound coming directly from the horn and that coming after the reflection?

- Watch Video Solution

42. A train approaching a hill at a speed of
$40 \mathrm{~km} / \mathrm{hr}$ sounds a whistle of frequency
580 Hz when it is at a distance of 1 km from a
hill. A wind with a speed of $40 \mathrm{~km} / \mathrm{hr}$ is blowing in the direction of motion of the train

Find
(i) the frequency of the whistle as heard by an observer on the hill,
(ii) the distance from the hill at which the echo
from the hill is heard by the driver and its
frequency.
(Velocity of sound in air $=1,200 \mathrm{~km} / \mathrm{hr}$)

D Watch Video Solution

43. A boat is travelling in a driver in river with
a speed $10 \mathrm{~m} / \mathrm{s}$ along the stream flowing with
a speed $2 m / s$. From this, boat, a sounjd transmitter is lowered into the river through a right support. The wavelength of the sound emitted from the transmitter inside the water is 14.45 mm . Assume that attention of sound
in water and air is negligible.
(a) What will be frequency detected by receiver kept inside downstream?
(b) The transmitter and the receiver are now pulled up into air. The air is blowing with a speed $5 m / s$ in the direction opposite the river stream. Determine the frequency of the sound detected by the receiver. (Temperature of the air and water $=20^{\circ} \mathrm{C}$, Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Bulk modulus of the water $=2.088 \times 10^{6} \mathrm{~Pa}$, Gas constant $R=8.31 J / m o l-K$, Mean molecular mass
of air $=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}, C_{P} / C_{V}$ for air $=1.4$).

D Watch Video Solution

44. A source of sound emitting a 1200 Hz note travels along a straight line at a speed of $170 \mathrm{~ms}^{-1}$. A detector is placed at a distance of 200 m from the line of motion of the source.
(a) Find the frequency of sound received by
the detector at the instant when the source gets closest to it. (b) Find the distance
between the source and the detector at the instant it detects the frequency 1200 Hz . Velocity of sound in air $=340 \mathrm{~ms}^{-1}$.

D Watch Video Solution

45. The wavelength of light coming from a distant galaxy is found to be 0.5% more than that coming from a source on earth. Calculate the velocity of galaxy.

D Watch Video Solution

46. An astronaut is approaching the moon. He sends a ratio signal of frequency $5 \times 10^{9} \mathrm{~Hz}$ and find that the frequency shift in echo received is $10^{3} \mathrm{~Hz}$. Find his speed of approach.

- Watch Video Solution

Exercises

1. Choose the correct statement.
A. Sound waves are transverse waves
B. Sound travels faster through vacuum
C. Sound travels faster in solids than in

gases

D. Sound travels faster in gases than in

liquids

Answer: C

- Watch Video Solution

2. Velocity of sound in air is $332 \mathrm{~ms}^{-1}$. Its

 velocity in vacuum will beA. $>332 m / s$
B. $=332 \mathrm{~m} / \mathrm{s}$
C. $<332 m / s$
D. meaningless

Answer: D

- Watch Video Solution

3. A big explosion on the moon cannot be heard on the earth because
A. the explosion produces high frequency sound waves which are inaudible B. sound waves require a material medium
for propagation
C. sound waves are absorbed in the moon's
atmosphere
D. sound waves are absorbed in the earth's
atmosphere

Answer: B

- Watch Video Solution

4. The speed of sound in a medium depends
A. the elastic property but not on the inertia property
B. the inertia property but not on the
elastic property
C. the elastic property as well as the inertia property
D. neither the elastic property nor the inertia property

Answer: C

D Watch Video Solution

5. Consider the following statements:

Assertion (A) The velocity of sound in air increases due to the presence of moisture in
it.

Reason (R): The presence of moisture in air lowers the density of air.

Of these statements-
A. both A and R are true and R is the correct explanation of A
B. both A and R are true but R is not the
correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution

6. How does the speed v of sound in air depend on the atmospheric pressure P ?
A. $v \propto P^{-1}$
B. $v \propto P^{-2}$
C. $v \propto P^{1 / 2}$
D. $v \propto P^{0}$

Answer: D

- Watch Video Solution

7. The velocity of sound in air is affected by
change in the
(i) atmospheric pressure
(ii) moisture content of air
(iii) temperature of air
(iv) composition of air.
A. (i), (ii), (iii)
B. (i), (ii), (iv)
C. (ii), (iii), (iv)
D. (ii), (iii)

Answer: C

D Watch Video Solution

8. Laplace's correction in the formula for the speed of sound given by Newton was needed because sound waves
A. are longitudinal
B. propagate isothermally
C. propagate adiabatically
D. have long wavelengths

Answer: C

D Watch Video Solution

9. Speed of sound in gas is proportional to
A. square root of isothermal elasticity
B. square root pf adiabatic elasticity
C. isothermal elasticity
D. adiabatic elasticity

Answer: B

D Watch Video Solution

10. Velocity of sound in air
(i) increases with temperature
(ii) decreases with temperature
(iii) increases with pressure
(iv) is independent of pressure
A. (i) and (ii)
B. (i) and (iii)
C. (ii) and (iii)
D. (i) and (iv)

Answer: D

D Watch Video Solution
11. The density of oxygen is 16 times the density of hydrogen. What is the ratio of speeds of sound in them?
A. 1: 4
B. $4: 1$
C. 2:1
D. 1: 16

Answer: A

D Watch Video Solution
12. The temperature at which the speed of sound in air becomes double of its value at $0^{\circ} C$ is
A. $1092^{\circ} C$
B. $819 K$
C. $819^{\circ} \mathrm{C}$
D. $546^{\circ} C$

Answer: C

D Watch Video Solution
13. A sample of oxygen at $N T P$ has volume V
and a sample of hydrogen at $N T P$ has
volume $4 V$. Both the gases are mixed and the mixture is maintained at $N T P$ if the speed of sound in hydrogen at $N T P$ is $1270 \mathrm{~m} / \mathrm{s}$, that in the mixture will be
A. $317 m / s$
B. $635 \mathrm{~m} / \mathrm{s}$
C. $830 \mathrm{~m} / \mathrm{s}$
D. $950 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

14. The ratio of the velocity of sound in
hydrogen gas to that in helium gas at the
same temperature is
A. $\sqrt{21} / 5$
B. $\sqrt{42} / 5$
C. $5 / 42$
D. $5 / \sqrt{21}$

Answer: B

D Watch Video Solution

15. If c_{0} and c denote the sound velocity and
the rms velocity of the molecules in a gas, then
A. $c_{0}>c$
B. $c_{0}=c$
C. $c_{0}=c(\gamma / 3)^{1 / 2}$
D. no relation

Answer: C

- Watch Video Solution

16. A source emits sound of frequency 600 Hz
inside water. The frequency heard in air will be
equal to (velocity of sound in water $=1500 \frac{\mathrm{~m}}{\mathrm{~s}}$
, velocity of sound in air $=300(\mathrm{~m}) /(\mathrm{s})$)
A. 200 Hz
B. 3000 Hz
C. 120 Hz

D. 600 Hz

Answer: D

D Watch Video Solution

17. A stone is dropped into a well. If the depth
of water below the top be h and velocity of
sound is v then the splash in water is heard after $T \mathrm{sec}$. Then:

$$
\text { A. } T=\sqrt{\left(\frac{2 h}{g}\right)}=\frac{h}{v}
$$

B. $T=2 \sqrt{\left(\frac{2 h}{g}\right)}$
C. $T=\frac{2 h}{v}$
D. $T=\sqrt{\left(\frac{2 h}{g}\right)} \times \frac{h}{v}$

Answer: A

D Watch Video Solution

18. The speed of sound waves having a frequency of 256 Hz compared with the speed of sound waves having a frequency of 512 Hz is :
A. half
B. twice
C. four times
D. same

Answer: D

D Watch Video Solution

19. The extension in a string, obeying Hooke's
law, is x. The speed of sound in the stretched
string is v. If the extension in the string is increased to $1.5 x$, the speed of sound will be
A. $1.22 v$
B. $1.61 v$
C. $1.50 v$
D. $0.75 v$

Answer: A
(Watch Video Solution
20. It is possible to distinguish between the transverse and longitudinal waves by studying
the property of
A. interference
B. diffraction
C. relflection
D. polarisation

Answer: D

D Watch Video Solution
21. An electrically maintained tuning fork vibrates with constant frequency and constant amplitude. If the temperature of the surrounding air increases but pressure remains constant, the sound produced will have
(i) larger wavelength
(ii) larger frequency
(iii) larger velocity
(iv) larger time period
A. $(i),(i v)$
B. $(i),(i i i)$
C. $(i i i),(i v)$
D. $(i i),(i v)$

Answer: B

D Watch Video Solution

22. A tuning fork sends sound waves in air. If
the temperature of the air increases, which of the following parameters will changes?
A. Displacement amplitude
B. Frequency
C. Wavelength
D. Time period

Answer: C

D Watch Video Solution
23. When you speak to your friend, which of
the following parameters have a unique value
in the sound produced?
A. Frequency
B. Wavelength
C. Amplitude
D. Wave velocity

Answer: D

D Watch Video Solution
24. When we clap our hands, the sound produced is best described by Here p denotes
the change in pressure from the equilibrium value
A. $p=p_{0} \sin (k x-\omega t)$
B. $p=p_{0} \sin k x \cos \omega t$
C. $p=p_{0} \cos k x \sin \omega t$
D. $p=\Sigma p_{0} \sin \left(k_{n} x-\omega_{n} t\right)$

Answer: D

D Watch Video Solution

25. Consider the following statements about and passing through a gas.
A. the pressure of the gas at a point oscillates with time.
B. The position of a small layer of the gas oscillates with time.
A. Both (i) and ($i i$) are correct.
B. i is correct but $(i i)$ is wrong
C. (ii) is correct but (i) is wrong
D. Both (i) and (ii) are wrong

Answer: A

- Watch Video Solution

26. As a wave propagates
(i) the wave intensity remains constant for a
plane wave
the wave intensity decreases as the inverse of
the distance from the source for a spherical
wave
(iii) the wave intensity decreases as the inverse square of the distance from the source for a
spherical wave
(iv) total intensity of the spherical wave over the spherical surface centred at the source remains constant at all times
A. (i), (ii)
B. (i), (iii)
C. (i), (iii), (iv)
D. (i), (iii), (iv)

Answer: D

27. A point source emits sound equally in all directions in a non-absorbing medium. Two point P and Q are at distance of $2 m$ and $3 m$ respectively from the source. The ratio of the intensities of the wave at P and Q is:
A. $9: 4$
B. $2: 3$
C. $3: 2$
D. $4: 9$

Answer: A

- Watch Video Solution

28. A point source emits sound equally in all
directions in a non-absorbing medium. Two
points P and Q are at the distance of
9 meters and 25 meters respectively from the
source. The ratio of amplitudes of the waves at
P and Q is.....
A. $3 / 5$
B. $5 / 3$
C. $9 / 25$
D. $25 / 9$

Answer: D

D Watch Video Solution

29. Two sound waves move in the same direction in the same medium. The pressure amplitudes of the waves are equal but the wavelength of the first wave is double the
second. Let the average power transmitted
across a cross-section by the first wave be P_{1} and that by the second wave be P_{2}. Then
A. $P_{1}=P_{2}$
B. $P_{1}=4 P_{2}$
C. $P_{2}=2 P_{1}$
D. $P_{2}=4 P_{1}$

Answer: A

D Watch Video Solution
30. The intensity of a plane progressive wave of frequency 1000 Hz is $10^{-10} \mathrm{Wm}^{-2}$. Given that the speed of sound is $330 \mathrm{~m} / \mathrm{s}$ and density of air is $1.293 \mathrm{~kg} / \mathrm{m}^{3}$. Then the maximum change in pressure in N / m^{2} is
A. 3×10^{-4}
B. 3×10^{-5}
C. 3×10^{-3}
D. 3×10^{-2}
31. If the displacement amplitude of sound is doubled and the frequency reduced to onefourth, the intensity will become
A. double
B. half
C. one-fourth
D. same
32. If the amplitude of a wave at a distance r
from a point source is A, the amplitude at a distance $2 r$ will be
A. $2 A$
B. A
C. $A / 2$
D. $A / 4$
33. A line source emits a cylindrical expanding wave. Assuming the medium absorbs no energy find how the ampitude and intensity of wave depend on the distance from the source?

$$
\begin{aligned}
& \text { A. } r^{-1} \\
& \text { B. } r^{-2} \\
& \text { C. } r^{-1 / 2} \\
& \text { D. } r^{1 / 2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

34. A spherical source of power $4 W$ and frequency 800 Hz is emitting sound waves. The intensity of waves at a distance 200 m is

> A. $8 \times 10^{-6} W / m^{2}$
> B. $2 \times 10^{-4} W / m^{2}$
> C. $1 \times 10^{-4} W / m^{2}$
> D. $4 W / m^{2}$

Answer: A

D Watch Video Solution

35. A sound has an intensity of
$2 \times 10^{-8} W / m^{2}$. Its intensity level in decibels
is $\left(\log _{10} 2=0.3\right)$
A. 23
B. 3
C. 43
D. 4.3

Answer: C

D Watch Video Solution

36. A person speaking normally produces a sound intensity of 40 dB at a distance of 1 m . If
the threshold intensity for reasonable audibility is $20 d B$, the maximum distance at which he can be heard cleary is.
A. $4 m$
B. $5 m$
C. 10 m
D. 20 m

Answer: C

- Watch Video Solution

37. If the pressure amplitude in a sound wave
is tripled, then by what factor the intensity of
sound wave is increased?
A. 3
B. 6
C. 9
D. $\sqrt{3}$

Answer: C

D Watch Video Solution

38. If the intensity of sound is doubled, by how many decibels does the sound level increase?
A. $1 d B$

B. $2 d B$

C. $3 d B$
D. $4 d B$

Answer: C

D Watch Video Solution

39. How many times more intense is a $90 d B$ sound than a $40 d B$ sound?
A. 2.5
B. 5
C. 50
D. 10^{5}

Answer: D

- Watch Video Solution

40. Pitch of a sound depends on :
A. Frequency
B. wavelength

C. amplitude

D. speed

Answer: A

- Watch Video Solution

41. The same notes being played on sitar and
veena differ in
A. quality
B. pitch

C. both quality and pitch

D. neither quality nor pitch

Answer: A

- Watch Video Solution

42. When we hear a sound, we can identify its source from
A. amplitude of sound
B. intensity of sound

C. wavelength of sound

D. overtones present in the sound

Answer: D

D Watch Video Solution

43. In an orchestra, the musical sounds of different instruments are distinguished from one another by which of the following characteristics.
A. Pitch
B. Loudness
C. Quality
D. Overtones

Answer: C

D Watch Video Solution

44. When sound wave is refracted from air to
water, which of the following will remain unchanged?
A. Wave number
B. Wavelength
C. Wave velocity
D. Frequency

Answer: D

D Watch Video Solution

45. A sound wave travelling with a velocity V in a medium A reaches a point on the interface of medium A and medium B. If the
velocity in the medium B be $2 V$, then the angle
of incidence for total internal reflection of the wave will be greater than:
A. 15°
B. 30°
C. 45°
D. 90°

Answer: B
46. A sound wave travels from air to water. The angle of incidence is α_{1} and the angle of refraction is α_{2}. Assuming Snells law to be valid:
A. $\alpha_{2}<\alpha_{1}$
B. $\alpha_{2}>\alpha_{1}$
C. $\alpha_{2}=\alpha_{1}$
D. $\alpha_{2}>90^{\circ}$

Answer: B

- Watch Video Solution

47. A thin plane membrane separates
hydrogen at $7^{\circ} \mathrm{C}$ from hydrogen at $47^{\circ} \mathrm{C}$, both being at the same pressure. If a collimated sound beam travelling from the cooler gas makes an angle of incidence of 30° at the membrane, the angle of refraction is
A. $\sin ^{-1} \sqrt{\frac{7}{32}}$
B. $\sin ^{-1} \sqrt{\frac{2}{7}}$
C. $\sin ^{-1} \sqrt{\frac{4}{7}}$
D. $\sin ^{-1} \sqrt{\frac{7}{4}}$

Answer: B

D Watch Video Solution

48. The minimum distance to hear echo (speed
of sound in air is $340 \mathrm{~m} / \mathrm{s}$)
A. $15 m$
B. $16 m$
C. $17 m$

D. $18 m$

Answer: C

D Watch Video Solution

49. A engine is approaching a hill at constant
speed. When it is at a distance of 0.9 km , it blows a whistle, whose echo is heard by the driver after $5 s$. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, calculate the speed of the engine.

$$
\text { A. } 10 \mathrm{~m} / \mathrm{s}
$$

B. $20 m / s$
C. $30 \mathrm{~m} / \mathrm{s}$
D. $40 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

50. A man stands between two parallel cliffs
(not in middle). When he claps his hands, he
hears two echoes one after 1 second and the
other after 2 second. If the velocity of sound in air is $330 \mathrm{~ms}^{-1}$, the width of the valley is
A. $330 m$
B. $494 m$
C. 660 m
D. 990 m

Answer: B

D Watch Video Solution
51. In a hall, a person receives direct sound waves from a source $120 m$ away. He also receives waves from the same source which reach him after being reflected from the $25 m$ high ceiling at a point halfway between them.

The two waves interfere constructively for wavelengths (in metres)

$$
\begin{aligned}
& \text { А. } 10, \frac{10}{2} m \frac{10}{3} \\
& \text { В. } 20, \frac{20}{3} m \frac{20}{5} \\
& \text { C. } 30,20,10, \ldots
\end{aligned}
$$

D. $35,25,15, \ldots$

Answer: A

- Watch Video Solution

Two loudspeakers L_{1} and L_{2} driven by a common oscillator and amplifier, are arranged
as shown. The frequency of the oscillator is gradually increased from zero and the detector at D records a series of maxima and
minima. If the speed of sound is $330 \mathrm{~ms}^{-1}$
then the frequency at which the first maximum
is observed is
A. 165 Hz
B. 330 Hz
C. 496 Hz
D. 660 Hz

- Watch Video Solution

53. Vibrating tuning fork of frequency n is placed near the open end of a long cylindrical tube. The tube has a side opening and is fitted with a movable reflecting piston. As the piston
is moved through 8.75 cm , the intensity of sound changes from a maximum to minimum.

If the speed of sound is $350 \mathrm{~m} / \mathrm{s}$. Then n is

A. 500 Hz
B. 1000 Hz
C. $2000 H z$
D. 4000 Hz

Answer: B

D Watch Video Solution

54. Two sources of sound are placed along the diameter of a circle of radius $R(R \gg 41)$.

How many minima will be heard as one moves
along the perimeter of circle.

A. 12
B. 16
C. 4
D. 20

Answer: A

D Watch Video Solution

55. Beats occur because of
A. interference
B. reflection
C. refraction
D. Doppler effect

D Watch Video Solution

56. The phenomenon of beats can take place
A. for longitudinal waves only
B. for transverse waves only
C. for both longitudinal and transverse
waves
D. for sound waves only

Answer: C

D Watch Video Solution

57. When beats are produced by two progressive waves of nearly the same frequency, which one of the following if correct?
A. the beat frequency depends on the position where the beats are heard
B. the beat frequency decreases as time passes
C. the particles vibrate simple harmonically
with a frequency equal to the difference
of the two frequencies
D. the amplitude of vibration at any point
changes simple harmonically with a
frequency equal to the difference of the
two frequencies
58. Two tuning forks of frequencies 256 Hz and 258 Hz are sounded together. The time interval, between two consecutive maxima heard by an observer is
A. 0.5 s
B. $2 s$
C. $250 s$
D. 252 s

Answer: A

- Watch Video Solution

59. Two sources of sound placed close to each other are wmitting progressive waves given by
$y_{1}=4 \sin 600 \pi t$ and $y_{2}=5 \sin 608 \pi t$. An observer located near these two sources of sound will hear:
A. 4 beats per second with intensity ratio

25: 16 between waxing and waning
B. 8 beats per second with intensity ratio

25: 16 between waxing and waning
C. 8 beats per second with intensity ratio

81: 1 between waxing and waning
D. 4 beats per second with intensity ratio

81: 1 between waxing and waning

Answer: D

D Watch Video Solution

60. Maximum number of beats frequency
heard by a human being is
A. 10
B. 4
C. 20
D. 6

Answer: A

D Watch Video Solution
61. Two vibrating tuning forks produce progressive waves given by $y_{1}=\sin 500 \pi t$ and $y_{2}=2 \sin 506 \pi t$. Number of beats produced per minute is:
A. 360
B. 180
C. 3
D. 60

Answer: B

62. When a tuning fork A of frequency 100 Hz
is sounded with a tuning fork B, the number of beats per second is 2 . On putting some wax on the prongs of B, the number of beats per second becomes 1 . The frequency of the fork B is
A. 98 Hz
B. 99 Hz
C. 101 Hz
D. 102 Hz

Answer: D

- Watch Video Solution

63. Two tuning forks A and B vibrating simultaneously produce $5 b e a t s / s$. Frequency of B is $512 H z$. If one arm of A is filed, the number of beats per second increases.

Frequency of A is
A. 502 Hz
B. 507 Hz
C. 517 Hz
D. 522 Hz

Answer: C

D Watch Video Solution

64. The freuquency of tuning forks A and B are respectively 3% more and 2% less than the
frequency of tuning fork C. When A and B are simultaneously excited, 5 beats per second are
produced. Then the frequency of the tuning fork A (in Hz) Is
A. 98
B. 100
C. 103
D. 105

Answer: C
(Watch Video Solution
65. Each of the two strings of length 51.6 cm
and 49.1 cm are tensioned separately by 20 N
force. Mass per unit length of both the strings
is same and equal to $1 g / m$. When both the
strings vibrate simultaneously, the number of beats is
A. 5
B. 7
C. 8
D. 3

Answer: B

D Watch Video Solution

66. Two wires are fixed in a sanometer. Their tension are in the ratio 8:1 The lengths are in the ratio $36: 35$ The diameter are in the ratio

4:1 Densities of the materials are in the ratio
$1: 2$ if the lower frequency in the setting is
360 Hz . The beat frequency when the two
wires are sounded together is
A. 5
B. 8
C. 6
D. 10

Answer: D

D Watch Video Solution

67. When beats are produced by two progressive waves of same amplitude and of nearly same frequencies then the maximum
loudness of the resulting sound is n times the
loudness of each of the component wave trains. The value of n is
A. 1
B. 2
C. 4
D. 8

Answer: C

D Watch Video Solution
68. 65 tuning forks are arranged in order of increasing frequency. Any two successive forks
produce $4 b e a t s / s$, when sounded together. If
the last fork gives an octave of the first, the frequency of the first fork is
A. 252 Hz
B. 256 Hz
C. 260 Hz
D. 264 Hz
69. In a stationary longitudinal wave, nodes are points of
A. maximum pressure
B. minimum pressure
C. minimum pressure variation
D. maximum pressure variation

Answer: A::D

70. When the open organ pipe resonates in its fundamental mode then at the centre of the pipe
A. the gas molecules undergo vibrations of maximum amplitude
B. the gas molecules are at rest
C. the pressure of the gas is constant
D. the pressure of the gas undergoes

Answer: D

D Watch Video Solution

71. An organ pipe, open at both ends, contains
A. longitudinal stationary waves
B. longitudinal travelling wave
C. transverse stationary waves
D. transverse travelling waves
72. Which of the following statements is wrong?
A. In an open pipe the fundamental
frequency is $v / 2 l$
B. In a closed pipe, the closed end is a
displacement node
C. In an open pipe, only the odd harmonics
of fundamental frequency are present

D. In a closed pipe, the fundamental

frequency is $v / 4 l$

Answer: C

- Watch Video Solution

73. the fundamental frequency of a closed organ pipe is 50 Hz . The frequency of the second overtone is

A. 100 Hz

B. 150 Hz
C. 200 Hz
D. 250 Hz

Answer: D

D Watch Video Solution

74. An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher by 100 Hz then the fundamental
frequency of the open pipe. The fundamental frequency of the open pipe is
A. 200 Hz
B. 300 Hz
C. 240 Hz
D. 480 Hz

Answer: A
(Watch Video Solution
75. An organ pipe P_{1} open at one end vibrating in its first harmonic and another pipe P_{2} open at ends vibrating in its third harmonic are in resonance with a given tuning fork. The ratio of the length of P_{1} to that P_{2} is
A. $8: 3$
B. 1:6
C. 1:2
D. 1:3
76. An air column in a pipe, closed at one end, will be in resonance with a vibrating tuning fork of frequency 680 Hz if the length of the column in metres be $v=340 \mathrm{~m} / \mathrm{s}$
(Choose the incorrect option)
A. 0.25
B. 0.125
C. 0.375

D. 0.685

Answer: A

D Watch Video Solution

77. The vibrations of four air columns are represented in the adjoining figures. The ratio of frequencies $n_{p}: n_{q}: n_{r}: n_{s}$ is

A. $12: 6: 3: 4$
B. $4: 2: 3: 1$
C. $1: 2: 4: 3$
D. 1:2:3:4

Answer: C

D Watch Video Solution

78. An organ pipe closed at one end has
fundamental frequency of 500 Hz . The maximum number of overtones generated by this pipe which a normal person can hear is
A. 14
B. 13
C. 6
D. 9

Answer: C

D Watch Video Solution

79. For a certain organ pipe, three successive resonance frequencies are observer at 425,595 and $765 H_{Z}$ respectively. Taking the speed of
sound in air to be $340 \mathrm{~m} / \mathrm{s}$, (a) explain whether the pipe is closed at one or open at boyh ends. (b) determine the fundamental frequency and length of the pipe.
A. closed pipe of length $1 m$
B. closed pipe of length $2 m$
C. open pipe of length $1 m$
D. open pipe of length $2 m$

Answer: A

80. Velocity of sound in air is $320 \mathrm{~m} / \mathrm{s}$. A pipe closed at one end has of 1 m . Neglecting end corrections, the air column in air pipe can resonate for sound of frequency :
A. 80 Hz
B. 240 Hz
C. 320 Hz
D. 400 Hz

Watch Video Solution

81. An open pipe is in resonance in $2 n d$ harmonic with frequency f_{1}. Now one end of the tube is closed and frequency is increased to f_{2} such that the resonance again ocuurs in $n t h$ harmonic. Choose the correct option

$$
\begin{aligned}
& \text { A. } n=3, f_{2}=\frac{3}{4} f_{1} \\
& \text { B. } n=3, f_{2}=\frac{5}{4} f_{1} \\
& \text { C. } n=5, f_{2}=\frac{3}{4} f_{1} \\
& \text { D. } n=5, f_{2}=\frac{3}{4} f_{1}
\end{aligned}
$$

Answer: C

- Watch Video Solution

82. The length of two open organ pipes are l and $(l+\delta l)$ respectively. Neglecting end correction, the frequency of beats between them will b approximately.
A. $\frac{v}{2 l}$
B. $\frac{v}{4 l}$
C. $\frac{v \Delta l}{2 l^{2}}$
D. $\frac{v \Delta l}{l}$

Answer: C

D Watch Video Solution

83. An organ pipe filled with a gas at $27^{\circ} C$
resonates at 400 Hz in its fundamental mode.

If it is filled with the same gas at $90^{\circ} C$, the resonance frequency will be
A. 420 Hz
B. 440 Hz
C. $484 H z$
D. 512 Hz

Answer: B

D Watch Video Solution

84. If frequency of organ pipe is independent of temperature, then value of α (coefficient of
linear expansion of material of pipe) should be nearly
A. $\frac{1}{273} /{ }^{\circ} C$
B. $\frac{1}{546} /{ }^{\circ} C$
C. $\frac{1}{819} /{ }^{\circ} C$
D. $\frac{1}{1092} /{ }^{\circ} C$

Answer: B

D Watch Video Solution

85. The fundamental frequency of a vibrating organ pipe is 200 Hz .
(i) The first overtone is 400 Hz .
(ii) The first overtone may be 400 Hz .
(iii) The first overtone may be 600 Hz .
(iv) 600 Hz is an overtone.
A. (i), (iv)
B. (i), (i), (iii)
C. (iii), (iv)
D. (ii), (iii), (iv)

Answer: D

- Watch Video Solution

86. A column of air at $51^{\circ} C$ and a tuning fork produce 4 beats per second when sounded together. As the temperature of the air column is decreased, the number of beats per second tends to decrease and when the temperature is $16^{\circ} \mathrm{C}$ the two produce 1 beat per second. Find the frequency of the tuning fork.
A. (i), (iv)
B. (i), (iii)
C. (iii), (iv)

D. (ii),(iii),(iv)

Answer: A

D Watch Video Solution

87. In an experiment, it was found that a tuning fork and sonometer wire gave 5 beats per second, both when the length of wire was 1 m and 1.05 m . Calculate the frequency of the fork.
A. 420 Hz
B. 410 Hz
C. 210 Hz
D. 205 Hz

Answer: D

D Watch Video Solution

88. Sound waves of frequency $600 H_{Z}$ fall normally on perfectly reflecting wall. The distance from the wall at which the air
particles have the maximum amplitude of

vibration is (speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$)

A. $0.5 m$
B. 0.25 m
C. $0.125 m$
D. $1 m$

Answer: C
(Watch Video Solution
89. For a resonance tube, the air columns for
the first and the second resonance differ in
length by 31.5 cm . The wavelength of the wave is
A. 15.75 cm
B. 31.5 cm
C. 63.0 cm
D. 126.0 cm

Answer: C

90. In a resonance tube, using a tuning fork of

 frequency 325 Hz , the first two resonance lengths are observed at 25.4 cm and 77.4 cm . The speed of sound in air isA. $318 m / s$
B. $338 \mathrm{~m} / \mathrm{s}$
C. $358 \mathrm{~m} / \mathrm{s}$
D. $378 \mathrm{~m} / \mathrm{s}$

D Watch Video Solution

91. In previous problem, end correction is

A. 0.2 cm
B. 0.3 cm
C. 0.4 cm
D. 0.6 cm

- Watch Video Solution

92. An air column, closed at one end and open
at the other end, resonates with a tuning fork of frequency f when its length is $45 \mathrm{~cm}, 99 \mathrm{~cm}$ and at two other lengths in between these values. The wavelength of sound in the air column is
A. 180 cm
B. 108 cm
C. 54 cm
D. 36 cm

Answer: D

D Watch Video Solution

93. A long glass tube is held vertically in water.

A tuning fork is struck and held over the tube.

Strong resonances are observed at two successive lengths 0.50 m and 0.84 m above the surface of water. If the velocity of sound is
$340 \mathrm{~m} / \mathrm{s}$, then the frequency of the tuning fork is
A. 128 Hz
B. 256 Hz
C. 384 Hz
D. 50 Hz

Answer: D
(Watch Video Solution
94. A glass tube of $1.0 m$ length is filled with
water. The water can be drained out slowly at
the bottom of the tube. If a vibrating tuning
fork of frequency $500 c / s$ is brought at the
upper end of the tube and the velocity of sound is $300 \mathrm{~m} / \mathrm{s}$, then the total number of resonances obtained will be
A. 4
B. 3
C. 2
D. 1

Answer: B

D Watch Video Solution

95. A tuning fork of frequency $340 H_{Z}$ is sounded above an organ pipe of length 120 cm
. Water is now slowly poured in it . The minimum height of water column required for resonance is (speed of sound in air $=340 \mathrm{~m} / \mathrm{s}$
A. 25 cm
B. 45 cm
C. 75 cm
D. 95 cm

Answer: B

D Watch Video Solution
96. On producing the waves of frequency 1000

Hz in a kundt's tube the total distance
between 6 successive nodes n 85 cm . Speed of sound in the gas filled in the tude is
A. $300 \mathrm{~m} / \mathrm{s}$
B. $330 \mathrm{~m} / \mathrm{s}$
C. $360 \mathrm{~m} / \mathrm{s}$
D. $390 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

97. If in an experimental determination of the velocity of sound using a Kundt's tube, standing waves are set up in the metallic rod as well as in the rigid tube containing air, then both the waves have the same
A. amplitude
B. frequency
C. wavelength
D. particle velocity
98. The change in frequency due to Doppler effect does not depend on
A. the actual frequency of the wave
B. the distance of the source from the

listener

C. the velocity of the source
D. the velocity of the observer

Answer: B

- Watch Video Solution

99. The engine of a train sound a whistle at
frequency v, the frequency heard by a passenger is
A. $>f$
B. $<f$
C. $=1 / f$
D. $=f$

Answer: D

D Watch Video Solution

100. A small source of sound moves on a circle
as shown in figure and an observer is sitting at
O. Let v_{1}, v_{2}, v_{3} be the frequencies heard when
the source is at A, B and C respectively.

$$
\text { A. } f_{1}>f_{2}>f_{3}
$$

B. $f_{1}=f_{2}>f_{3}$
C. $f_{2}>f_{3}>f_{1}$
D. $f_{1}>f_{3}>f_{2}$

Answer: C

- Watch Video Solution

101. A source of sound moves towards an
observe.
A. The frequency of the sources increased
B. The velocity of sound in the medium is increased
C. The wavelength of sound in the medium
towards the observer is decreased
D. The amplitude of vibration of the particles is increased

Answer: C

D Watch Video Solution

102. A listener is at rest with respect to the source of sound. A wind starts blowing along the line joining the source and the observer.

Which of the following quantities do not change?
(i) Frequency
(ii) Velocity of sound
(iii) Wavelength
(iv) Time period
A. $(i),(i v)$
B. $(i v),(i i)$
C. $(i i i),(i v)$
D. $(i i),(i v)$

Answer: A

D Watch Video Solution

103. A tuning fork of frequency $90 H z$ is
sounded and moved towards an observer with
a speed equal to one - tenth the speed of sound. The note heard by the observer will have a frequency
A. 100
B. 110
C. 80
D. 70

Answer: A

D Watch Video Solution

104. A source and a listener are both moving towards each other with speed $v / 10$, where v
is the speed of sound. If the frequency of the
note emitted by the source is f, the frequency heard by the listener would be nearly
A. $1.11 f$
B. $1.22 f$
C. $1.27 f$
D. f

Answer: B
(Watch Video Solution
105. A source of sound is travelling towards a
stationary observer. The frequency of sound
heard by the observer is 25% more than the
actual frequency. If the speed of sound is v,
that of the source is
A. $v / 5$
B. $v / 4$
C. $v / 3$
D. $v / 2$

- Watch Video Solution

106. The difference between the apparent frequency of a sound of soun as perceived by an observer during its approach and recession is 2% of the natural frequency of the source.

If the velocity of sound in air is $300 \mathrm{~m} / \mathrm{s}$, the velocity of the source is (It is given that velocity of source `ltt velocity of sound)
A. $12 m / s$
B. $6 m / s$
C. $1.5 m / s$
D. $3 m / s$

Answer: D

D Watch Video Solution

107. A train is moving at $30 \mathrm{~m} / \mathrm{s}$ in still air. The
frequency of the locomotive whistle is 500 Hz
and the speed of sound is $345 m / s$. The apparent wavelengths of sound in front of and behind the locomotive are respectively
A. $0.63 m, 0.80 m$
B. $0.63 m, 0.75 m$
C. $0.60 m, 0.85 m$
D. $0.60 m, 0.75 m$

Answer: B

D Watch Video Solution

108. In previous question, what would be the apparent wavelengths in front of and behind
the locomotive if a wind of speed $10 \mathrm{~m} / \mathrm{s}$ were
blowing in the same direction as that in which
the locomotive is travelling?
A. $0.65 m, 0.73 m$
B. $0.60 m, 0.73 m$
C. $0.65 m, 0.78 m$
D. $0.60 m, 0.71 m$

Answer: C

- Watch Video Solution

109. An engine is moving on a circular track
with a constant speed. It is blowing a whistle of frequency 500 Hz . The frequency received by an observer standing stationary at the centre of the track is
A. 500 Hz
B. more than $500 h z$
C. less than 500 Hz
D. more or less than 500 Hz depending on
the actual speed of the engine

Answer: A

- Watch Video Solution

110. A train has just completed a U-curve in a trach which is a semi circle. The engine is at
the forward end of the semi circular part of the trach while the last carriage is at the rear end of the semi circular track. The driver blows
a whistle of frequency 200 Hz . Velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then the apparent frequency as observed by a passenger in the middle of
the train, when the speed of the train is 30 m / s, is
A. 209 Hz
B. 288 Hz
C. 200 Hz
D. 181 Hz

Answer: C
(Watch Video Solution
111. A man is standing on a railway platform
listening to the whistle of an engine that passes the man at constant speed without stopping. If the engine passes the man at time t_{0} How does the frequency f of the whistle as heard by the man changes with time.

C.

Answer: A

- Watch Video Solution

112. A car is moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ towards huge wall. The driver sounds a horn
of frequency 165 Hz . If the speed of sound in
air is $335 \mathrm{~m} / \mathrm{s}$, the number of beats heard per
second by the driver is
A. 6
B. 5
C. 4
D. 3

Answer: B

D Watch Video Solution
113. A whistle revolves in a circle with an angular speed of $20 \mathrm{rad} / \mathrm{sec}$ using a string of length 50 cm . If the frequency of sound from the whistle is 385 Hz , then what is the minimum frequency heard by an observer which is far away from the centre in the same plane? $v=340 \mathrm{~m} / \mathrm{s}$
A. 333 Hz
B. 374 Hz
C. 385 Hz
D. $394 H z$

Answer: B

D Watch Video Solution

114. A police car moving at $22 m / s$, chases motorcyclist. The police man sounds his horn at 176 Hz , while both of them move towards a ststionary siren of frequency 165 Hz . Calculate the speed of the motorcycle, if it is given that
he does not observes any beats.

Stationary Siren
(165 Hz)
A. $33 m / s$
B. $22 m / s$
C. zero
D. $11 m / s$

Answer: B

- Watch Video Solution

115. A train moves towards a stationary observer with speed $34 m / s$. The train sounds a whistle and its frequency registered by the observer is f_{1}. If the train's speed is reduced to $17 \mathrm{~m} / \mathrm{s}$, the frequency registered is f_{2}. If the speed of sound of $340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is
A. $18 / 19$
B. $1 / 2$
C. 2

$$
\text { D. } 19 / 18
$$

Answer: D

D Watch Video Solution

116. A siren placed at a railway platform is emitting sound of frequency $5 k H z$. A passenger sitting in a moving train A records
a frequency of 5.5 kHz while the train approaches the siren. During his return
journey in a different train B he records a frequency of 6.0 kHz while approaching the same siren. the ratio the velocity of train B to that of train A is
A. $242 / 252$
B. 2
C. $5 / 6$
D. $11 / 6$

Answer: B
117. A racing car moving towards a cliff, sounds
its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If v is the velocity of sound, then the velocity of the car is
A. $\frac{v}{\sqrt{2}}$
B. $\frac{v}{2}$
C. $\frac{v}{3}$
D. $\frac{v}{4}$

Answer: C

D Watch Video Solution

118. A vehicle, with a horn of frequency n is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction prependicular to the straight line joining the observer and the vehicle . The observer perceives the sound to have a grequency $\left(n+n_{1}\right)$. If the sound velocity in air is $330 m / s$, then
A. $n_{1}=10 n$
B. $n_{1}=0$
C. $n_{1}=0.1 n$
D. $n_{1}=-0.1 n$

Answer: B

D Watch Video Solution
119. Two cars are moving on two perpendicular road towards a crossing with uniform speeds of $72 \mathrm{~km} / \mathrm{hr}$ and $36 \mathrm{~km} / \mathrm{hr}$. If first car blows
horn of frequency 280 Hz , then the frequency
of horn heard by the driver of second car when line joining the cars make 45° angle with the roads, will be
A. 321 Hz
B. 298 Hz
C. 289 Hz
D. 280 Hz

Answer: B
120. A band playing music at a frequency f is moving towards a wall at a speed v_{b}. A motorist is following the band with a speed v_{m}. If v is the speed of sound, obtain an expression for the beat frequency heard by the motorist.

$$
\begin{aligned}
& \text { A. } \frac{v+v_{m}}{v-v_{b}} f \\
& \text { B. } \frac{v+v_{m}}{v-v_{b}} f \\
& \text { C. } \frac{2 v_{b}\left(v+v_{m}\right)}{v^{2}-v_{b}^{2}} f \\
& \text { D. } \frac{2 v_{m}\left(v+v_{b}\right)}{v^{2}-v_{m}^{2}} f
\end{aligned}
$$

Answer: C

D Watch Video Solution

121. A sound wave of frequency f travels
horizontally to the right. It is reflected from a
large vertical plane surface moving to left with
a speed v. The speed of sound in medium is C
A. The frequency of the reflected wave is

$$
\frac{f(c+v)}{c-v}
$$

B. The wavelength of the reflected wave is
$\frac{c(c-v)}{f(c+v)}$
C. The number of waves striking the
surface per second is $\frac{f(c+v)}{c}$
D. The number of beats heard by a stationary listener to the left of the reflection surface is $\frac{f v}{c-v}$

Answer: D

D Watch Video Solution

122. A motor cycle starts from rest and accelerates along a straight path at $2 m / s^{2}$. At the starting point of the motor cycle there is a stationary electric siren. How far has the motor cycle gone when the driver hears the frequency of the siren at 94% of its value when the motor cycle was at rest? (Speed of sound $=330 \mathrm{~ms}^{-2}$)
A. $49 m$
B. $98 m$
C. $147 m$

D. $196 m$

Answer: B

D Watch Video Solution

123. A star is moving away from the earth with
a velocity of $100 \mathrm{~km} / \mathrm{s}$. If the velocity of light is
$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ then the shift of its spectral line of wavelength $5700 A$ due to Doppler effect is
A. $0.63 \AA$
B. $1.90 \AA$
C. $3.80 \AA$
D. $5.70 \AA$

Answer: B

D Watch Video Solution

124. The apparent wavelength of the light from
a star, moving away from the earth is 0.01%
more than its real wavelength. The speed of
the star with respect to earth is
A. $10 \mathrm{~km} / \mathrm{s}$
B. $15 \mathrm{~km} / \mathrm{s}$
C. $30 \mathrm{~km} / \mathrm{s}$
D. $60 \mathrm{~km} / \mathrm{s}$

Answer: C

D Watch Video Solution

125. The frequency of a radar is 780 MHz . After getting reflected from an approaching aeroplane, the apparent frequency is more
than the actual frequency by 2.6 kHz . The aeroplane has a speed of
A. $0.25 \mathrm{~km} / \mathrm{s}$
B. $0.5 \mathrm{~km} / \mathrm{s}$
C. $1.0 \mathrm{~km} / \mathrm{s}$
D. $2.0 \mathrm{~km} / \mathrm{s}$

Answer: B
(Watch Video Solution

126. Define Mach number

A. It is the ratio of the stress to the strain
B. It is the ratio of the strain to stress
C. It is the ratio of the velocity of an object
to the velocity of sound

D. It is the ratio of the velocity of sound to

the velocity of an object

Answer: C
127. The musical interval between two tones of frequencies 320 Hz and 240 Hz is
A. 80
B. $(4 / 3)$
C. 560
D. 320×240

Answer: B
128. The time of reverberation of a room A is one second. What will be the time (in seconds) of reverberation of room, having all the dimensions double of those of room A ?
A. $1 / 2$
B. 1
C. 2
D. 4

Answer: C

129. If T is the reverberation time of an auditorium of volume V then
A. $T \propto \frac{1}{V}$
B. $T \propto \frac{1}{V^{2}}$
C. $T \propto V^{2}$
D. $T \propto V$

Answer: D
130. An earhquake generates both transverse
(S) and logitudinal (P) sound wave in the earth
.The speed of (S) wave is about $4.5 \mathrm{~km} / \mathrm{s}$ and that of (P) wave is about $8.0 \mathrm{~km} / \mathrm{s} \mathrm{A}$ seismograph records P and S wave from an earthquake. The first P wave arrives 4.0 min before the first S wave. The epicenter of the earthquake is located at a distance of about
A. 25 km
B. 250 km

C. 2500 km

D. 5000 km

Answer: C

D Watch Video Solution

