©゙’ doubtnut

PHYSICS

BOOKS - CP SINGH PHYSICS (HINGLISH)

VECTORS

Example

1. Two vectors have magnitudes 6 and 8 units, respectively. Find the magnitude of the resultant vector
if the angle between vectors is (a) 60° (b) 90° and (c)
120°.
2. Two vectors acting through a point are in the ratio $3: 5$. If the angle between them is 60° and the magnitude of their resultant is 35 , find the magnitude of vectors.

D Watch Video Solution

3. Two forces acting in opposite direction have resultant 10 N and when acting perpendicularly have resultant 50 N . Find the magnitude of forces.
4. Two vectors of equal magnitude are acting through a point. The magnitude of resultant is equal to the magnitude of either vectoe. Find the angle between the vectors.

D Watch Video Solution

5. The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces.The angle between the two forces is

D Watch Video Solution

6. The resultant of two forces $3 P$ and $2 P$ is R. If the first force is doubled then resultant is also doubled.The angle between the two forces is

- Watch Video Solution

7. The sum of the magnitudes of two forces acting at a point is 18 and the magnitude of their resultant is 12 . If the resultant is at 90° with the force of smaller magnitude, What are the magnitudes of forces?
8. If N -vectors of equal magnitude are acting through a point and angle between the adjacent vectors is $2 \pi / N$, find the resultant.

- Watch Video Solution

9. If $|\vec{P}+\vec{Q}|=|\vec{P}-\vec{Q}|$, find the angle between \vec{P} and \vec{Q}.

- Watch Video Solution

10. A particle is moving along a circle with a uniform speed $10 \mathrm{~m} / \mathrm{s}$. At $t=0$, the particle is moving along
east. Find the change in velocity (magnitude and direction) in (a) $1 / 4$ th revolution, (b) $1 / 2$ revolution, (c) $3 / 4$ th revolution and (d) 1 revolution.

D Watch Video Solution

11. A particle is moving along a circle of radius R with a uniform speed v. At $t=0$, the particle is moving along the east. Find the average acceleration (magnitude and direction) in (a) $1 / 4 t h$ revolution and (b) $1 / 2$ revolution.
12. A particle is moving along a circle with a uniform speed v. Find (a) change in the magnitude of velocity and (b) the magnitude of change in the velocity when it has rotated an angle $\theta \cdot\left(0<\theta<90^{\circ}\right)$

- Watch Video Solution

13. In the previous problem, find the magnitude of change in velocity if (a) $90^{\circ}<\theta<180^{\circ}$,
$180^{\circ}<\theta<270^{\circ}$ and (c) $270^{\circ}<\theta<360^{\circ}$.
14. Find the resultant of the following forces.

$$
\left[\sin 37^{\circ}=\frac{3}{5}, \cos 37^{\circ}=\frac{4}{5}, \sin 53^{\circ}=\frac{4}{5}, \cos 53^{\circ}=\frac{3}{5}\right]
$$

D Watch Video Solution

15. If the resultant of the following forces is zero, find the value of F_{0}.

- Watch Video Solution

16. Find the resultant of three vectors shown in the figure.

D Watch Video Solution

17. A person moves 30 m north,, then 20 m towards east and finally $30 \sqrt{2} m$ in south-west direction. The displacement of the person from the origin will be
18.

Find
the
resultant
of
$\overrightarrow{F_{1}}+\overrightarrow{F_{2}}-\overrightarrow{F_{3}}\left(\sin 37^{\circ}=\frac{3}{5}, \cos 37^{\circ}=\frac{4}{5}\right)$

D Watch Video Solution

19. A force $3 N$ is acting along the $N E$ and another force $4 N$ is acting the $N W$. Find the angle made by the resultant force with north.

- Watch Video Solution

20. A vector is given by $\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$. Find the magnitude of \vec{A}, unit vector along \vec{A} and angles made by \vec{A} with coordinate axes.

- Watch Video Solution

21. Find a unit vector in the direction of $\overrightarrow{A B}$, where
$A(1,2,3)$ and $B(2,3,5)$ are the given points.
22. Find a vector in the direction of the vector $2 \hat{i}-\hat{j}+4 \hat{k}$, which has magnitude units.

D Watch Video Solution

23. If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$, find a unit vector in the direction of $(2 \vec{a}+\vec{b})$.

- Watch Video Solution

24. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=4,|\vec{b}|=1 / 2$ and $\operatorname{vec}(a) \cdot \vec{b}=-1$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

25. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}$, find the value of $(\vec{a}+3 \vec{b}) \cdot(2 \vec{a}-\vec{b})$.

- Watch Video Solution

26.

If vectors

$$
\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} \quad \text { and }
$$

$\vec{b}=\hat{i}+\lambda(j)-3 \hat{k}$ are perpendicular to each other, find the value of λ.

- Watch Video Solution

27. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

28. Find the projection of $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ on $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

29. Find the (a) scalar component and (b) vector component of $\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$ on $\vec{B}=\hat{i}+\hat{j}+\hat{k}$.
30. If \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{C}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

31. If $\vec{a}=2 \hat{i}+2 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{j}+2 \hat{k} \quad$ and $\vec{c}=3 \hat{i}+\hat{j}$ such that $\vec{a}+\lambda^{\wedge}(b)$ is perpendicular to \vec{c}, find λ.
32. If $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}, \vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k}$. Find (a) $\vec{a} \times \vec{b}$ and (b) area of a triangle whose adjacent sides are dertermined by \vec{a} and \vec{b}.

- Watch Video Solution

33. If $\vec{a}=2 \hat{i}+6 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}+\lambda \hat{j}+\mu \hat{k}$. If $\vec{a} \times \vec{b}=0$, find the value of λ and μ.

- Watch Video Solution

34. Find a unit vector perpendicular to each one of the
vectors $\vec{a}=4 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}-\hat{k}$.

Watch Video Solution

35. If $\quad|\vec{a}|=\sqrt{2},|\vec{b}|=7 \quad$ and
$\vec{a} \times \vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$. Find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

36. If $|\vec{a}|=\sqrt{26},|\vec{b}|=7$, and $|\vec{a} \times \vec{b}|=35$. Find $\vec{a} \cdot \operatorname{Vec}(b)$.
37. If $\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{k}$ Find $|\vec{b} \times 2 \vec{a}|$.

- Watch Video Solution

38. If $\vec{a}=3 \hat{i}+2 \hat{k}, \vec{b}=3 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$.

Find $(\vec{a} \times \vec{b}) \cdot \vec{c}$.

D Watch Video Solution

39. In the previous problem, find $(\vec{b} \times \vec{c}) \cdot \vec{b}$.
40. A vector is not changed if
A. It is rotated through an arbitrary angle
B. It is multiplied by an arbitrary scalar
C. It is cross - multiplied by a unit vector
D. It is slid parallel to itself

Answer: D

D Watch Video Solution

2. Two forces, each of magnitude F have a resultant of
the same magnitude F. The angle between the two
forces is
A. 45°
B. 120°
C. 150°
D. 60°

Answer: B
3. Two vectors acting through a point are in the ratio $3: 5$. If the angle between them is 60° and the magnitude of their resultant is 35 , find the magnitude of vectors.
A. $12 N, 20 N$
B. $15 \mathrm{~N}, 25 \mathrm{~N}$
C. $18 N, 30 N$
D. $21 N, 28 N$

Answer: B

D Watch Video Solution
4. The magnitude of vectros \vec{A}, \vec{B} and \vec{C} are 12,5 and 13 units respectively and $\vec{A}+\vec{B}=\vec{C}$, find the angle between \vec{A} and \vec{B}.
A. 60°
B. 90°
C. 120°
D. None

Answer: B

- Watch Video Solution

5. If $\vec{A}=\vec{B}+\vec{C}$, and the magnitudes of $\vec{A}, \vec{B}, \vec{C}$ are 5,4, and 3 units, then the angle between \vec{A} and \vec{C} is
A. $\cos ^{-1}(3 / 5)$
B. $\cos ^{-1}(4 / 5)$
C. $\sin ^{-1}(3 / 4)$
D. $\pi / 2$

Answer: A

- Watch Video Solution

6. Two forces, while acting on particle in opposite directions,have the resultant of 10 N . If they act at right angles to each other, the resultant is found to be 50 N .

Find the two forces?
A. $40 N, 30 N$
B. $50 \mathrm{~N}, 40 \mathrm{~N}$
C. $30 N, 20 N$
D. $35 \mathrm{~N}, 25 \mathrm{~N}$

Answer: A

- Watch Video Solution

7. One of the following forces is double and the other resultant is equal to the greater force. The angle between them is
A. $\cos ^{-1}(1 / 2)$
B. $\cos ^{-1}(-1 / 2)$
C. $\cos ^{-1}(1 / 4)$
D. $\cos ^{-1}(-1 / 4)$

Answer: D

- Watch Video Solution

8. Two vectors of magnitude 4 and 6 are acting through a point. If the magnitude of the resultant is R
A. $4<R<6$
B. $4<R<10$
C. $2 \leq R \leq 10$
D. $2 \geq R \geq 10$

Answer: C

- Watch Video Solution

9. The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β and \vec{B},
A. $\alpha<\beta$ if $A>B$
B. $\alpha<\beta$ if $A<B$
C. $\alpha=\beta$ if $A<B$
D. $\alpha<\beta$ if $A=B$

Answer: A

- Watch Video Solution

10. Which of the sets given below may represent the magnitudes of three vectors adding to zero?
A. $2,4,8$
B. $4,8,16$
C. $1,2,1$
D. $0.5,1,2$

Answer: C

- Watch Video Solution

11. The following sets of three vectors act on a body, whose resultant can be zero. These are :
A. $10,10,10$
B. $10,10,20$
C. $10,20,23$
D. $10,20,40$

Answer: D

- Watch Video Solution

12. Three vectors \vec{P}, \vec{Q} and \vec{R} are such that $|\vec{P}|,|\vec{Q}|,|\vec{R}|=\sqrt{2}|\vec{P}|$ and $\vec{P}+\vec{Q}+\vec{R}=0$. The angle between \vec{P} and \vec{Q}, \vec{Q} and \vec{R} and \vec{P} and \vec{R} are
A. $90^{\circ}, 135^{\circ}, 135^{\circ}$
B. $90^{\circ}, 45^{\circ}, 45^{\circ}$
C. $45^{\circ}, 90^{\circ}, 90^{\circ}$
D. $45^{\circ}, 135^{\circ}, 135^{\circ}$

Answer: A
13. Three forces 9,12 and $15 N$ acting at a point are in equilibrium . The angle between 9 N and 15 N is
A. $\cos ^{-1}(3 / 5)$
B. $\cos ^{-1}(4 / 5)$
C. $\pi-\cos ^{-1}(3 / 5)$
D. $\pi-\cos ^{-1}(4 / 5)$

Answer: C

- Watch Video Solution

14. If the resultant of n forces of different magnitudes acting at a point is zero, then the minimum value of n is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

15. Let $\vec{C}=\vec{A}+\vec{B}$ then
A. $|\vec{C}|$ is always greater than $|\vec{A}|$
B. It is possible to have $|\vec{C}|$ It $|\operatorname{vec}(A)|$

$$
\text { and }|\vec{C}|<|\vec{B}|
$$

C. C is always equal to $A+B$
D. C is never equal to $A+B$

Answer: B

- Watch Video Solution

16. Forces of 1 and 2 units act along the lines $x=0$
and $y=0$. The equation of the line of action of the resultant is

$$
\text { A. } y-2 x=0
$$

B. $2 y-x=0$
C. $y+x=0$
D. $y-x=0$

Answer: B
17. The sum of two forces at a point is 16 N . if their resultant is normal to the smaller force and has a magnitude of 8 N , then two forces are

A. 6 N and 10 N

B. $8 N$ and $8 N$
C. 4 N and 12 N
D. $2 N$ and $14 N$

Answer: A
18. A particle is being acted upon by four forces of 30 N due east, 20 N due north, 50 N due west and 40 N due south. The resultant force will be
A. $20 \sqrt{2} N, 60^{\circ}$ south to west
B. $20 \sqrt{2} N, 45^{\circ}$ south west
C. $20 \sqrt{2} N, 45^{\circ}$ north to east
D. $20 \sqrt{2} N, 45^{\circ}$ south to east

Answer: B

- Watch Video Solution

19. Six vector \vec{a} through \vec{f} have the magnitudes and direction indicated in the figure. Which of the following statements is true?

A. $\vec{b}+\vec{\epsilon}=\vec{f}$
B. $\vec{b}+\vec{c}=\vec{f}$
c. $\vec{d}+\vec{c}=\vec{f}$
D. $\vec{d}+\vec{e}=\vec{f}$

Answer: D

- Watch Video Solution

20. If N -vectors of equal magnitude are acting through
a point and angle between the adjacent vectors is
$2 \pi / N$, find the resultant.
A. $N F$
B. $\left(\frac{N+1}{2}\right) F$
C. $\left(\frac{N-1}{2}\right) F$
D. zero
21. Five equal forces of 10 N each are applied at one point and all are lying one plane. If the angles between them are equal, the resultant force will be
A. Zero
B. 10 N
C. 20 N
D. $10 \sqrt{2} N$

Answer: A

22. Forces proportional to $A B, B C$ and $2 C A$ act along
the slides of a triangle $A B C$ in magnitude and direction by
A. $C A$
B. $A C$
C. $B C$
D. $C B$

Answer: A
23. $A B C D E F$ is a regular hexagon, Fig. 2 (c).65. What is the value of
$(\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F} ?$

A. $\overrightarrow{A O}$
B. $2 \overrightarrow{A O}$
C. $4 \overrightarrow{A O}$

D. $6 \overrightarrow{A O}$

Answer: D

D Watch Video Solution

24. A truck travelling due to north at $20 \mathrm{~ms}^{-1}$ turns west and travels at the same speed. Find the change in its velocity.
A. $40 \mathrm{~m} / \mathrm{sNW}$
B. $40 \mathrm{~m} / \mathrm{sSW}$
C. $20 \sqrt{2} \mathrm{~m} / \mathrm{sNW}$
D. $20 \sqrt{2} m / s S W$

Answer: D

- Watch Video Solution

25. A particle moves towards east with velocity $5 \mathrm{~m} / \mathrm{s}$.

After 10 sec onds its direction changes towards north with same Velocity. The average acceleration of the particle is
A. Zero
B. $\frac{1}{\sqrt{2}} m / s^{2} N-W$
C. $\frac{1}{\sqrt{2}} m / s^{2} N-E$
D. $\frac{1}{\sqrt{2}} m / s^{2} S-W$

- Watch Video Solution

26. The length of second's hand in watch is 1 cm . The change in Velocity of its tip in 15 seconds is
A. Zero
B. $\pi / 30 \mathrm{~cm} / \mathrm{s}$
C. $(\pi / 30) \sqrt{2} c m / s$
D. $\pi / 30 \sqrt{2} \mathrm{~cm} / \mathrm{s}$

Answer: C
27. Aparticle moves with a speed v changes direction by an angle θ, without change in speed.
A. $(i),(i i)$
B. $(i),(i i i)$
C. $(i),(i i),(i i i)$
D. all

Answer: B

28. Let the angle between two non-zero vectors \vec{A} and \vec{B} be 120° and its resultant be \vec{C}.
A. C must be equal to $|\vec{A}-\vec{B}|$
B. C must be less than $|\vec{A}-\vec{B}|$
C. C must be greater than $|\vec{A}-\vec{B}|$
D. C may be equal to $|\vec{A}-\vec{B}|$

Answer: B

- Watch Video Solution

29. The component of a vector is
A. Always less than its magnitude
B. Always greater than its magnitude
C. Always equal to its magnitude
D. None of these

Answer: D

D Watch Video Solution

30. One of the two rectangular components of a force is 20 N and it makes an angle of 30° with the force. The magnitude of the other component is
A. $10 / \sqrt{3}$
B. $20 / \sqrt{3}$
C. $15 / \sqrt{3}$
D. $40 / \sqrt{3}$

Answer: D

D Watch Video Solution

31. While travelling from one station to another, a car travels 75 km north , 60 km north - east and 20 km east.

The minimum distance between the two station is
A. 72 km
B. 112 km
C. 132 km
D. 155 km

Answer: C

- Watch Video Solution

32. A person moves 30 m north, then

30 mest, then $30 \sqrt{2}$ south-west. His diaplacement from
the original position is
A. $14 m$ south - west
B. $28 m$ south
C. $10 m$ west
D. $15 m$ east

Answer: C

- Watch Video Solution

33. Find the resultant of the three vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ shown in figure. Radius of the circle is R .

A. $2 R$
B. $R(1+\sqrt{2})$
C. $R \sqrt{2}$
D. $R(\sqrt{2}-1)$
34. Three forces acting on a body are shown in figure.

To have the resultant force only along the y-directon, the magnitude of the minimum additional force needed si

A. $\frac{\sqrt{3}}{4} N$
B. $\sqrt{3} N$
C. 0.5 N
D. 1.5 N

Answer: C

- Watch Video Solution

35. The x - component of the resultant of several vectors
(i) is equal to the sum of the x-components of the vectors
(ii) may be smaller than the sum of the magnitudes of
the vectors
(iii) may be greater than the sum of the magnitudes of the vectors
(iv) may be equal to the sum of the magnitudes of the vectors
A. $(i),(i i)$
B. $(i),(i i),(i v)$
C. $(i i),(i i i),(i v)$
D. all

Answer: B

- Watch Video Solution

36. A hall has the dimensions $10 m \times 12 m \times 14 m$. A fly starting at one corner ends up at a diagonally opposite corner. What is the magnitude of its displacement
A. $17 m$
B. $26 m$
C. $36 m$
D. $21 m$

Answer: D

- Watch Video Solution

37. If a unit vector is represented by $0.5 \hat{i}+0.8 \hat{j}+c \hat{k}$, then the value of c is
A. 1
B. $\sqrt{0.11}$
C. $\sqrt{0.01}$
D. $\sqrt{0.39}$

Answer: B

- Watch Video Solution

38. If $\vec{A}=3 \hat{i}-4 \hat{j}$ and $\vec{B}=2 \hat{i}+16 \hat{j}$ then the magnitude and direction of $\vec{A}+\vec{B}$ will be
A. $5, \tan ^{-1}(12 / 5)$
B. $10, \tan ^{-1}(5 / 12)$
C. $13, \tan ^{-1}(12 / 5)$
D. $12, \tan ^{-1}(5 / 12)$

Answer: C

- Watch Video Solution

39. If a particle moves from the point $A(1,2,3)$ to the point $B(4,6,9)$, its displacement vector be
A. $\hat{i}+\hat{j}+\hat{k}$
B. $2 \hat{i}+3 \hat{j}+4 \hat{k}$
C. $3 \hat{i}+4 \hat{j}+6 \hat{k}$
D. $3 \hat{i}+4 \hat{j}+5 \hat{k}$

Answer: C

- Watch Video Solution

40. The unit vector parallel to the resultant of the vectors $\vec{A}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{B}=2 \hat{i}+4 \hat{j}-\hat{k}$ is

$$
\begin{aligned}
& \text { А. } \frac{1}{49}(7 \hat{i}+6 \hat{j}-2 \hat{k}) \\
& \text { B. } \frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k}) \\
& \text { C. } \frac{1}{49}(3 \hat{i}+6 \hat{j}-2 \hat{k}) \\
& \text { D. } \frac{1}{7}(7 \hat{i}+6 \hat{j}-2 \hat{k})
\end{aligned}
$$

Answer: B

- Watch Video Solution

41. If $\vec{A}=3 \hat{i}+6 \hat{j}-2 \hat{k}$, the directions of cosines of the vector \vec{A} are
A. $\frac{3}{7}, \frac{6}{7}, \frac{2}{7}$
B. $\frac{3}{7}, \frac{6}{7}, \frac{-2}{7}$
C. $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$
D. $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$

Answer: B

- Watch Video Solution

42. If a vector \vec{A} make angles α, β and γ, respectively, with the X, Y and Z axes , then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
A. 0
B. 1
C. 2
D. 3

Answer: C

43. If the sum of two unit vectors is a unit vector,then find the magnitude of their differences.
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $1 / \sqrt{2}$
D. $\sqrt{5}$

Answer: B

- Watch Video Solution

44. What is the angle between \vec{A} and the esultant of $(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$
A. Zero
B. $\tan ^{-1}(A / B)$
C. $\tan ^{-1}(B / A)$
D. $\frac{\tan ^{-1}((A-B))}{(A+B)}$

Answer: A

- Watch Video Solution

45. A paricle starting from the origin $(0,0)$ moves in a straight line in (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of
A. 30°
B. 45°
C. 60°
D. 0°

Answer: C

46. If for two vectors \vec{A} and \vec{B}, sum $(\vec{A}+\vec{B})$ is perpendicular to the difference $(\vec{A}-\vec{B})$. Find the ratio of their magnitude.
A. 1
B. 2
C. 3
D. None of these

Answer: A
47. If a vector $2 \hat{i}+3 \hat{j}+8 \hat{k}$ is perpendicular to the vector $-4 \hat{i}+4 \hat{j}+\alpha(k)$. Then the value of α is
A. -1
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 1

Answer: B

- Watch Video Solution

48. Which of the following vectors is//are perpendicular to the vector $4 I-3 j$?
A. $4 i+3 j$
B. $6 i$
C. $7 k$
D. $3 i-4 j$

Answer: C

- Watch Video Solution

49. If $\vec{A}=2 I+j-k, \vec{B}=I+2 j+3 k \quad$, and $\vec{C}=6 i-2 j-6 k$,then
$(\vec{A}+\vec{B})$ and \vec{C} will be the angle between
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

50. Vectors which is perpendicular to $(a \cos \theta \hat{i}+b \sin \theta \hat{j})$ is
A. (1) $b \sin \theta \hat{i}-a \cos \theta \hat{j}$
B. $\frac{1}{a} \sin \theta \hat{i}-\frac{1}{b} \cos \theta \hat{j}$
C. $5 \hat{k}$
D. All of these

Answer: D

- Watch Video Solution

51. Two vectors \vec{A} and \vec{B} have equal magnitudes.If magnitude of $(\vec{A}+\vec{B})$ is equal to n times of the magnitude of $(\vec{A}-\vec{B})$ then the angle between \vec{A} and \vec{B} is :-
A. $\cos ^{-1}\left(\frac{n-1}{n+1}\right)$
B. $\cos ^{-1}\left(\frac{n^{2}-1}{n^{2}+1}\right)$
C. $\sin ^{-1}\left(\frac{n-1}{n+1}\right)$
D. $\sin ^{-1}\left(\frac{n^{2}-1}{n^{2}+1}\right)$

Answer: B
52. The position vector of a particle is $\vec{r}=a \cos \omega t i+a \sin \omega t j$, the velocity of the particle is
A. parallel to the position vector
B. perpendicular to the position vector
C. directed towards the origin
D. directed away from the origin

Answer: B

53. The component of vector $A=2 \hat{i}+3 \hat{j}$ along the vector $\hat{i}+\hat{j}$ is
A. 5
B. $5 / \sqrt{2}$
C. $10 \sqrt{2}$
D. $2 \sqrt{5}$

Answer: B

- Watch Video Solution

54. The vector component of vector $\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$ along vector $\vec{B}=\hat{i}+\hat{j}+\hat{k}$ is
A. $2 \hat{i}+2 \hat{j}+2 \hat{k}$
B. $3 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $4 \hat{i}+4 \hat{j}+4 \hat{k}$
D. $5 \hat{i}+5 \hat{j}+5 \hat{k}$

Answer: C

- Watch Video Solution

55. If $\vec{A} \times \vec{B}=\vec{C}$, then which of the following statements is wrong?
A. $\vec{C} \perp \vec{A}$
B. $\vec{C} \perp \vec{B}$
C. $\vec{C} \perp(\vec{A}+\vec{B})$
D. $\vec{C} \perp(\vec{A} \times \vec{B})$

Answer: D

- Watch Video Solution

56. The magnitude of the vectors product of two vectors $|\vec{A}|$ and $|\vec{B}|$ may be
A. greater than $A B$
B. equal to $A B$
C. less than $A B$
D. equal to zero

Answer: A

- Watch Video Solution

57. Three vector $\vec{A}, \vec{B}, \vec{C}$ satisfy the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$. The vector \vec{A} is parallel to
A. \vec{B}
B. \vec{C}
с. $\vec{B} \cdot \vec{C}$
D. $\vec{B} \times \vec{C}$

Answer: D

- Watch Video Solution

58. A vector \vec{A} is along the positive x - axis. If B is another vector such that $\vec{A} \times \vec{B}$ is zero, then B could be
A. $4 j$
B. $-4 i$
C. $-(i+j)$
D. $(j+k)$

Answer: B

- Watch Video Solution

59. A vector \vec{A} points verically upward and \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is
A. Zero
B. Along west
C. Along east
D. Vertically downward

Answer: B

- Watch Video Solution

60. The value of $(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$ is
A. 0
B. $A^{2}-B^{2}$
C. $\vec{B} \times \vec{A}$
D. $2(\vec{B} \times \vec{A})$

Answer: D

- Watch Video Solution

61. The scalar product of two vectors is $2 \sqrt{3}$ and the magnitude of their vector product is 2 . The angle between them is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

D Watch Video Solution

62. If $|\vec{A} \times \vec{B}|=\sqrt{3} \vec{A} \cdot \vec{B}$, then the value of $|\vec{A}+\vec{B}|$ is
A. $\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}$
B. $A+B$
C. $\left(A^{2}+B^{2}+\sqrt{3} A B\right)^{1 / 2}$
D. $\left(A^{2}+B^{2}+A B\right)^{1 / 2}$

Answer: D

- Watch Video Solution

63. The angle between the vector \vec{A} and \vec{B} is θ. Find the value of triple product $\vec{A} \cdot(\vec{B} \times \vec{A})$.
A. $A^{2} B$
B. Zero
C. $A^{2} B \sin \theta$
D. $A^{2} B \cos \theta$

- Watch Video Solution

64. What is the unit vector perpendicular to the following vectors $2 \hat{i}+2 \hat{j}-\hat{k}$ and $6 \hat{i}-3 \hat{j}+2 \hat{k}$

$$
\begin{aligned}
& \text { A. } \frac{i+10 j-18 k}{5 \sqrt{17}} \\
& \text { B. } \frac{i-10 j+18 k}{5 \sqrt{17}} \\
& \text { C. } \frac{i-10 j-18 k}{5 \sqrt{17}} \\
& \text { D. } \frac{i+10 j+18 k}{5 \sqrt{17}}
\end{aligned}
$$

Answer: C
65. Two adjacent sides of a parallelogram are respectively by the two vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$. What is the area of parallelogram?
A. 8
B. $8 \sqrt{3}$
C. $3 \sqrt{8}$
D. 192

Answer: B

- Watch Video Solution

66. The minimum number of vectors having different planes which can be added to give zero resultant is
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

