© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS

(HINGLISH)

ELECTROMAGNETIC INDUCTION

1. A long solenoid of radius 3 cm , length

100 cm carries a current of $4 A$. The total
number of truns is 300 . Assuming ideal solenoid, find the flux passing through a circular surface having centre on axis of solenoid,
(a) of radius 2 cm and is perprndicular of the axis of solenoid (i) inside and (ii) at the end of solenoid
(b) of radius 4 cm and is perprndicular of the axis of solenoid
(c) of radius greater than 3 cm and angle between normal to area and axis of solenoid is $60^{\circ} C$
2. The magnetic flux passing prependicular to the plane of the coil directed into the paper is varying according to the relation
$\phi=6 t^{2}+8 t+I 0$, where ϕ is in weber and t in second.
(a) What is the magnitude of emf induced in
the loop when $t=2 \mathrm{sec}$?
(b) What is the magnitude and direction of

- Watch Video Solution

3. A wire of length l in the from of a circular loop lies in a plane normal to a magnetic firld
B_{0}. If this wire is converted into a square loop
in time t_{0}, find the average induced emf.

- Watch Video Solution

4. A coil of area $500 \mathrm{~cm}^{2}$ and having 1000 turns is held perpendicular to a uniform field of 0.4
gauss. The coil is turned through 180° in
$1 / 10 \mathrm{sec}$. Calculate the average indued e.m.f.
5. A closed coil consists of 500 turns has area
$4 \mathrm{~cm}^{2}$ and a resistance of 50Ω. The coil is kept
with its plane perpendicular to a uniform magnetic field of $0.2 W \frac{b}{m^{2}}$. Calculate the amount charge flowing through the coil if it is rotated through 180°

D Watch Video Solution

6. A coil of area A lies in a uniform magnetic
field B with its plane perpednicular to the
field. In this position the normal to the coil makes an angle 0° with a field. The coil rotates at a uniform rate about its diameter to complete one rotation in time T. Find the average induced e.m.f. in the coil during the interval when coil rotates from:
(a) 0° to 90°
(b) 90° to $I 80^{\circ}$
(c) $I 80^{\circ}$ to 270°
(d) 270° to 360°

- Watch Video Solution

7. A conducting loop of area A is placed in a magnetic field which varies sinusoidally with time as $B=B_{0} \sin$

- Watch Video Solution

8. A square loop of edge a having N turns is rotated with a uniform angular velocity ω about one of its diagonals which is kept fixed in a horizontal position. A uniform magnetic field B exists in the vertical direction. Find
(a) the emf induced ion the coil as a function
of time t
(b) the maximum emf induced
(c) the average emf induced in the loop over a long period (d) the average of the squares of emf induced over a long period
(e) if resistance of loop is R, amount of change flow in time $t=0$ to $t=2 T$
(f) heat produced in time $t=0$ to $=4 T$

D Watch Video Solution

9. A current i_{0} is flowing in a long straigh wire situation near a rectangular loop as shown. If the current in the loop as shown. If the
current decays iniformly to zero in time t_{0} find
the emf include in the circuit and determine direction of induced current in the loop.

D Watch Video Solution
10. The magnetic flux passing through a metal ring varies with time t according to $\phi_{B}=6 t^{3}-I 8 t^{2} \quad, \quad t$ is in second. The resistance of the ring is 3Ω. Determine the maximum current induced in the ring during the interval from $t=0$ to $t=2 \mathrm{sec}$.

- Watch Video Solution

11. A magnetic flux through a stationary loop
with a resistance R varies during the time
interval τ as $\phi=a t(\tau-t)$. Find the amount of the generated in the loop during that time

D Watch Video Solution

12. Two straight conducting rails from a right angle where their end are joined. A conducting bar polaced over the rails starts at vertex at the time $t=0$ and moves with a constant velocity v to the right as shown in the figure.

Calculate
(a) the flux through the triangle (isosceles) by
the rails and bar at $t=t_{0}$
the emf around the triangle at that time
(c) in what manner does the emf around the triangle vary with time

D Watch Video Solution

13. A current $i=\alpha t$, where t is time is flowing in a long wire. A smaller circular loop of radius
a has its plane parallel to the wire and is
placed at distance d from the wire. If resistance per unit length of loop is λ, find
the magnitude and direction of the current in the loop.

D Watch Video Solution

14. A very small circular loop of area
$5 \times I 0^{-4} \mathrm{~m}^{2}$, resistance 2Ω and negligible inductance is initially coplanar and concentric with a much larger fixed circular loop of radius
15. Im . A constant current of $I A$ is passed in
the bigger loop and the smaller loop is rotated with angular velocity $\omega \mathrm{rad} / \mathrm{sec}$ about
a diameter. Calculate (a) the flux limked with the smaller loop, (b) indced emf (c) induced current in the smaller loop, as a function of time.

D Watch Video Solution

15. A very small circular loop of radius r is initially coplanar and concentric with a much larger circular loop of radius $R(\gg r)$. A constant current i is passed in the larger loop which is kept fixed in space and the small loop
is rotated with angular velocity ω about a diameter. The resistance of the small loop is
R_{0} and the inductance is negligible.
(a) Find the current in the small loop as a function of time.
(b) Calculate how much troque must be exerted on the small loop to rotate it.

D Watch Video Solution

16. The magnetic field in the cylindrical region
shown in figure increases at a constant rate of
$20.0 \mathrm{mT} / \mathrm{sec}$. Each side of the square loop
abcd and defa has a length of 1.00 cm and a
resistance of 4.00Ω. Find the cuurent (magnitude and sense) in the wire ad if:
(a) the switch S_{I} is closed but S_{2} is open
(b) S_{I} is but S_{2} is closed
(c) both S_{I} and S_{2} are open and
(d) both S_{I} and S_{2} are closed

- Watch Video Solution

17. A uniform magnetic field B exists in a direction perpendicular to the palne of a square frame made of copper wire. The wire has a total length of 40 cm . The magnetic field changes with time at a steady rate $(d B / d t)=0.02 T / \mathrm{sec}$. Find the current induced in the frame. Resistance of wire $=I 0 \Omega$

D Watch Video Solution

18. A coil formed by wrapping 50 truns of wire in the shape of square is positioned in a magnetic field so that the normal to plane of the coil makes an angle of 60°, with the direction of the field. When the magnetic field is increased uniformly from $200 \mu T$ to $600 \mu T$ in 0.4 sec , an emf of magnitude 100 mV is induced in the coil. What is the total length of the wire?

- Watch Video Solution

19. A magnetic field induction is changing in magnitude at a constant rate $d B / d t$. A given mass m of copper is drawn into a wire into a wire of radius α and formed into a loop of radius r is placed perpendicular to the field.

Show that induced current in the loop is given
by $i \frac{m}{4 \pi p \delta} \frac{d B}{d t}$
$p:$ resistivity, $\delta:$ density of copper.

D
 Watch Video Solution

20. A circular coil of radius 2.00 cm has 50
turns. A uniform magnetic field $B=0.200 \mathrm{~T}$
exists in the space is a direction parallel to the axis of the loop. The coil is now rotated about
a diameter through an angle of 60.0°. The operation takes 0.100 s . (a) find the average emf induced in the coil. (b) if the coil is a closed one(with the two ends joined together) and has a resistance of 4.00Ω. calculate the net charge crossing a cross- section of the wire of the coil.
21. A closed coil having 100 turns is rotated in
a uniform magnetic field $B=4.0 \times 10^{-4} \mathrm{~T}$
about a diameter which is perpendicular to
the field. The angular velocity of rotation is

300 revolutions per minute. The area of the coil is $25 \mathrm{~cm}^{2}$ and its resistance is 4.0Ω. Find
(a) the average emf developed in the half a turn form a position where the coil is perpendicular to the magnetic field, (b) the average emf in a full turn and (c) the net charge displaced in part (a).

- Watch Video Solution

22. A long solenoid having 200 turns per centimeter carries a current of $1.5 A$. At the center of the solenoid a coil is placed of 100 turns of cross-sectional area $3.14 \times 10^{-4} \mathrm{~m}^{2}$ having its axis parallel to the field produced by the solenoid. When the direction of current in the solenoid is reversed within $0.05 s$, the induced emf in the coil is
23. The magnetic field B shown in is directed
into the plane of the paper. ACDA is a
semicircular conducting loop of radius r with
the centre at O . The loop is now made ot rotate clockwise with a constant angular velocity ω about on axis passing through O and perpendicular to the plane of the paper.

The resistance of the loop is R. Obtain an expression for the magnitude of the induced current in the loop. Plot a graph between the induced current i and ωt, for two periods of
rotation.

- Watch Video Solution

24. The figure shows a square loop wire with
sides of length $l=2 \mathrm{~cm}$. A magnetic field position points into the page and its magnitude is given by $B=4 t^{2} y T, t$ is in second and y is in metre. Determine the emf induced around the square at $t=2.5 \mathrm{sec}$.

- Watch Video Solution

25. A Square frame with side a and a straigh
conductor carrying a constant current I and
located in the same plane. The inductance and
the resistance of the frame are equal to L and
R respectivaly. The frame was truned through
$I 80^{\circ}$ about the axis $O O^{\prime}$ separated from the current carrying conductor by a distance b.

Find the electric charge having flown through the frame.
26. A square loop of edge a has N turns and a total resistance R. The loop moves with constant velocity v through a region of constant magnetic field B. The loop enters in magnetic field at $t=0$. Discuss the vartion of
(a) Flux passing through the loop (b) the induced emf and (c) the external force acting on the loop a function of position of the loop in the field.
27. A short bar magnet is pulled rapidly through a conductind cooil along its axis with uniform velocity, with its north pole entering the coil first. Sketch vartition of (a) flux, (b) induced current and (c) power dissipated in coil with time.

D Watch Video Solution

28. Two concentric coplanar circular loops made of wire, with resistance per unit length λ
, have radii r_{I} and $r_{2}\left(r_{2} \gg r_{I}\right)$. A potential difference $(\alpha+\beta t)$ is applied to the larger loop, where t is time. Calculate current in the smaller loop.

D Watch Video Solution

29. Two infinitely long solenoids (shown in
cross-section) pass through a circuit as shown in the figure. The magnitude of \vec{B} inside each
is the same and is increasesing at the rate of
$I 00 T / \mathrm{sec}$. What is the current in each

resistor?

D Watch Video Solution

30. A plane loop is shaped ion the from as shown in the figure with radii a and b and is
placed in a uniform time varying magnetic field $B=B_{0} \sin \omega t$. Find the amplitude of the current induced in the loop if its resistance per unit length is equal to λ. The inductance of the loop negligible.
31. A π shaped metal frame is located in a uniform magnetic field perpendicular to the plane of the conductor and varying with time at the rate $(d B / d t)=0 . I 0 T / \mathrm{sec}$. A conducting connector starts moving with an acceleration $a=I 0 \mathrm{~cm} / \mathrm{sec}^{2}$ along the parallel bars of the frame. The lenght oof the connector is equal to $l=20 \mathrm{~cm}$. Find the emf induced in the loop $t=2 \mathrm{sec}$ after the beginnig of the motion, if at the moment
$t=0$ the loop area and the magnetic induction are equal to zero. The inductance of the loop is to be neglected.

D Watch Video Solution

32. A metallic meter stick moves with a velocity
of $2 \mathrm{~m} / \mathrm{sec}$ in a diretion perpendicular to its
length and perpendicular to a uniform magnetic firld of magnitude $0.2 T$. The emf induced between the ends of the stick
33. The two rails of a railway track, insulataed
form each other and from the ground, are connected to a millivoltmeter. What will be the reading of the millivoltmeter when a train travels on the track at a speed of $180 \mathrm{kmh}^{-1}$?

The vertical component of earth's magnetic field is 0.2×10^{-4} and the rails are separted by 1 m .

- Watch Video Solution

34. The horizontal component of the earth's magnetic field at a place is $3.0 \times 10^{-4} T$ and the dip is 53°. A metal rod of length 25 cm is placed in the north - south direction and is moved at a constant speed of $10 \mathrm{~cm} \mathrm{~s}^{\wedge}(-1)$ towards east. Calculate the emf induced in the rod.
35. A right angled triangle abc, made from a metallic wire, moves at a uniform speed v in its plane as shown in . A uniform magnetic field B exists in the perpendicular direction. Find the emf induced (a) in the loop abc, (b) in the segment bc, (c) in the segment ac and (d) in the segment ab.

- Watch Video Solution

36. A copper wire bent in the shape of a semicircle of radius r translates in its plane with a constant velocity v. A uniform magnetic field B exists in the direction perpendicular to the plane of the wire. Find the emf induced between the ends of the wire if (a) the velocity is perpendicular ot the diameter joining free ends, (b) the velocity is parallel to this diameter.
37. A circular copper ring of raidus r translates in its plane with a constant velocity v. A uniform magnetic field b exists in the speace in a direction perpendicular ot the plane o fhte ring. Consider different pairs of diametrically opposite points on the ring. (a) Between which pair of points is the emf? (b) Between which pair of points is the emf minimum? What is the value of this minimum emf?
38. Two conducting rings of radii r and $2 r$ move in apposite directions with velocities $2 v$ and v respectively on a conducting surface S.

There is a uniform magnetic field of magnitude B perpendicular to the plane of the rings. The potential difference between the highest points of the two rings is

D Watch Video Solution

39. A wire bent as a parabola $y=a x^{2}$ is
located in a uniformed magnetic field of induaction B, the vector B being perpendicular to the plane $x-y$. At moment $t=0 \quad$ a connector \quad starts \quad sliding
translationwise from the parabola apex with a constant acceleration ω. Find the emf of electromagnetic induction in the loop thus formed as a function of y
40. A uniform rod of mas m is moving with constant velocity v_{0} in a perpendicular uniform magnetic field B as shown. The resistance of rod is r. The current flowing through rod, R_{I} and R_{2} will be

41. A vertical ring of radius r and resistance on
R falls vertically. It is in contact with two
vertical rails which are joined at the top. The rails are without friction and resistance. There
is a horizontal uniform, magnetic field of magnitude B perpendicular to the plane of the ring and the rails. When the speed of the ring is v, the current in the section $P Q$ is $P Q$

X
$\%$

- Watch Video Solution

42. A square metal wire loop of side 10 cm and
resistance 1 ohm is moved with a constant
velocity $\left(v_{0}\right)$ in a uniform magnetic field of induction $B=2$ weber $/ m^{2}$ as shown in the
figure. The magnetic field lines are perpendicular to the plane to the loop (directed into the paper). The loop is connected to a network of resistors each of
value 3 ohms. The resistances of hte lead wire
$O S$ and $P Q$ are negligible. What should be the speed of the loop so as to have a steady current of 1 milliampere in the loop? Given the
direction of current in the loop.

- Watch Video Solution

43. an electric circuit is component of the three conducting rods $M O, O N$ and $P Q$, as shown in the figure. The resistence of the rods per unit length is λ. The $\operatorname{rod} P Q$ slide, as
shown in the figure, at a constant velocity v,
keeping its tilt angle relative to $O N$ and $M O$
fixed at 45°. At each instance the circuit is
closed. The whole system is embedded in a uniform magnetic field B, which is directe dperpendicularly into th epage. Compute the time-dependent induced electric current

D Watch Video Solution

44. Figure shown a square loop of side l being moved towards right at a constant speed v.

The front edge enters th emagnetic field B at
$t=0$. The width of field is $3 l$. Sketch induced emf versus time graph.

D Watch Video Solution

45. In the previous problem, fin dthe total heat produced in the loop.
46. Show a rectangular loop MNOP being pullled out of a magnetic field with a uniform velocity v by applying an external force F . The length $M N$ is equal to I and the total resistance of the loop is R. Find(a) the current in the loop,(b) the magnetic force on the loop,
(c) the external force F needed to magnetic the velocity, (d) the power delivered by the external force and (e) the thermal power
developed in the loop.

D Watch Video Solution

47. A rectanguar frame of wire abcd has dimensions $32 \mathrm{~cm} \times 8.0 \mathrm{~cm}$ and a total resistance of 2.0Ω. It is pulled out of a magentic field $B=0.020 T$ by applying a force of $3.2 \times 10^{-5} \mathrm{~N}$. It is found that the frame moves with constant speed. Find (a) this constant speed, (b) the emf induced in the
loop, (c) the potential difference between the points c and d.

- Watch Video Solution

48. In the figure shown the four rods have λ resistance per unit length. The arrangement is kept in a magnetic filed of constant magnitude
B and directed perpendicular to the plane of the figure and direction inwards. Intially the
sides as shown from a square. Now each wire starts moving with constant velocity v towards opposite wire. Find as a function of time:
(a) induced emf in the circuit
(b) induced current in the circuit with direction

D Watch Video Solution
49. Figure shows a wire $a b$ of length L and resistance R which can slide on a smooth pair
of rails. I_{g} is current generator which supplies
a constant current i in the circuit. If the wire $a b$ slide at a speed v towards right, find the potential difference below a and b
(b) The current generator I_{g} show in the figure sends a constant current i through the circiut.

The wire $a b$ has a length L and mass m and
can slide on the smooth horizontal rails connect to I_{g}. The entire system lies in a vertical magnetic field B. Find the velocity of the wire as a function of time.
(c) The system containing the rails and the wire of the previous part is kept vertically in a uniform horizontal magnetic field B that is perpendicular to the plane of the rails (figure).

If is found that the wire stays in equilibrium. If
th ewire $a b$ is replaced by another wire of double its mass, how long will lit take in falling
through a distance equal to its length?
The current generator I_{g} shown in figure sends a constant current i through the circuit.

The wire $c d$ is fixed and wire $a b$ is made to
slide on the smooth, thick rails with a constant velocity v toward right. Each of these wires has
resistance r. Find the current through the wire $c d$.

D Watch Video Solution

50. A pair of parallel horizontal conducting rails of negligible resistance shorted at one end is fixed on a table. The distance between
the rails is L. A conducting massless rod of resistance R can slide on the rails frictionlessly.

The rod is tied to a massless string which
passes over a pulley fixed to the edge of the table, A mass m, tied to the other end of the string hanges vertically. A constant magnetic field B exists perpendicular to the table. If the system is released from rest, calculate.
(i) the terminal velocity achieved by the rod, and
the acceleration of the mass at the instant when the velocity of the rod is half the
terminal
velocity.

- Watch Video Solution

51. A conducting wire ab of length I, resistance r and mass m starts sliding at $t=0$ down a smooth, vertical, thick pair of connected rails as shown in. A uniform magnetic field B exists
in the space in a diraction perpendicular to the plane of the rails. (a) Write the induced emf in the loop at an instant t when the speed of the wire is v. (b) what would be the magnitude and direction of the induced current in the wire? (c) Find the downward acceleration of the wire at this instant. (d)

After sufficient time, the wire starts moving with a constant velocity. Find this velocity ${ }^{\mathrm{v}} \mathrm{m} \mathrm{m}$.
(e) Find the velocity of the wire as a function of time. (f) Find the displacement of the wire as a functong of time. (g) Show that the rate of heat developed inte wire is equal to the
rate at which the gravitational potential energy is decreased after steady state is reached.

- Watch Video Solution

52. A metal bar with length L, mass m and resistance R is polaced on frictionless metal rails that are inclined at an angle ϕ above the
horizontal. The rails have negiligible resistance. There is a uniform magnetic field of nagnitude B direction download in the figure.

The bar is released from rest and slide down the rails.
(a) Is the direction of the current induced in
the bar from a and b or b to a ?
(b) What is the terminal speed of the bar ?

What is the induced current in the bar when
the terminal speed has been reached?
(d) After the terminal speed has been reached,
at what rate is electrical energy being converted to thermal energy in the resistance
of the bar?
(e) After the terminal speed has been reached, at what rate is work being done on the bar by gravity? Compare your answer to that in part (d).

D Watch Video Solution

53. Two metal bars are fixed vertically and are connected on the top by a capacitor C. A sliding conductor of length land mass m slides with its ends in contact with the bars. The arrangement is placed in a uniform horizontal magnetic field directed normal to the plane of the figure. The conductor is released from rest.

Find the displacement $x(t)$ of the conductor
as a function of time t.

D Watch Video Solution

54. Two parallel vertical metallic rails $A B$ and
$C D$ are separated by $1 m$. They are connected at the two ends by resistances R_{1} and R_{2} as
shown in the figure. A horizontal metallic bar l
of mass 0.2 kg slides without friction, vertically
down the rails under the action of gravity.
There is a uniform horizontal magnetic field of
$0.6 T$ perpendicular to the plane of the rails. It
is observed that when the terminal velocity is attained, the powers dissipated in R_{1} and R_{2}
are 0.76 W and 1.2 W respectively
$\left(g=9.8 m / s^{2}\right)$

The terminal velocity fo the bar L will be
(D) Watch Video Solution
55. shows a straight, long wire carrying a current I and a rod of length I coplanar with
the wire and perpendicular to it. The rod moves with a constant velocity v in a direction parallel to the wire. The distance of the wire
from the centre of the rod is x. Find the motional emf induced in the rod.

- Watch Video Solution

56. The magnetic field inn a region is given by $\vec{B}=\vec{k} \frac{B_{0}}{L} y$ where L is a fixed length. A conducting rod of length L lies along the Y axis between the origin and the point ($0, L, 0$).

If the rod moves with a velocity $v=v_{0}$, find the emf induced between the ends of the rod.

- Watch Video Solution

57. (a) A metal rod of length L rotates about an end with a uniform angular velocity ω. A uniform magnetic field B exists in the
direction of the axis of rotation. Calculate the emf induced between the ends of the rod.

Neglect the centripetal force acting on the free electrons as they move in circular paths.
(b) A rod of length L rotates with a small but uniform angular velocity ω about its perpendicular bisector. A uniform magnetic field B exists parallel to the axis of rotation.

Find the potential difference (i) between the centre of rod and one end and (ii) between the two ends of the rod.
58. Figure shows a conducting circular loop of radius a placed in a uniform, perpendicular magnetic field B. A thick metal $\operatorname{rod} O A$ is pivoted at the centre O. The other end of the rod toucher the loop are connected by a wire
$O C$ of resistance R. A force is applied at the middle point of the rod $O A$ perpendicularly, so that the rod rotates clockwise at a uniform angular velocity ω. Find the force.
(b) Consider the situation shown in the figure of the previous problem. Suppose the wire connecting O and C has zero resistance but
the circular loop has a resistance R uniformly distributed along its lenght. The rod $O A$ is made to rotate with a uniform angular speed ω as shown in the figure. Find the current in the rod when $\angle A O C=90^{\circ}$ $x \quad x \quad x \quad x$

X X

X
X
59. A vertical copper disc of diameter 20 cm makes 10 revolution per second about a horizontal axis passing through its centre. A uniforjm magnetic field $10^{-2} T$ acts perpendicular to the plane of the disc.

Calculate the potential defference between its centre and rim in volts.

- Watch Video Solution

60. The magnetic field at all points within the cyllindrical region whose cross section is indicated in the accompanying Figure starts increasing at a constant rate $\alpha . T / s$. find the magnitud of electric field as a function of r, the distance from the geometric centre of the
region.

- Watch Video Solution

61. The current in an ideal, long solenoid is
varies at a uniform rate of $0.01 \mathrm{As}^{-1}$. The
solenoid has 2000 turns/m and its radius 6.0
cm . (a) Consider a circle of radius 1.0 cm inside
the solenoid with its axis coinciding with the axis of the solenoid. write the change in the magnetic flux through this circle in 2.0 seconds. (b) find the electric field induced at a point on the circumference of hte circle. (c) find the electric field induced at a piont outside the solenoid at a distance 8.0 cm from its axis.
62. For the situation described in figure, the magnetic field changes with time according to

$$
\begin{aligned}
& B=\left(2.00 t^{3}-4.00\right. \\
& r_{2}=2 R=5.0 \mathrm{~cm}
\end{aligned}
$$

(a) Calculate the force on an electron located at P_{2} at $t=2.00 \mathrm{~s}$
(b) What are the magnitude and direction of
the electric field at P_{1} when $t=3.00 s$ and $r_{1}=0.02 m$.

D Watch Video Solution

63. A thin non conducting ring of mass m, radius a carrying a charge q can rotate freely about its own axis which is vertical. At the initial moment, the ring was at rest in horizontal position and no magnetic field was present. At instant $t=0$, a uniform magnetic field is switched on which is vertically
downward and increases with time according
to the law $B=B_{0} t$. Neglecting magnetism induced due to rotational motion of ring.

Angular acceleration of ring is

D Watch Video Solution

64. (a) When the current in a coil changes
from $8 A$ to $2 A$ in $3 \times 10^{-2} s$, the emf induced in the coil is $2 V$. The self-induced of coil in $m H$
(b) A 12 V battery conneted to a $6 \Omega .10 H$ coil
through a switch drives a constant current in
the circuit. The switch is suddenly opened.

Assuming that it took 1 msec to open the switch, calculate the average emf induced across the coil.
(c) The equivalent inductance of two inductored in series. What is the value of inductance of the individual inductors?
(d) If $i=5 A$ and decreasing at a rate of 10^{3}
(A/sec), find $V_{B}-B_{A}$.

65. Calculate the self-inductance of a coil of

100 turns, if a current of $2 A$ gives rise to magnetic flux of $50 \mu W b$ through the coil. Also calculate the magentic energy stored in the medium surrounding the coil for the above value of current.
66. A 50 cm long solenoid having 500 turns and
radius 2 cm is wound on an iron core of relative permeability 800 . What will be the average emf induced in the solenoid if the current in it changes from 0 to $2 A$ in 0.05 sec ?

- Watch Video Solution

67. Calculate the time constant τ of a straight solenoid of length l having a single layer winding of copper wire whose total mass is
equal to m. The cross-sectional dimater of the solenoid is assumed to be considerably less than its length. Given desity of copper p_{0} and resistivility p.

D Watch Video Solution

68. A supereconducting round ring of radius a and inductance L was located in a uniform in a uniform magnetic field of induction B. The ring plane was parallel to the vector B and the current in the ring was equal to zero, then the
ring was turned through 90° so that its plane became perpendicular to the field. Find
(a) the current induced in the ring after the turn
(b) the work performed during the turn.

D Watch Video Solution

69. An inductor coil stores 32 J of magnetic
field energy and dissiopates energy as heat at
the rate of 320 W when a current of 4 A is
passed through it. Find the time constant of
the circuit when this coil is joined across on ideal battery.

D Watch Video Solution

70. Two different coils have self-inductances
$L_{1}=8 m H$ and $L_{2}=2 m H$ At a certain
instance the current in thw two coils is increasing at the same constant rate and the power supplied to the coils is the same. Find the ratio of (a) induced voltage (b) current (c) energy stored i the two coils at that instant.

Watch Video Solution

71. A uniformly wound solenoid coil of self inductance $1.8 \times 10^{-4} H$ and resistance 6Ω is broken up into two identical coils. These identical coils are then connected in parallel across a 12 V battery of negligible resistance.

The time constant and steady state current will be
72. The current in a coil of self-inductance $4 H$ is given by $i=4 \sin t^{2}$. Find the amount of energy spent during the period when the current changes from 0 to $4 A$.

- Watch Video Solution

73. The current in an inductor is given by
$i=\alpha+\beta t$, where t is time. The self-induced emf in it is V. Find
(a) the self-inductance
(b) the energy stored in the inductor and the power supplied to it at time $t=t_{0}$

- Watch Video Solution

74. A long wire carrying current i_{0} is planced near a small cube of edge a at distance
$d(d \gg a)$. Find the magnetic energy
stored in the loop.

- Watch Video Solution

75. Consider a small cube of volume $1 \mathrm{~mm}^{3}$ at
the centre of a circular loop of radius 10 cm carrying a current of 4 A . Find the magnetic energy stored inside the cube.

- Watch Video Solution

76. A long wire carries a current of uniform density. Let i be the total current carried by
the wire. Show that the magnetic energy per unit length stored within the wire equals
wire diameter.

D Watch Video Solution

77. A small circular loop of radius a is placed inside a large square loop of edge $L(\gg a)$
. The loops are coplanar and concentric. Find mutual inductance.

78. The coefficient of mutual inductance

D Watch Video Solution

79. As shown in the figure, a long wire is placed near a triangular coil. Calculate the mutual
induectance of the combination.

$\stackrel{\leftarrow}{\leftarrow} a \rightarrow h \rightarrow 1$

- Watch Video Solution

80. Calculate the mutual inductance between two coils when a current of $4 A$ changes to $12 A$ in $0.5 s$ in primary and induces an emf of 50 mV in the secondary. Also, calculate the induced emf in the secondary if current in the primary changes from $3 A$ to $9 A$ is 0.02 s .

- Watch Video Solution

81. A coil has 600 turns which produces
$5 \times 10^{-3} \mathrm{~Wb} /$ turn of flux when 3 A current
flows in the wire. This produced 6×10^{-3}

Wb/turn in 1000 turns secondary coil. When
the opened, the current drops to zero in $0.2 s$ in primary. Find
(a) mutual inductance,
(b) the induced emf in the secondary,
(c) the self-inductance of the primary coil.

D Watch Video Solution

82. A circular coil P of 100 turns and radius
$2 c m$ is placed coaxially at the centre of
another circular coil Q of 100 turns and radius

20 cm . Calculate (a) the mutual inductance of the coils
(b) the induced emf in coil P when the current in the coil Q decreases from $5 A$ to $3 A$ in 0.04 $\sec \left(\right.$ Take $\left.\pi^{2}=10\right)$

D Watch Video Solution

83. Find the steady-state value of current in
the circuits.

- Watch Video Solution

84. Find current in R, L and $2 L$ in steady
state.

- Watch Video Solution

85. Consider the circuit shown in the figure. If

$$
E=20 \mathrm{~V}, R_{1}=4 \Omega, R_{2}=12 \Omega \text { and } L=5 H
$$

. Find current i, i_{1}, i_{2}, P.d. across R_{2} and L
(a) just after closing the switch $(t=0)$
(b) after a long time $(t=\infty)$

- Watch Video Solution

86. Find current through the battery
(a) just after the switch is closed
(b) long after the switch has been closed

- Watch Video Solution

87. A solenoid of resistance 50Ω and inductance 80 H is connected to a 200 V battery. How long will it take for the current to reach 50% of its final equilibrium value?

Calculate the maximum energy stored.

- Watch Video Solution

88. A coil of resistance 20Ω and inductance
0.5 H is switched to $D C 200 \mathrm{~V}$ supply. Calculate
the rate of increase of current
a. at the instant of closing the switch and
b. after one time constant.
c. Find the steady state current in the circuit.

- Watch Video Solution

89. A solenoid having inductance 4.0 H and resistance 10Ω is connected to a 4.0 V battery at $t=0$. Find (a) the time constant, (b) the time elapsed before the current reached 0.63 of its steady state value, (c) the power delivered by the battery at this instant and (d) the power dissipated in Joule heating at this instant.

- Watch Video Solution

90. At $t=0$, switch S is closed, calculate
(a) initial rate of increase of current i.e. $\frac{d i}{d t}$ at
$t=0$
(b) $\frac{d i}{d t}$ at time when current in the circiut is
$1 A$
(c) current at $t=0.5 \mathrm{sec}$
(d) rate at which energy of magnetic field is incresing, rate of heat produced in resistance and rate at which energy is supplied by battery when $i=1 A$
(e) energy stored in inductor in steady state

- Watch Video Solution

91. A coil having an inductance L and a resistance R is connected to a battery of emf
E. Find the time taken for the magnetic energy stored in the circuit to change from one fourth of the steady-state value.

- Watch Video Solution

92. At $t=0$, switch S closed. Find the ratio of
the rate at which magnetic energy stored in
the coil to the rate at which energy is supplied
by the battery at time $t=\tau=L / R$.

D Watch Video Solution

93. The switch is closed for a long time and
then opned at time $t=0$. Find the initial voltage across L after $t=o$, which end is at
higher potential a or b ?

- Watch Video Solution

94. The switch S is closed at time $t=0$. Find
the current through the inductor as a function
of time t

(a)

(b) 1

- Watch Video Solution

95. An inductor of inductance $\mathrm{L}=400 \mathrm{mH}$ and
resistor
of
resistance
$R_{1}=2(\Omega)$ and $R_{2}=2(\Omega)$ are connected to
a battery of emf $\mathrm{E}=12$ Vas shown in the figure.
The internal resistance of the battery is negligible. The switch S is closed at time $\mathrm{t}=0$.

What is the potential drop across L as a
function of time? After the steady state is
reached, the switch is opened. What is the direction and the magnitude of current
through R_{1} as a function of time?

D Watch Video Solution

96. Initally switch S_{1} is closed, after a long
time, S_{1} is opened and S_{2} is closed. Find the
heat produced in coil after long time.

D Watch Video Solution

97. Consider the circuit shown in .(a) find the
current through the battery a long time after
the switch S is closed. (b) Suppose the switc is
again opened at $t=0$. What is the time cosstant of the discharging circuit? (c) Find t current through the inductor after one time constant.

- Watch Video Solution

98. In the circuit diagram shown, intially there is no energy in the inductor and the capacitor.

The switch is closed at $t=0$. Find the current I as a function of time t.

- Watch Video Solution

99. In the figure both cells A and B are of equal
emf. Find R for which potential difference
across battery A will be zero, long time after
the switch is closed. Internal resistance of batteries A and $\mathrm{B}\left(r_{1}\right)$ and $\left(r_{2}\right)$ respectively $\left(r_{1}>r_{2}\right)$.

100. A capacitor of capacity $2 \mu F$ is changed to
a potential different of 12 V . It is then connected across an inductor of inductance
0.6 mH What is the current in the circuit at a
time when the potential difference across the capacitor is 6.0 V ?

D Watch Video Solution

101. An inductor of inductance 2.0 mH is
connected across a charged capacitor of
capacitance $5.0 \mu F$ and the resulting $L-C$
circuit is set oscillating at its natural
frequency. Let Q denote the instantaneous
change on the capacitor and i the current in
the circuit. It is found that the maximum value
of Q is $200 \mu C$.
(a) When $Q=100 \mu C$, what is the value of
$|d i / d t| ?$
(b) When $Q=200 \mu C$, what is the value of i ?
(c)Find the maximum value of i
(d) When i is equal to one-half its maximum
value, what is the value of $|Q|$?
102. In the following electrical network at
$t<0$, key is placed on (1) till the capacitor got fully charged. Key is placed on (2) at $t=0$.

Time when the energy in both the capacitor and inductor will be same for the first time is

103. A circuit containing capacitors C_{1} and C_{2}
shown in the figure is in the steady state with
key K_{1} cloesed. At the instant $t=0, K_{1}$ is opened and K_{2} is closed.
(a) Find the angular frequency of oscillation of
the $L C$ circuit.
(b) Determine the first instant t, when enregy in the indctor becomes one third of that in the capacitor.
(c) Calculate the change on the plates of the
capacitor at that instant.

- Watch Video Solution

104. Shows a square frame of wire having a total resistance r placed coplanarly with a
long, straight wire. The wire carries a current I given by $i=i_{0} \sin \omega t$. Find(a) the flux of the magnetic field through the square frame, (b) the emf induced in the frame and (c) the heat developd in the frame in the time interval 0 to 20π

D Watch Video Solution
105. Two coaxial circular loops of raadii r_{1} and
r_{2} are separated by a distance x and carry
currents i_{1} and i_{2} respectively. Calculate the mutual inductance. What is the force between
the loops

- Watch Video Solution

106. An infinitesimal bar magnet of dipole moment M is pointing and moving with speed
v in the x-direction. A closed circular conducting loop of radius a ans negligible selfinductance lies in the $y-z$ plane with its centre at $x=0$ and its axis coinciding with x axis. find the force opposing the motion of the magnet, if the resistance of the loop is R.

Assume that the distance x of the magnet
from the centre of the loop is much greater than a.
107. Consider the situation shown in the
figure. The wire $P Q$ has mass m, resistance r and can slide $O n$ the smooth, horizontal parallel rails separated by a distance l. The resistance of the rais is negiligible. A uniform magnetic field B exists in the reactangular region and a resistance R connects the rail outside the field region. At $t=0$, the wire $P Q$
is pushed toward right with a speed v_{0}. Find
(a) the current in the loop at an instant when
the speed of the wire $P Q$ is v
(b) the acceleration of the wire as this instant
(c) the velocity v as a function of x
(d) the maximum distance the wire will move (e) the velocity as a function of time

108. Two long parallel wires of zero resistance are connected to each other by a battery of
1.0 V . The separation between the wires is
$0.5 m$. A metallic bar, which is perpendicular toi the wire and of resistance 10Ω moves on
these wire when a magnetic field of 0.02 tesla
is acting p endicular to the plane containing
the wire and the wires. Find the velocity of the
bar as a function of time if the mass of the bar is 0.002 kg . Find also the steady-state velocity of the bar.
109. At $t=0$, switch S is closed. Find time constant of the circuit and current through inductor as a function of time t.

- Watch Video Solution

110. In the figure shown, $i_{1}=10 e^{2 t} A$, $i_{2}=4 A$ and $V_{c}=3 e^{-2 t} V$ Determine
(a) i_{L} and V_{L}
(b) $V_{a c}, V_{a b}$ and $V_{c d}$

111. A loop is formed by two parallel conductors connected by a solenoid with inductance L and a conducting rod of mass m which can freely (without friction) slide over the conductors. The conductors are located in
a horizontal plane in a uniform vertical magnet field B. the distance between the conductors is l. At the moment $t=0$, the rod is imparted an initial velocity v_{0} directed to the right. Find the law of its motion $x(t)$ if the
electric resistance of the loop is negligible.

- Watch Video Solution

112. A coil of inductance L connects the upper ends of two vertical copper bars separated by a distance l. A horizontal conducting connector of mass m starts falling with zero
initial velocity along the bars without losing contact with them. The whole system is located in a uniform magnetic field B perpendicular to the plane of the bars. Find the law of motion $x(t)$ of the connector.

EXERCISES

1. The direction of induced current in the loop

(A)
$\odot \bigcirc \odot \bigcirc$

$\odot \bigcirc$
$\odot \quad \odot$
(B)

(C)

(D)
A. clockwise,
clockwise
clockwise,
anticlockwise
B. clockwise, clockwise, anticlockwise,
clockwise,

C. clockwise, anticlockwise, clockwise,

clockwise,

D. anticlockwise, clockwise, clockwise,

clockwise,

Answer: A

2. A current-carrying wire is placed, below a coil in its plane, with current flowing as shown.

If the current increases

A. no current will be inducd in the coil
B. an anticlockwise current will be induce inm the coil
C. a clockwise current will be induced in the coil
D. the current induced in the coil will be
first anticlockwise and the clockwise

Answer: C

- Watch Video Solution

3. A wire is bent to form the double loop shown in figure. There is a uniform magnetic field directed into the plane of the loop. If the magnitude of this field is decreasing current will flow from:

A. A to B and C to D
B. B to A and D to C
C. A to B and D to C

D. B to A and C to D

Answer: C

D Watch Video Solution

4. Two different wire loops are concentric and
lie in the same plane. The current in the outer
loop is clockwise and increasing with time. The induced current in the inner loop then is
A. clockwise
B. zero
C. counter clockwise
D. in a direction that depends on the ratio
of the, loop radii

Answer: C

D Watch Video Solution

5. A bar magnet is moved along the axis of a copper ring placed far away from the magnet.

Looking from the side of the magnet, an
anticlockwise current is found to be induced in
the ring. Which of the following may be true?
A. (i), (iii)
B. (ii), (iii)
C. (i), (ii)
D. (ii), (iv)

Answer: B
(Watch Video Solution
6. Consider the situation shown in . if the
switch is closed and after some time it is opened again, the closed loop will show

A. an anticlockwise current-pules
B. a clockwise current-pules
C. an anticlockwise current-pules and then
a clockwise current-pules

D. a clockwise current-pules and thenj an

anticlockwise current-pules

Answer: D

D Watch Video Solution

7. Solve the previous question if the closed
loop is completely enclosed in the circuit containing the switch.
A. an anticlockwise current-pules
B. a clockwise current-pules
C. an anticlockwise current-pules and then

a clockwise current-pules

D. a clockwise current-pules and thenj an
anticlockwise current-pules

Answer: C

D Watch Video Solution

8. As shown in the figure, P and Q are two coaxial conducting loops separated by some distance. When the switch S is closed, a clockwise current I_{P} (as seen by E) and an induced current $I_{Q 1}$ flows in Q . The switch remains closed for a long time. when S is opened, a current $I_{Q 2}$ flows in Q . Then the
direction $I Q_{1}$ and $I Q_{2}$ (as seen by E) are

A. respectively clockwise and anticlockwise
B. both clockwise
C. both anticlockwise
D. respectively anticlockwise and clockwise

Answer: D

- Watch Video Solution

9. shows a horizontal solenoid connected to a battery and a switch. A coper ring is placed on
a frictionless track, the axis of the ring being along the axis of the solenoid. As the switch is closed, the ring will

A. remain stationary
B. move towards the solenoid
C. move away from the solenoid

D. move towards the solenoid or away from

it depending on which terminal
$(+v e$ or $-v e)$ of the battery is
conneted to the left end of the solenoid

Answer: C

D Watch Video Solution

10. An aluminium ring B faces an electromagnet A. The current I through A
can be altered

A. whether l increases or decreases, B will
not experinence any force
B. if l decreases, A will repel B
C. if l increases, A will attract B
D. if l increases, A will repel B

Answer: D
11. A conduting ring R is placed on the axis of
a bar magnet M. The plane of R is perpendicular to this axis. M can move along this axis

A. M will repel R when moving towards R
B. M will attract R when moving towards

R

C. M will repel R when moving towards as
well as away from R
D. M will attract R when moving towards
as well as away from R

Answer: A

D Watch Video Solution
12. Two circular loops of equal radii are placed coaxially at some separation. The first is cut and a battery is inserted in between to drive a current in it. The current changes slightly because of the variation in resistance with temperature. Durig this period, the two loops
A. attract each other
B. repel each other
C. do not exert any force on each other

D. attract or repel each other depending

 on the sense of the current
Answer: A

D Watch Video Solution

13. Two identical coaxial circular loops carry a
current i each circulating int the same direction. If the loops approch each other the current in
A. each decreases
B. each increases
C. each remain the same
D. one increases whereas that in the other decreases

Answer: A

- Watch Video Solution

14. Two circular coil P and Q are arranged coaxially as shown. The sign conenntion adopted is that the currents are taken as positive when they flow in the direction of the arrows. Choose the correct statement.

A. If P carries a steady position current and it is moved towarrd Q, a positive current is induced in Q
B. If P carries a steady position current and is moved towarrd P, a negitive current is induced in Q
C. If both the coils carry positive currents,
the coil repel each other
D. If a positive current flowing in P is
switched off, a negitive current is

induced momentarily in Q

Answer: B

D Watch Video Solution

15. Two circular loops P and Q are placed with
their planes paraller to each other. A current is
flowing through P. If this current is

A. the loop will attract each other
B. the loops will repel each other
C. the loops will neither attract nor repel
each other

D. loop Q will strat rotating

- Watch Video Solution

16. A small, conducting circular loop is placed inside a long solenoid carrying a current. The plane of the loop contains the axis of the solenoid. If the current in the solenoid is varied, the current induced in the loop is
A. cliockwise
B. anticlockwise
C. zero
D. clockwise or anticlockwise depending on
whether the resistance is increased or decreased

Answer: C

D Watch Video Solution

17. A small magnet M is allowed to fall through a fixed horizontal conducting ring R.

Let g be the acceleration of M will be
(i) $<g$ when it is above R and moving
towards R
(ii) $>g$ when it is above R and moving towards R
(iii) $<g$ when it is below R and moving away from R
(iv) $>g$ when it is below R and moving away from R

A. (i), (iii)
B. (ii), (iv)
C. (i), (ii)
D. (ii), (iii)

Answer: A

D Watch Video Solution

18. In the previous question, the directions of
the current flowing in the ring, when M is above R and below R will be
A. the same in all cases
B. opposite in all cases
C. the same only if N-pole of M move
toward R when M is above R
D. the same only if S-pole of M move toward R when M is above R

Answer: B

D Watch Video Solution

19. A copper ring having a cut such as not to
from a complete loop is held horizontally and
a bar magnet is dropped through the ring with its length along the axis of the ring. The acceleration of the falling magnet is
A. g
B. $<g$
C. $>g$
D. none

Answer: A
20. Lenz's law is consequence of the law of conservation of
A. change
B. mass
C. momentum
D. energy

Answer: D
21. A coducting circular loop of area $1 \mathrm{~mm}^{2}$ is placed coplanarly with a long, straight wire at
a distance of 20 cm from if. The straight wire
carries an electric current which changes from

10A to zero is 0.1 s . Find the average emf induced in the loop in 0.1 s .
A. $10^{-10} V$
B. $10^{-11} V$
C. $10^{-12} V$

D. $10^{-13} V$

Answer: A

D Watch Video Solution

22. A rectangular coil of single trun, having area A, rotates in a uniform magnetic field B with an angular velocity ω about an axis prependicular to the field. If initially the plane of the coil is perpendicular to the field, then
the average induced emf when it has rotate
through 90° is

> A. $\frac{\omega B A}{\pi}$
> B. $\frac{\omega B A}{2 \pi}$
> C. $\frac{\omega B A}{4 \pi}$
> D. $\frac{2 \omega B A}{4 \pi}$

Answer: D

D Watch Video Solution

23. A conducting square loop having edges of length 2.0 cm is rotated through 180° about a diagonal in 0.20 s. A magnetic field B exists in the region which si perpendicular to the loop in its initial position. If the average induced emf during the rotation is 20 mV , find the magnitude of the magnetic field.
A. $2 T$
B. $3 T$
C. $5 T$

D. $6 T$

Answer: C

- Watch Video Solution

24. A conducting looop of area $5.0 \mathrm{~cm}^{2}$ is
placed in a magnetic field which varies sinusoidally with time as $B=0.2 \sin 300 t$.

The normal to the coil makes an angle of 60°
with the field. The emf induced at
$t=(\pi / 900) s$
A. $7.5 \times 10^{-3} V$
B. zero
C. $15 \times 10^{-3} V$
D. $20 \times 10^{-3} V$

Answer: A

D Watch Video Solution

25. A thin circular ring of area A is held perpendicular to a uniform magnetic field of induction B. A small cut is made in the ring
and a galvanometer is connected across the ends such that the total resistance of the circuit is R. When the ring is suddenly squeezed to zero area, the charge flowing through the galvanometer is
A. $\frac{B R}{A}$
B. $\frac{B A}{R}$
C. $A B R$
D. $\frac{B^{2} A}{R^{2}}$

Answer: B
26. A rectangular coil is placed in a region
having a uniform magnetic field B perpendicular to the plane of the coil. An emf will not be induced ion the coil if the

A. magnetic field is increased uniformly
B. magnetic field is switched off
C. coil is rotated about the axis $X X^{\prime}$

> D. coil is rotated about an axis perpendicular to the plane of the coil and passing through its centre)

Answer: D

D Watch Video Solution

27. A cylindrical bar amgnet is kept along the axis of a circular coil. If the magnet is rotated about its axis, then
A. a current will be induced in the coil
B. no current will be induced in the coil
C. only an emf will be induced in the coil
D. both a current and an emf will be induced in the coil

Answer: B

D Watch Video Solution
28. A long slenoid of radius 2 cm has 100 turns $/ \mathrm{cm}$ and carries a current of 5 A . A coil of
radius 1 cm having 100 turns and a total resistance of 20Ω is placed inside the solenoid coaxially. The coil is connected to a galvanometer. If the current in the solenoid is reversed in direction, find the charge flown through the galvanometer.

$$
\begin{aligned}
& \text { A. } 2 \times 10^{-4} C \\
& \text { B. } 3 \times 10^{-4} C \\
& \text { C. } 2 \times 10^{-5} C
\end{aligned}
$$

D. $4 \times 10^{-4} C$

Answer: A

D Watch Video Solution

29. A conducting loop of cross-area A and resistance R is placed perpendicular to a magnetic field B. The loop is withdrawn completely from the field. The change, which
flows through any cross-section of the wire in
the process
A. $\frac{B}{R}$
B. $\frac{B A}{R}$
C. $\frac{B}{2 R}$
D. $\frac{2 B}{R}$

Answer: B

D Watch Video Solution

30. A square- shaped copper coil has edges of length 50 cm and contains 50 turns. It is placed perpendicular to 1.0 T magnetic field. It is
removed form the magnetic field in 0.25 s and
restored in its joriginal place in the next 0.25 s .

Find the magnitude of the average emf induced in the loop during (a) its removal, (b)
its restoration and (c) its motion.
A. 50 V
B. 55 V
C. 60 V
D. 45 V

Answer: B
31. Suppose the resistance of the coil in the previous problem is 25Ω. Assume that the coil moves with uniform velocity during its removal and restoration. Find the thermal energy developed in the coil during (a) its removal, (b) its restoration and (c) its motion.
A. 45 J
B. 50 J
C. 55 J

D. 60 J

Answer: B

D Watch Video Solution

32. A conducting circular loop is placed in a uniform magnetic field $0.04 T$ with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at $2 \mathrm{~mm} / \mathrm{sec}$. The induced emf in the loop when the radius is 2 cm is
A. $3.2 \pi \mu V$
B. $4.8 \pi \mu V$
C. $0.8 \pi \mu V$
D. $1.6 \pi \mu V$

Answer: A

D Watch Video Solution

33. A wire loop is rotated in a uniform magnetic field about an an axis perpendicular
to the field. The direction of the current induced in the loop reverses once each
A. quarter revolution
B. half revolution
C. full revolution
D. two revolutions

Answer: B

- Watch Video Solution

34. A short-circuited coil is placed in a time-
varying magnetic field. Electrical power is dissipated due to the current induced in the coil. If the number of turns were to be quadrupled and the wire radius halved, the electrical power dissipated would be
A. halved
B. the same
C. doubled
D. quadrupled

Answer: D

D Watch Video Solution

35. A uniform magnetic field B exists in a
cylindrical region of radius $I 0 \mathrm{~cm}$ as shown in
figure. A uniform wire or length 80 cm and resistance 44.0Ω is bent into a square frame and is placed with one side along a diameter of the cylindrical region. if the magnetic field increases at a constant rate of $0.0 I 0 T / \mathrm{sec}$,
the current induced in the frame

A. $3.9 \times 10^{-5} A$
B. $4.0 \times 10^{-5} \mathrm{~A}$
C. $4.1 \times 10^{-5} A$
D. $3.9 \times 10^{-4} \mathrm{~A}$

Answer: A

D Watch Video Solution

36. A circular coil of radius 2.00 cm has 50
turns. A uniform magnetic field $B=0.2 T$ exists in the space in a direction parallel to the axis of rthe loop. The coil is now rotated about
a diameter through an angle of 60°. The operation takes $0 . I s$. The average emf induced in the coil is
A. $6.28 \times 10^{-2} V$
B. $6.28 \times 10^{-3} V$
C. $62.8 \times 10^{-2} V$
D. $628 \times 10^{-2} V$

Answer: A

D Watch Video Solution

37. A circular coil of one turn of radius 5.0 cm is rotated about a diameter with a constant angular speed of 80 revolutions per minute. A
uniform magnetic field $B=0.0 I T$ exists in a
direction perpendicular to the axis of rotation,
the maximum emf induced, the average emf induced in the coil over a long period and the average of the squares of emf induced over a long period is

$$
\begin{aligned}
& \text { A. } 6.4 \times 10^{-4} V \text {, zero, } 2.2 \times 10^{-7} V^{2} \\
& \text { B. } 6.6 \times 10^{-4} V \text {, zero, } 2.0 \times 10^{-7} V^{2} \\
& \text { C. } 6.8 \times 10^{-4} V \text {, zero, } 2.5 \times 10^{-7} V^{2} \\
& \text { D. } 6.4 \times 10^{-4} V \text {, zero, } 2.0 \times 10^{-6} V^{2}
\end{aligned}
$$

- Watch Video Solution

38. A magnet is brought towards a coil (i)
speedily (ii) slowly then the induced
e.m.f.//induced charge will be respectively
A. more in first case/More in first case
B. more in first case/More in first case
C. less in first case/More in second case
D. less in equal case/More in both case

- Watch Video Solution

39. The flux linked with a circuit is given by
$\phi=t^{3}+3 t-7$. The graph between time ($x-$ axis) and induced emf (y-axis) will be
A. straight line through origin
B. straight line with positive intercept
C. stairght line with negative intercept
D. parabola not through the origin

- Watch Video Solution

40. The magnetic flux (ϕ) linked with a coil depends on time t as $\phi=a t^{n}$, where a and n are constants. The emf induced in coil is e.
(i) If $0<n<I, e=0$
(ii) If $0<n<I$, een 0 and $|e|$ decreases with time
(iii) If $n>I, e$ is constant
(iv) If $n<I,|e|$ increases with time
A. $(i),(i i i)$
B. $(i i),(i i i),(i v)$
C. $(i),(i i)$
D. $(i i),(i v)$

Answer: D

D Watch Video Solution

41. A rectangular, a square, a circular and an elliptical loop, all in the $(x-y)$ plane, are moving out of a uniform magnetic field with a contant velocity $\vec{v}=v \hat{i}$. The magnetic field
is directed along the negative z-axis direction.
The induced emf, during the passege of these loops, out of the field region, will not remain constant for
A. the rectangular, circular and elliptical
loops
B. the circular and the elliptical loops
C. only the elliptical loop
D. any of the four loops
42. A magnetic field of $2 \times 10^{-2} T$ acts at right angles to a coil of area $100 \mathrm{~cm}^{2}$ with 50 turns.

The average emf induced in the coil is $0.1 V$, when it is removed from the field in time t. The value of t is
A. 0.1 sec
B. 0.01 sec
C. 1 sec
D. 20 sec

D Watch Video Solution

43. Faraday's law are consequence of conservation
A. energy
B. energy and magnetic field
C. charge
D. magnetic field

Answer: A

- Watch Video Solution

44. A coil having n turns and resistance $R \Omega$ is connected with a galvanometer of resistance
$4 R \Omega$. This combination is moved in time t seconds from a magnetic field W_{1} weber to
W_{2} weber. The induced current in the circuit is

$$
\begin{aligned}
& \text { A. }-\frac{W_{2} W_{1}}{5 R n t} \\
& \text { B. }-\frac{n\left(W_{2} W_{1}\right)}{5 R t}
\end{aligned}
$$

> C. $-\frac{W_{2} W_{1}}{R n t}$
> D. $-\frac{n\left(W_{2} W_{1}\right)}{R t}$

Answer: B

D Watch Video Solution

45. There is a uniform magnetic field directed perpendicular and into the plane of the paper.

An irregular shaped conducting loop is slowly
changing into a circular loop in the plane of the paper. Then
A. current is induced in the loop in the anticlockwise direction
B. current is induced in the loop in the
clockwise direction
C. Altrenating current is induced in the loop
D. no current is induced in the loop

Answer: A

- Watch Video Solution

46. A rectangular coil $A B C D$ is rotated anticlockwise with a uniform angular velocity about the axis shown In the fig. the axis of rotation of the coil as well as the magnetic field B are horizontally.the induced emf in the coilwould be minimum when the plane of the coil

A. the plane of the coil is horizontal
B. the plane of the coil makes an angular of
45° with the magnetic field
C. the plane of the coil is at right angles to
the magnetic field
D. the plane of the coil makes an angle of
30° with the magnetic field

Answer: A

47. shows a circular wheel of radius 10.0 cm
whose upper half, shown dark in the figure, is
made of iron and the lower half of wood. The
two junctions are joined by an iron rod. A uniform magnetic field B of magnitude $2.00 \times 10^{-4} T$ exists in the space above the central line as suggested by the figure. The wheel is set into pure rolling on the horizontal
surface. The wheel is set into pure rolling on
the horizontal surface. If it takes 2.00 seconds
for the iron part to come down and the wooden part to go up, find the average emf
induced during this period.

A. $1.57 \times 10^{-6} V$
B. $1.5 \times 10^{-5} V$
C. $15.7 \times 10^{-6} V$
D. $1.55 \times 10^{-6} V$

Answer: D

48. An induced emf is produced when a magnet is plunged into a coil. The magnitude of the induced emf is independent of
A. the strength of the magnetic
B. the speed with which the magnetic is
moved
C. the resistivity of the wire of the coil
D. the number of turns in the coil

Answer: C
49. In the figure the flux through the loop perpendicular to the plane of the coil and direciton into the paper varying according to the relation $\phi=6 t^{2}+7 t+I$ where ϕ is in milliweber and t is in loop at $t=2 s$ and
direction of induced current through R are

A. $39 m V$, right to left
B. 39 mV , left to right
C. $31 m V$ right to left
D. $31 m V$, left to right

Answer: D

D Watch Video Solution

50. A metallic meter stick moves with a velocity
of $2 \mathrm{~m} / \mathrm{sec}$ in a diretion perpendicular to its
length and perpendicular to a uniform magnetic firld of magnitude $0.2 T$. The emf induced between the ends of the stick
A. 0.2 V
B. 0.4 V
C. 0.5 V
D. 0.6 V

Answer: B

- Watch Video Solution

51. An electric potential difference will be induced between the ends of the conductor shown in the diagram when it moves in the direction
A. P
B. Q
C. L
D. M

Answer: D

D Watch Video Solution

52. A conducing rod of length l is falling with a
velocity v perpendicular to a unifrorm
horizontal magnetic field B. The potential
difference between its two ends will be
A. $2 B l v$
B. $B l v$
C. $0.5 B l v$
D. $B^{2} l^{2} v^{2}$

Answer: B
(Watch Video Solution
53. A square metal wire loop of side 10 cm and
resistance 1 ohm is moved with a constant
velocity $\left(v_{0}\right)$ in a uniform magnetic field of induction $B=2$ weber $/ m^{2}$ as shown in the
figure. The magnetic field lines are perpendicular to the plane to the loop
(directed into the paper). The loop is
connected to a network of resistors each of
value 3 ohms. The resistances of hte lead wire
$O S$ and $P Q$ are negligible. What should be the speed of the loop so as to have a steady current of 1 milliampere in the loop? Given the

direction of current in the loop.

A. $0.5 \mathrm{~cm} / \mathrm{sec}$
B. $1 \mathrm{~cm} / \mathrm{sec}$
C. $2 \mathrm{~cm} / \mathrm{sec}$
D. $4 \mathrm{~cm} / \mathrm{sec}$

Answer: C

- Watch Video Solution

54. Figure shows a wire sliding on two parallel, conducting rails placed at a separation L. A magnetic field B exists in a direction perpendicular to the plane of the rails. What force is necessary to keep the wire moving at a constant velocity V ?

A. $B v L$
B. $B v^{2} L$
C. zero
D. $B^{2} v^{2} L / R$

Answer: C

D Watch Video Solution

55. A uniform rod of mas m is moving with constant velocity v_{0} in a perpendicular uniform magnetic field B as shown. The
resistance of rod is r. The current flowing through rod, R_{I} and R_{2} will be

> A. $\frac{B v_{0} L}{3 r}, \frac{2}{3} \cdot \frac{B v_{0} L}{3 r}, \frac{1}{3} \cdot \frac{B v_{0} L}{3 r}$
> B. $\frac{B v_{0} L}{3 r}, \frac{1}{3} \cdot \frac{B v_{0} L}{3 r}, \frac{2}{3} \cdot \frac{B v_{0} L}{3 r}$
C. $\frac{B v_{0} L}{3 r}, \frac{1}{3} \cdot \frac{B v_{0} L}{3 r}, \frac{1}{3} \cdot \frac{B v_{0} L}{3 r}$
D. $\frac{B v_{0} L}{3 r}, \frac{B v_{0} L}{3 r}, \frac{B v_{0} L}{3 r}$

Answer: B
56. A conductor $P Q$, with $P Q=r$, moves
with a velocity v in a uniform magnetic field of induced B. The emf induced in the rod is
A. $(\vec{v} \times \vec{B}) \cdot \vec{r}$
B. $\vec{v} \cdot(\vec{r} \times \vec{B})$
c. $\vec{B} \cdot(\vec{r} \times \vec{v})$
D. $|\vec{r} \times(\vec{v} \times \vec{B})|$

- Watch Video Solution

57. The wings of an aeroplane are 10 m apart.

The plane is moving horizontally towards the north with a velocity of $200 \mathrm{~m} / \mathrm{sec}$ at a place where the vertical component of earth's magnetic field is $0.5 \times I 0^{-4} T$. The induced emf set up between the tips of the wings is
A. $0.1 V$
B. 0.15 V
C. 1 V

D. 1.5 V

Answer: A

D Watch Video Solution

58. The two rails of a railway track, insulated from each other and the ground, are connected to a milli voltmeter. What is the reading of the milli voltmeter when a train travels at a speed of 180 km / hours along the track, given that the vertical components of
earth's magnitic field is 0.2×10^{-4} weber $/ \mathrm{m}^{2}$ \& the rails are separated by 1 meter?
A. $1 m V$
B. $2 m V$
C. $3 m V$
D. $4 m V$

Answer: A

- Watch Video Solution

59. The magnitude of the earth's magnetic field at a place is B_{0} and angle of dip is δ. A horizontal conductor of lenth/lying along the magnetic north-south moves eastwards with a velocity v . The emf induced acroos the coductor is
A. zero
B. $B_{0} l v$
C. $B_{0} l v \sin \delta$
D. $B_{0} l v \cos \delta$

- Watch Video Solution

60. In the precious question, if the conductor
lies east-west and the moves vertical up with a
speed v. The emf induced emf is
A. zero
B. $B_{0} l v$
C. $B_{0} l v \sin \delta$
D. $B_{0} l v \cos \delta$

Answer: D

D Watch Video Solution

61. The two ends of a horizontal conducting rod of length l are joined to a voltmeter. The whole arrangement moves with a horizontal velocity v, the direction of motion being perpendicular to the rod. The vertical component of the earth's magnetic field is B.

The voltmeter reading is
A. Blv only if the rod moves eastward
B. Blv only if the rod moves westward
C. Blv only if the rod moves in any way
D. zero

Answer: C

- Watch Video Solution

62. A player with 3 meter long iron rod runs toward east with a speed of $30 \mathrm{~km} / \mathrm{hr}$ Horizontal component of eath's magnetic field
is $4 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$. If he runs with the rod in
horizontal and vertical position, then the potential difference induced between the two ends of the rod in the two cases will be
A. zero in vertical position, $1 \times 10^{-3} V$ in horizontal position
B. $1 \times 10^{-3} V$ in vertical position, zero in
horizontal position
C. zero in both positions
D. $1 \times 10^{-3} V$ in both positions

Answer: B

D Watch Video Solution

63. The magnitude of the earth's magnetic
field at the north pole is B_{0}. A horizontal conductor of length l moves with a velocity v.

The direction of v is perpendicular to the conductor. The induced emf is
(i) zero, if v is vertical
(ii) $B_{0} l v$, if v is vertical
(iii) zero, if v is horizontal
(iv) $B_{0} l v$, if v is horizontal
A. $(i),(i i i)$
B. $(i i),(i v)$
C. $(i),(i v)$
D. $(i i),(i i i)$

Answer: C
(Watch Video Solution
64. A wire of length 10 cm translates in a direction making an angle of 60° with its length. The plane of motion is perpendicular ot a uniform magnetic field of 1.0 T that exists
in the space. Find the emf induced between
the ends of the rod if the speed of translation of $20 \mathrm{cms}^{-1}$.
A. $1.7 \times 10^{-3} V$
B. $17 \times 10^{-3} V$
C. $0.17 \times 10^{-3} V$

$$
\text { D. } 1.7 \times 10^{-4} V
$$

Answer: B

D Watch Video Solution

65. The loop shown moves with a velocity v in
a uniform magnetic field of magnitude B,
directed into the paper. The potential
differene between point P and Q is e. Then

A. $(i i),(i i i)$
B. $(i),(i v)$
C. $(i),(i i i)$
D. $(i i),(i v)$

Answer: C

- Watch Video Solution

66. A metallic square loop $A B C D$ is moving in
its own plane with velocity v in a uniform magnetic field perpendicular to its plane as shown in the figure. An electric field is induced

A. in $A D$, but not in $B C$
B. in $B C$, but not in $A D$
C. neither in $A D$ not in $B C$
D. in both $A C$ and $B D$

Answer: D

D Watch Video Solution

67. A conducting square loop of side I and resistance R moves in its plane with a uniform
velocity v perpendicular ot one of its sides. A
uniform and constant magnetic field B exists
along the perpendicualr ot the plane of the loop as shown in. The current induced in the loop is
$\begin{array}{cccccc}\times & \times & \times & \times & \times & \times \\ \times & \times \begin{array}{|cc|}\times & \times \\ \times & \times\end{array}\end{array}$
A. $\frac{B l v}{R}$, clockwise
B. $\frac{B l v}{R}$, anticlockwise
C. $\frac{2 B l v}{R}$, anticlockwise
D. zero

Answer: D

D Watch Video Solution
68. A right angled triangle abc, made from a metallic wire, moves at a uniform speed v in its plane as shown in . A uniform magnetic field B exists in the perpendicular direction. Find the emf induced (a) in the loop abc, (b) in the segment bc, (c) in the segment ac and (d) in the segment $a b$.

A. zero: $v B(b c),+v e$ at c, zero, $v B(b c),+v e$ at a
B. $v B(b c),+v e$ at c, zero, $v B(b c),+v e$ at a
C. zero, zero $v B(b c),+v e$ at c,
$v B(b c),+v e$ at a
D. $v B(b c),+v e$ at $c, v B(b c),+v e$ at a,
zero, zero

Answer: A

69. A square loop $A B C D$ of edge a moves to
the right with a velocity v parallel to $A B$.
There is a uniform magnetic field of magnitude B, direction into the paper, in the region between $P Q$ and $R S$ only. I, II and III are three ppositions of the loop.
(i) The emf induced in the loop has magnitude
B a v in all three position
(iii) Induced emf is anticlockwise in position II
(iv) The induced emf is clockwise in position III

A. $(i),(i i i)$
B. $(i i),(i i i),(i v)$
C. $(i),(i i)$
D. $(i i i),(i v)$

Answer: B

- Watch Video Solution

70. In the previous question, in position I of the loop
(i) The induced emf will increases linearly as
the loop enters the field
(ii) The induced emf will increase from 0 to

Bav shaply as edge $B D$ crosses $P Q$
(iii) The induced emf will have a constant value $B a^{2} v$
(iv) The loop will experince a force to the left after entering the field partially
A. $(i),(i i i)$
B. $(i i),(i i i),(i v)$
C. $(i),(i i)$
D. $(i i),(i v)$

Answer: D

D Watch Video Solution

71. Shown a square loop of side 5 cm beign moved towards right at a constant speed of 1 cm / s. the front edge enters the 20 cm wide
magnetic field at $t=0$. Find the emf induced

$$
\begin{aligned}
& \text { in } \\
& \text { the } \\
& \text { loop } \\
& (a) t=2 s,(b) t=10 s,(c) t=22 s(d) t=30 s .
\end{aligned}
$$

A. $3 \times 10^{-4} V$
B. $3 \times 10^{-5} V$
C. $2.5 \times 10^{-4} V$
D. $3.5 \times 10^{-4} V$

Answer: A
72. Find the total heat produced in the loop of the previous problem during the interval 0 to 30 s if the resistance of the loop is 4.5Ω.
A. $2.5 \times 10^{4} J$
B. $2.0 \times 10^{4} \mathrm{~J}$
C. $3.0 \times 10^{4} \mathrm{~J}$
D. $3.5 \times 10^{4} \mathrm{~J}$

Watch Video Solution

73. A rectangular frame of wire $a b c d$ has dimensions $1 m \times 0.5 m$ and a total resistance of 30Ω. It is pulled out of a magnetic field $B=2 T$ by applying a force of $1 N$. It is found that the frame moves with constant speed.
(i) The constant speed is $30 \mathrm{~m} / \mathrm{sec}$
(ii) The emf induced in loop is 30 volt
(iii) The p.d. between a and b is 25 V
(iv) The p.d. between c and d is $5 V$.

A. $(i),(i i),(i i i)$
B. $(i i),(i i i),(i v)$
C. $(i),(i i),(i i i)$
D. all

Answer: D
74. shows a conducting loop being pulled out of a magnetic field with a speed v. Which of

Ithe four plots shown in may represent the power delivered by the pulling agent as a function of the speed v ?

A. A to B and C to D
B. B to A and D to C
C. c
D. d

Answer: B

D Watch Video Solution

75. Consider the situation shown in. The wire
$A B$ is slid on the fixed rails rails with a constant velocity. If the wire $A B$ is replaced by
a semicircular wire, the magnitude of the

induced current will

A. increase
B. remain the same
C. decreaes
D. increase of decrease depending on
whether the semicircular bulges towards
the resistance or away from it
76. A vertical ring of radius r and resistance on
R falls vertically. It is in contact with two vertical rails which are joined at the top. The rails are without friction and resistance. There is a horizontal uniform, magnetic field of magnitude B perpendicular to the plane of the ring and the rails. When the speed of the ring is v, the current in the section $P Q$ is P
\times

A. zero
B. $\frac{2 B v}{R}$
C. $\frac{4 B r v}{R}$
D. $\frac{8 B r v}{R}$

Answer: D

D Watch Video Solution

77. A vertical conduction ring of radius R falls
vertically in a horizontal magnetic field of magnitude B with constant speed v. The direction of B is perpendicular to the plane of
the ring. When the speed of the ring is v, (i) A
and D are at different potential
(ii) A and D are at the same potential
(iii) C and E are at the same potential
(iv) The potential difference between A and D
is $2 B R v$, with D a higher potential

A. $(i),(i i i)$
B. $(i i),(i v)$
C. $(i),(i i i)) i v$,
D. $(i i),(i i i)$

Answer: C

D Watch Video Solution

78. A thin semicircular conducting ring of radius R is falling with its plane verticle in a horizontal magnetic inducting B. At the
position $M N Q$, the speed of the ring is V and the potential difference developed across the ring is

A. zero
B. $1 / 2 B v \pi R^{2}$, and M is at a higher potential
C. $\pi R B v$, and Q is at a higher potential

D. $2 R B v$, and Q is at a higher potential

Answer: D

D Watch Video Solution

79. Two conducting rings of radii r and $2 r$ move in apposite directions with velocities $2 v$ and v respectively on a conducting surface S.

There is a uniform magnetic field of magnitude B perpendicular to the plane of the rings. The potential difference between
the highest points of the two rings is

A. zero
B. $2 r v B$
C. $4 r v B r$
D. $10 r v B$

Answer: D
80. The conductor $A B C D E$ has the shape shown. It is lies in the $Y Z$ plane, with A and E
on the y axis. When it moves with a velocity v in a magnetic field B, an emf e is induced between A and E. (Choose the incorrect option)

A. $e 0$, if v is the y-direction and B is in the x-direction
B. $e=2 B \lambda v$, if v is in the y-direction and
B is in the x-direction
C. $e=B \lambda v$, if v in the z-direction and B is
in the x-direction
D. $e=B \lambda v$, if v is in the x-direction and B
is in the z-direction

Answer: B

D View Text Solution

81. shows a straight, long wire carrying a current I and a rod of length I coplanar with
the wire and perpendicular to it. The rod moves with a constant velocity v in a direction parallel to the wire. The distance of the wire
from the centre of the rod is x. Find the motional emf induced in the rod.

$$
\text { A. } \frac{\mu_{0} i v}{2 \pi} 1 n\left(1+\frac{L}{2 a}\right), A
$$

> B. $\frac{\mu_{0} i v}{\pi} \ln \left(1+\frac{L}{2 a}\right), B$
> C. $\frac{\mu_{0} i v}{2 \pi} \ln \left(1+\frac{L}{a}\right), A$
> D. $\frac{\mu_{0} i v}{\pi} 1 n\left(1+\frac{L}{2 a}\right), B$

Answer: C

D Watch Video Solution

82. The magnetic field in a region is given by $\vec{B}=\vec{k} \frac{B_{0}}{L} y$ where L is a fixed length. A conducting rod of length L lies along the Y axis between the origin and the point ($0, L, 0$).

If the rod moves with a velocity $v=v_{0}$ in x direction, find the emf induced between the ends of the rod.

$$
\begin{aligned}
& \text { A. } \frac{B v_{0} L}{4} \\
& \text { B. } \frac{B v_{0} L}{2} \\
& \text { C. } \frac{3 B v_{0} L}{4} \\
& \text { D. } B v_{0} L
\end{aligned}
$$

Answer: B

D Watch Video Solution
83. Consider the following statements: (a)An emf can be induced by moving a conductor in
a magnetic field. (b)An emf can be induced by changing the magnetic field.
A. both A and B are ture
B. A is true but B is false
C. B is true but A is false
D. both A and B are false

Answer: A

D Watch Video Solution
84. A conducting loop is placed in a uniform magnetic field with its plane perpendicular to the field with its plane perpendicular to the
field. An emf is induced in the loop if
(i) it is traslated
(ii) it is rotated about its axis
(iii) it is rotated about a diameter
it is deformed
A. $(i),(i i)$
B. $(i i),(i i i)$
C. $(i i i),(i v)$
D. $(i),(v)$

Answer: C

D Watch Video Solution

85. A magnet is moving towards a coil along
its axis and the emf induced in the coil is ε. If
the coil also strats moving towards the magnet with the same speed, the induced emf will be
A. $\varepsilon / 2$
B. ε
C. 2ε
D. 4ε

Answer: C

D Watch Video Solution

86. As shown in the figure, a magnetic is moved with a a fast speed towards a coil at rest. Due to this, induced electromotive force,
induced charge in the coil are E, I and Q respectively. If the speed of magnetic is doubled, the incorrect statement is

A. E increases
B. I increases
C. Q increases
D. Q remains unchanged

- Watch Video Solution

87. A metal rod length I rotates about on end with a uniform angular velocity ω. A uniform magnetic field \vec{B} exists in the direction of the axis of rotation. Calculate the emf induced between the ends of the rod. Neglect the centripetal force acting on the free electrons as they money in circular paths.
A. $\frac{B \omega L^{2}}{4}$
B. $\frac{B \omega L^{2}}{2}$
C. $\frac{3 B \omega L^{2}}{4}$
D. $B \omega L^{2}$

Answer: B

D Watch Video Solution

88. if rod is rotated about an axis passing
through its mid-point , the potential difference between the ends of rod is
A. $\frac{B \omega L^{2}}{4}$
B. $\frac{B \omega L^{2}}{2}$
C. $\frac{3 B \omega L^{2}}{4}$
D. zero

Answer: D

D View Text Solution

89. A metal conductor of length 1 m rotates
vertically about one of its ends at angular
velocity 5 radians per second. If the horizontal
component of earth's magnetic field is
$0.2 \times 10^{-4} T$, then the emf developed between the two ends of hte conductor is
A. $5 m V$
B. $5 \times 10^{-4} V$
C. 50 mV
D. $50 \mu V$

Answer: D

- Watch Video Solution

90. A metal rod of resistance R is fixed along a
diameter o fa conducting ring of radius r.
There is a magnetic field of magnitude B perpendicular to the plane of the loop. The ring spins with an angular velocity ω about its axis. The centre of the ring is joined to its rim by an external wire W. The ring and W have no resistance. The current in W is
A. zero
B. $\frac{B r^{2} \omega}{2 R}$
C. $\frac{B r^{2} \omega}{R}$
D. $\frac{2 B r^{2} \omega}{R}$

Answer: D

D Watch Video Solution

91. A conducting disc of radius r spins about
its axis an angular velocity ω. There is a
uniform magnetic field of magnitude B perpendicular to the plane of the disc C is the centre of the disc.
(i) No emf is induced in the disc
(ii) The potential difference between C and
the rim is $1 / 2 B r^{2} \omega$
C is at a higher potential than the rim
(iv) Current flows between C and the rim

A. $(i),(i i i)$
B. $(i i),(i i i)$
C. $(i i),(i v)$
D. none

Answer: B

D Watch Video Solution

92. Three indential rings move with same speed on a horizontal magnetic field normal to plane of rings. The first (a) slips without rolling, the second(b) rolls without slipping and the third rolls with slipping:
A. The same emf is induced in all three rings
B. No emf is induced in all three rings
C. In each ring all points are at the same
D. B develops the maximum induced emf, and A the least

Answer: A

D Watch Video Solution

93. A uniform but time-varying magnetic field $B(t)$ exists in a circular region of radius a and is directed into the plane of the paper, as shown. The magnitude of the induced electric
field at point P at a distance r from the centre of the circular region

B. decreases as $/ r$
C. increases as r
D. decreases as $1 / r^{2}$

Answer: B

- Watch Video Solution

94. The inductance of a coil is proportional to
A. its length
B. the number of turns

C. the resistance of the coil

D. the square of the number of turns

Answer: D

D Watch Video Solution

95. When the number of turns and the length
of the solenoid are doubled keeping the area
of cross-section same, the inductance
A. remains the same
B. is halved
C. is doubled
D. becomes four times

Answer: C

D Watch Video Solution

96. A long solenoid has 500 turns. When a current of $2 A$ is passed through it, the resulting magnetic flux linked with each turn
of the splenoid is $4 \times 10^{-3} W b$. The selfinductance of the solenoid is
A. 1.0 henry
B. 4.0 henry
C. 2.5 henry
D. 2.0 henry

Answer: A
(Watch Video Solution
97. A coil is wound as a transformer of
rectangular cross section. If all the linear dimension of the transformer are increased by
a factor 2 and the number of turns per unit length of the coil remain the same, the selfinductance increased by a factor of
A. 4
B. 8
C. 12
D. 16

Answer: B

- Watch Video Solution

98. A long solenoid of N turns has a selfinduced L and area of cross-section A. When a current i flows through the solenoid, magnetic field inside it has magnitude B. The current i is equal to

$$
\text { A. } \frac{B A N}{L}
$$

B. BANL

> c. $\frac{B N}{A L}$
> D. $\frac{B}{A N L}$

Answer: A

- Watch Video Solution

99. The $S I$ unit of inductance, the henry can be written as
A. $(i),(i i i)$
B. $(i i),(i i i)$
C. $(i i),(i v)$
D. all

Answer: D

D Watch Video Solution

100. Pure inductance of $3.0 H$ is connected as
shown below. The equivalent inductance of the
circuit is

A. $1 H$
B. $2 H$
C. $3 H$
D. $9 H$

Answer: A

D Watch Video Solution
101. The equivalent inductance of two
inductors is $2.4 H$ when connected in parallel
and $10 H$ when connected in series then the value of inductance of two inductors?
A. 4,6
B. 3,7
C. 2,8
D. 1,9

Answer: A
102. When the current in a coil changes from
$8 A$ to $2 A$ in $3 \times 10^{-2} s$, th eemf induced in
the coil is $2 V$. The self-induced of coil in $m H$
A. 10
B. 20
C. 30
D. 40

Answer: A
103. A current of $2 A$ flowing through a coil of

100 truns give rise to a nagnetic flux of
$5 \times 10^{-5} W b$ per turn. Magnetic energy
associated with cooil is
A. $5 J$
B. 0.5 J
C. 0.05 J
D. 0.005 J

Answer: D

D Watch Video Solution

104. L,C and R represent the physical quantities inductance, capacitance and resistance respectively. Which of the following combinations have dimensions of frequency?
A. $(i),(i i),(i i i)$
B. $(i),(i i i),(i v)$
C. $(i),(i i),(i v)$
D. all

Answer: A

D Watch Video Solution

105. If $I=5 A$ and decreasing at a rate of
$10^{2}(A / \mathrm{sec})$, then $V_{B}-V_{A}$

A. 5 V
B. 10 V
C. 15 V
D. 20 V

Answer: C

- Watch Video Solution

106. In the previous question, if the direction
of I is reversed, $V_{B}-V_{A}$ will be
A. 20 V
B. 15 V
C. 10 V
D. 5 V

Answer: D

D Watch Video Solution

107. An alternating current I in an inductance
coil varies with time t according to the graph
as shown: Which one of the following graph
gives the variation of voltage with time?

A.
(1)

B.

C.
(3)

Answer: D

D Watch Video Solution

108. The current i in a coil varies with time as
shown in the figure. The variation of induced

emf with time would be

A.

(1) emf \uparrow $0 \xrightarrow[T / 4]{\square} \quad$| nf |
| :--- |

B.
(2) $\mathrm{emf} \uparrow$

C.
(3) emf

Answer: B

D Watch Video Solution

109. The time constant of an inductance coil is
$2 \times 10^{-3} s$. When a 90Ω resistance is joined in
series, the same constant becomes
$0.5 \times 10^{-3} s$. The inductance and resistance of the coil are
A. $30 \mathrm{mH}, 30 \Omega$
B. $30 \mathrm{mH}, 60 \Omega$
C. $60 m H, 30 \Omega$
D. $30 \mathrm{mH}, 60 \Omega$

Answer: C

D Watch Video Solution

110. A uniformly wound solenoid coil of self inductance $1.8 \times 10^{-4} \mathrm{H}$ and resistance 6Ω is broken up into two identical coils. These identical coils are then connected in parallel across a 12 V battery of negligible resistance.

The time constant and steady state current will be
A. $10 \mu \mathrm{sec}, 6 A$
B. $10 \mu \mathrm{sec}, 8 A$
C. $30 \mu \mathrm{sec}, 6 A$
D. $30 \mu \mathrm{sec}, 8 A$

Answer: D
(Watch Video Solution
111. An inductor coil stores 32 J of magnetic
field energy and dissiopates energy as heat at the rate of 320 W when a current of 4 A is passed through it. Find the time constant of the circuit when this coil is joined across on ideal battery.
A. 0.1 sec
B. 0.2 sec
C. 0.3 sec
D. 0.4 sec

Answer: B

- Watch Video Solution

112. Two solenoids have identical geometrical construction but one is made of thick wire and the other of thin wire. Which of the following quantities are different for the two solenoids?
A. $(i),(i i)$
B. $(i i i),(i v)$
C. $(i i),(i v)$

D. all

Answer: D

D Watch Video Solution

113. Two conducting circular loops of radii
R_{1} and R_{2} are placed in the same plane with their centres coincidingt. Find the mutual inductance between them assuming

$$
\begin{array}{r}
R_{2} \ll R_{1} \\
\quad \text { A. } \frac{\mu_{0} \pi R_{2}^{2}}{2 R_{1}}
\end{array}
$$

B. $\frac{\mu_{0} \pi R_{1}^{2}}{2 R_{2}}$
C. $\frac{\mu_{0} \pi R_{2}^{2}}{R_{1}}$
D. $\frac{\mu_{0} \pi R_{1}^{2}}{R_{1}}$

Answer: A

D Watch Video Solution

114. A solenoid S_{1} is placed inside another solenoid S_{2} as shown in The radii of he inner and the outer solenoids are r_{1} and r_{2} respectively and the numbers of turns per unit
length are n_{1} and n_{2} respectively. Consider a length I of each solenoid. Calculate the mutual inductance betwwen them.

- Watch Video Solution

115. Two circular coils can be arranged in any of the three situation shown in the figure. Their mutual inductance will be

A. maximum in situation (a)
B. maximum in situation (b)
C. maximum in situation (c)
D. the same in all situations

Answer: A

D Watch Video Solution

116. A small square loop of wire of side I is
placed inside a large square loop of wire of side $L(L \gg l)$. The loops are co-planer and
their centres coincide. The mutual inductance of the system is proportional to
A. l / L
B. l^{2} / L
C. L / l
D. L^{2} / l

Answer: B
(Watch Video Solution
117. A small coil of radius r is placed at the centre of a large coil of radius R, where $R \gg r$. The two coils are coplanar. The mutual inductance between the coils is proportional to
A. $\frac{r}{R}$
B. $\frac{r^{2}}{R}$
C. $\frac{r^{2}}{R^{2}}$
D. $\frac{r}{R^{2}}$
118. Two coils are placed closed to each other.

The mutual inductance between them
assuming $R_{2} \ll R_{1}$

- Watch Video Solution

119. The number of turns of primary and secondary coils of a transformer are 5 and 10 respectively and the mutual inductance of the
tranformar is 25 henry. Now the number of turns in the primary and secondary of the transformar are made 10 and 5 respectivaly. The mutual inductance of the transformar in henry will be
A. 6.25
B. 12.5
C. 25
D. 50

Answer: C
120. Two coils of self-inductance $2 m H$ and
$8 m H$ are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coil is
A. $4 m H$
B. $16 m H$
C. $10 m H$
D. $6 m H$

Answer: A

D Watch Video Solution

121. Two coaxial solenoids are made by winding
thin insulated wire over a pipe of crosssectional area $A=10 \mathrm{~cm}^{2}$ and length $=20 \mathrm{~cm}$.

If one of the solenoid has 300 turns and the
other 400 turns, their mutual indcutance is

$$
\text { A. } 4.8 \pi \times 10^{-4} H
$$

B. $4.8 \pi \times 10^{-5} H$

C. $2.4 \pi \times 10^{-4} H$

D. $4.8 \pi \times 10^{4} H$

Answer: C

D Watch Video Solution

122. Two coils have a mutual inductance
$0.005 H$. The current changes in the first coil
according to equation $I=I_{0} \sin \omega t$, where
$I_{0}=10 A$ and $\omega=100 \pi$ radian $/ / \mathrm{sec}^{\prime}$. The maximum value of e.m.f. in the second coil is
A. 2π
B. 5π
C. π
D. 4π

Answer: B

D Watch Video Solution

123. The mutual inductance between two coils
is 2.5 H . If the current in one coil is changed at
the rate of $1 A s^{-1}$, what will be the emf induced in the other coil?
A. 2.5 V
B. 10 V
C. 5 V
D. 20 V

Answer: A
(Watch Video Solution
124. The coefficient of mutual inductance

A. $\frac{\mu_{0} a}{2 \pi} 1 n\left(1+\frac{a}{2 b}\right)$
B. $\frac{\mu_{0} a}{\pi} 1 n\left(1+\frac{b}{2 a}\right)$
C. $\frac{\mu_{0} a}{2 \pi} \ln \left(1+\frac{a}{b}\right)$
D. $\frac{\mu_{0} a}{2 \pi} 1 n\left(1+\frac{b}{a}\right)$

Answer: C

- Watch Video Solution

125. An inductor of 2 henry and a resistance of

10 ohms are connected in series with a battery
of 5 volts. The initial rate of change of current is
A. $0.5 \mathrm{amp} / \mathrm{sec}$
B. $2.0 \mathrm{amp} / \mathrm{sec}$
C. $2.5 \mathrm{amp} / \mathrm{sec}$

D. $0.25 \mathrm{amp} / \mathrm{sec}$

Answer: C

D Watch Video Solution

126. A coil o finductanc e $8.4 m \mathrm{~m}$ and resistance
6Ω is connected to a 12 V battery. The current in the coil is $1.0 A^{\prime}$ in the time (approx .)
A. 500 sec
B. 20 sec
C. $35 m \mathrm{sec}$
D. $1 m \mathrm{sec}$

Answer: D

D Watch Video Solution

127. An ideal coil of 10 henry is joined in series
with a resistance of 5 ohm and a battery of 5
volt. 2 second after joining, the current flowing in ampere in the circuit will be
A. e^{-1}
B. $\left(1-e^{-1}\right)$
C. $(1-e)$
D. e

Answer: B

D Watch Video Solution
128. An e.m.f. of 15 volt is applied in a circuit containing 5 henry inductance and 10 ohm
resistance. The ratio of the current at time

$$
t=\infty \text { and at } t=1 \text { second is }
$$

$$
\begin{aligned}
& \text { A. } \frac{e^{-1 / 2}}{e^{1 / 2}-1} \\
& \text { B. } \frac{e^{2}}{e^{-2}-1} \\
& \text { C. } 1-e^{-1} \\
& \text { D. } e^{-1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

129. In the figure magnetic energy stored in the coil is

A. zero
B. infinite
C. 25 joules
D. none of the above

Answer: C

- Watch Video Solution

130. The time constant of an $L R$ circuit respresents the time in which the current in the circuit
A. reaches a value equal to about 37% of
its final value
B. reaches a value equal to about 63% of
its final value

C. attains a constant value

D. attains 50% of the constant value

Answer: B

D Watch Video Solution

131. An inductance L and a resistance R are
first connected to a battery. After some time
the battery is disconnected but L and R remain connected in a closed circuit. Then the current reduces to 37% of its initial value in
A. R / L
B. R / L
C. L / R
D. $1 / L R$

Answer: C

D Watch Video Solution

132. An inductor $(L=100 m H)$, a resistor
($R=100(\Omega)$) and a battery $(E=100 V)$ are
initially connected in series as shown in the
figure. After a long time the battery is disconnected after short circuiting the point A and B. The current in the circuit 1 ms after the short circuit is

A. $e A$
B. $0.1 A$
C. $1 A$

D. $1 / e A$

Answer: D

- Watch Video Solution

133. An inductor of inductance $\mathrm{L}=400 \mathrm{mH}$ and resistor
$R_{1}=2(\Omega)$ and $R_{2}=2(\Omega)$ are connected to
a battery of emf $\mathrm{E}=12$ Vas shown in the figure.
The internal resistance of the battery is negligible. The switch S is closed at time $\mathrm{t}=0$.

What is the potential drop across L as a function of time? After the steady state is reached, the switch is opened. What is the direction and the magnitude of current through R_{1} as a function of time?

A. $6 e^{-5 t} V$
B. $\frac{12}{t} e^{3 t} V$
C. $6\left(1-\frac{e^{-t}}{0.2}\right) V$
D. $12 e^{-5 t} V$

Answer: D

D Watch Video Solution

134. In the circuit shown below, the key K is
closed at $\mathrm{t}=0$. The current through the battery

A. $\frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}$ at $t=0$ and $\frac{V}{R_{2}}$ at

$$
t=\infty
$$

B. $\frac{V\left(R_{1}+R_{2}\right)}{\sqrt{R_{1}^{2} R_{2}^{2}}}$ at $t=0$ and $\frac{V}{R_{2}}$ at

$$
t=\infty
$$

$$
\begin{aligned}
& \text { C. } \frac{V}{R_{2}} \text { at } t=0 \text { and } \frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}} \text { at } \\
& t=\infty \\
& \text { D. } \frac{V}{R_{2}} \text { at } t=0 \text { and } \frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}} \text { at } \\
& t=\infty
\end{aligned}
$$

Answer: C

D Watch Video Solution

135. The figure shows theme circuit with idential batteries, inductors, and resistors.

Rank the circuit according to the current
through the battery (i) just after the switch is
closed and (ii) a long time later, greatest first

A. $(i) i_{2}>i_{3}>i_{1}\left(i_{1}=0\right)(i i) i_{2}>i_{3}>i_{1}$
B. $(i) i_{2}>i_{3}>i_{1}\left(i_{1} \neq 0\right)(i i) i_{2}>i_{3}>i_{1}$
C. $(i) i_{2}>i_{3}>i_{1}\left(i_{1}=0\right)(i i) i_{2}>i_{3}>i_{1}$
D. $(i) i_{2}>i_{3}>i_{1}\left(i_{1} \neq 0\right)(i i) i_{2}>i_{3}>i_{1}$

Answer: A

136. A coil and a bulb are connected in series
with a $d c$ source, a soft iron core is then ninserted in the coil. Then
A. intensity of the bulb remains the same
B. intensity of the bulb decreases
C. intensity of the bulb increases
D. the bulb cease to glow

Answer: B
137. The adjoining figure shows two bulbs B_{1} and B_{2} resistor R and an inductor and L. When the switch S is turned off

A. bo th B_{1} and B_{2} die out promptly
B. bo th B_{1} and B_{2} die out with some delay
C. B_{1} dies out promptly but B_{2} with some delay
D. B_{2} dies out promptly but but B_{1} with some delay

Answer: C

D Watch Video Solution
138. If the switch in the following circuit is turned off, then

A. the bulb B_{1} will go out immediately whereas B_{2} after sometimes
B. the bulb B_{2} will go out immediately
C. both B_{1} and B_{2} will go immediately
D. both B_{1} and B_{2} will go out after sometimes

Answer: D

D Watch Video Solution

139. An inductor L, a resistanece R and two
identical bulbs, B_{1} and B_{2} are connected to a battery through a switch S as shown in the
figure. The resistance R is the samem as that
of the coil that makes L.Which of the following statement gives the correct description of the happenings when the switch S is closed

A. The bulb B_{2} lights up earlier than B_{1}
and finally both the bulbs shine equally brigth
B. B_{1} lights up earlier and finally both the bulbs acruire equal brightness
C. B_{2} lights up earlier and finally B_{1} shines
brighter than B_{2}
D. B_{1} and B_{2} light up together with equal brightnes all the time

Answer: C

D Watch Video Solution
140. A capacitor is fully changed with a battery.

Then the battery is removed and a coil is connected with the capacitor in parallel, current varies as
A. increase monotoically
B. decreases monotonically
C. zero
D. oscillates indefinitely

Answer: D

141. In an oscillating LC circuit the maximum charge on the capacitor is Q . The charges on the capacitor when the energy is stored equally between the electric and magnetic field is
A. $\frac{Q}{2}$
B. $\frac{Q}{\sqrt{2}}$
c. $\frac{Q}{\sqrt{3}}$
D. $\frac{Q}{3}$

Answer: B
(D) Watch Video Solution

