©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS

 (HINGLISH)

 (HINGLISH)}

MAGNETIC FIELD

Example

1. Find magnitude and direction of magnetic
field at point P in the following cases.

(b)
P is the centre of square.
(c)

P is the centre of equilateral triangle.

(d)
$\longleftarrow d \longrightarrow 1$
P is the centre of regular hexagon.

(e)

P is the centre of rectangular loop.

(f)
(g) A long wire carrying a current i is bent to
from a plane angle θ. Find magnetic field at a point on the bisector of this angle is situated at a distance d from vertex.

(h) A long, straight wire carriers a current i.

Let B_{1} be the magnetic field at a point P at a
distance d from the wire. consider a section of length l of this wire such that the point P lies
on a perpendicular bisector of the sector. Let
B_{2} be the magnetic field at this point due to
this section only. find the value of d / l so that
B_{2} differes from B_{1} by 1%.

D View Text Solution

2. Calculate the magnetic field at point O in each of the following cases:

$$
\frac{D}{R}
$$

- Watch Video Solution

3. (a) If $B C D$ is in the plane of $A B$ and $D E$,
find the magnetic induction at centre O due to a current i in the conductors.
(b) The loop is made of same wire and uniform in cross-section. Find magnetic field at O.

D View Text Solution

4. The resistance of wire $A B C$ is double of resistance of wire $A D C$. The magnetic field at
O is

D Watch Video Solution

5. (i) A pair of stationary and infinitely long bent wires are placed in the $X Y$ - plane as shown.The wires carry currents 10 A each. The segment P and Q are parallel to the Y-axis such
as $\mathrm{OS}=\mathrm{OR}=0.02 \mathrm{~m}$. Find the magnitude field at the origin O

(ii) Three long wires carrying currents $10 A$, $20 A$ and $30 A$ are placed parallel to each other as shown. Find the magnetic field at P and Q

6. Two long parallel wires are carrying currents
as shown
(a)

Find magnitude and direction of magnetic field at P, Q and R.

$$
\begin{aligned}
& 4 i \\
& \text {--…-------- } \\
& \longmapsto d \longrightarrow \mid \\
& 4 i \quad i \\
& \longrightarrow \mid
\end{aligned}
$$

(b) (i)

At what distance from left wire, magnetic field is zero on the line joining the wires.

Find magnitude of magnetic field at P.
(d) Two straight infinitely long and thin parallel wires are spaced d distance apart and
carry a current i each. find the magnetic field at a point distance d from both wires when the currents are in the (i) same and (ii) opposite directions.

D View Text Solution

7. (i) A very long wire carrying a current I is
bent at right angles .Find magnetic field at a point lying on a perpendicular to the wire, drawn through the point of bending at a distance d from it
(ii) Three long wires carrying same currect are placed as shown Find magnetic field at O .

D Watch Video Solution

8. (a) Find the magnetic field at the point O if
the wire carrying a current i has the shape shown. The radius of the current part of the
wire is R, the linear parts of the wire are very
long.

(i)

(ii)
(iii)

(b) A long straight wire along the z-axis carriers a current i in negative z-direction.

Find magnetic field in vector from at a point having co-ordinates (x, y) on $z=0$ plane.
(c) A non-coplaner loop of conducting wire carrying a current I is placed as shown in the
figure. Each of the straight sections of the loop of length $2 a$. find unit vector along magnetic field magnetic filed at the point $P(a, 0, a)$.

$$
\underset{\sim}{1}
$$

9. Two long wires carrying same currents in opposite directions are placed at separation D as shown.Predict variation of magnetic field as one moves from the point O and A

D Watch Video Solution
10. (a) Two long wires at a distance $2 d$ apart carry equal, antiparallel current i. Find magnitude and direction of magnetic field at point A as shown.For what value of x, magnetic field is maximum? Also calculate maximum magnetic field. Sketch B versus x graph.

11. (a) A circular current carrying coil has a radius R. Find magnetic field (a) at centre and
(b) along the axis of coil distant $\sqrt{3} R$ from centre. The coil is having N turns and carriers a current i.
(b) Two concentric coil A and B, having current i and $2 i$ and radii $2 R$ and R are placed as shown. Find magnetic field at common centre.

(c) In previous problem, if planes of coil are perpendicular to each other, find magnetic field at common centre.
(d) A charge q distributed uniformely over a circular ring of radius R. The ring rotates about its axis with an angular velocity ω. find
the magnetic field (a) at centre and (b) at distance $\sqrt{3} R$ from centre, along the axis.

D View Text Solution

12. A current I flows radius along a lengthy thin-walled tube of radisu R with longiitual slit of width h. Find the induction of the magnietic field inside the tube under the condition $h \ll R$

D Watch Video Solution

13. A current I flows through a thin wire shaped as regular polygon of n sides which can be inscribed in a circle of radius R. The magnetic fiedl induction at the center of polygon due to one side of the polygon is

- Watch Video Solution

14. A current I flows in a long straight wire with cross-section haviing the form of a thin half-ring of radius R (Fig). Find the induction
of the magnitude field at the point O.

D Watch Video Solution

15. A long, cylindrical tube of inner and outer radii a and b carries a current i distributed uniformly over its cross section. Find the
magnitude of the magnetic field at a point (a)
just inside the tube (b) just outside the tube.

D Watch Video Solution

16. A long cylidrical conductor of radius R
carries a current i as shown in figure. The current desity J is a function of radius according to $J=b r$, where b is a constant.

Find an expression for the magnetic field B

a. at a distasnce $r_{1}<R$ and
b.at a distance $r_{2}>R$, measured from the axis.

D Watch Video Solution

17. (a) Find magnetic field inside a long solenoid, carrying current $(1 / \pi) A$ and having
number of turns per unit length 10. Also calculate magnetic field at ends.
(b) A long solenoid is fabricated by closely winding a wire of diameter 10 mm over a cylinderical non-magnetic frame so that the
successive turns nearly touch each other. Find magnetic field at the centre and ends of solenoid if it carriers a current $(4 / \pi) A$?
(c) A single-layer coil (solenoid) has length l
and cross-section radius R. The number of
turns per unit length is equal to n. Find the magnetic induction at the centre of the coil when a current i flows through it.
(d) A solenoid of length $0.4 m$ and diameter
0.6 m consists of a single layer of 1000 turns of the fine wire carrying a current of $5 m A$. Calculate the magnetic field on the axis at the middle and at the ends of the solenoid.

D View Text Solution

18. A charge of $\left(3.14 \times 10^{-6}\right) \mathrm{C}$ is distributed uniformly over a circular ring of radius 20.0 cm . The ring rotates about its axis with an angular velocity of $60.0 \mathrm{rads}^{-1}$. Find the
ratio of the electric field to the magnetic field at a point on the axis at a distance of 5.00 cm
from the centre.

D Watch Video Solution

Exercise

1. The magnetic field at the origin due to a current element $I \overrightarrow{d l}$ placed at position r is
(i) $\left(\frac{\mu_{0} i}{4 \pi}\right)\left(\frac{d \vec{l} \times \vec{r}}{r^{3}}\right)$
$-\left(\frac{\mu_{0} i}{4 \pi}\right)\left(\frac{d \vec{l} \times \vec{r}}{r^{3}}\right)$
(iii) $\left(\frac{\mu_{0} i}{4 \pi}\right)\left(\frac{\vec{r} \times d \vec{l}}{r^{3}}\right)$
$-\left(\frac{\mu_{0} i}{4 \pi}\right)\left(\frac{\vec{r} \times d \vec{l}}{r^{3}}\right)$
A. (i),(ii)
B. (ii),(iii)
C. (i),(ii)
D. (iii),(iv)

Answer: B

$$
\begin{aligned}
& \text { 2. Consider } \\
& x=\frac{E}{B}, y=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}} \text { and } z=\frac{1}{R C} \text {, Here, lis }
\end{aligned}
$$

the length of a wire, C is capacitance and R is
a resistance. All other symbols have standard meanings.
A. x, y have the same dimensions
B. y, z have the same dimensions
C. z, x have the same dimensions
D. x, y and z have the same dimensions

D Watch Video Solution

3. If C the velocity of light, which of the following is correct?
A. $\mu_{0} \varepsilon_{0}=c$
B. $\mu_{0} \varepsilon_{0}=c^{2}$
C. $\mu_{0} \varepsilon_{0}=\frac{1}{c}$
D. $\mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}$

Answer: D

D Watch Video Solution

4. A vertical wire carriers a current upwards.

The magnetic field at a point due north of the wire is directed
A. upward
B. due south
C. due west
D. due east

D Watch Video Solution

5. A moving charge produces
A. electric field only
B. magnetic field only
C. both of them
D. none of them

- Watch Video Solution

6. A circular loop is kept in that vertical plane which contains the north- south direction. It carries a current that is towards north at the topmost point. Let A be a point on the axis of the circle to the east of it and B a point on this axis to the west of it. The magnetic field due to the loop.
A. towards east and A and at B upwards
B. towards west and A and towards eats at

B

C. towards east at both A and B
D. towards west at both A and B

Answer: D

D Watch Video Solution

7. O is mid-point of $A B$. The magnetic field at
O is

A. $\frac{\mu_{0} i}{2 \pi d}, \otimes$
B. $\frac{\mu_{0} i}{\pi d}, \odot$
C. $\frac{2 \mu_{0} i}{\pi d}, \otimes$
D. $\frac{4 \mu_{0} i}{\pi d}, \otimes$

Answer: A
8. An infinetely long conductor $P Q R$ is bent to from a right angle as shown. A current I flows through $P Q R$. The magnetic field due to this current at the point M is H_{1}.Now, another infinitely long straight conductor $Q S$ is connected at Q so that the current is $I / 2$ in
$Q R$ as well as in $Q S$, the current in $P Q$ remaining unchanged. The magnetic field at
M is now H_{z}, the ratio H_{1} / H_{2} is given by

A. $\frac{1}{2}$
B. 1
C. $\frac{2}{3}$
D. 2

- Watch Video Solution

9. A long straight wire carries the current along +ve x-direction. Consider four points in space
$A(0,1,0), B(0,1,1), C(1,0,1)$, and $D(1,1,1)$
. Which of the pairs will have the same magnitude of magnetic field?
A. (i),(ii)
B. (ii),(iii)
C. (i),(ii)

D. (iii),(iv)

Answer: D

D Watch Video Solution

10. A straight section $P Q$ of a circuit lise along
the X-axis from $x=-\frac{a}{2}$ to $x=\frac{a}{2}$ and carriers a steady current i. The magnetic field due to the section $P Q$ at a point $X=+a$ will be
A. proportional to a
B. proportional to a^{2}
C. proportional to $1 / a$
D. zero

Answer: D

D Watch Video Solution

11. A horizontal overheadpowerline is at height of $4 m$ from the ground and carries a current of $100 A$ from east to west. The magnetic field
directly below it on the ground is

$$
\left(\nu_{0}=4 \pi \times 10^{-7} T m A^{-1}\right.
$$

A. $5 \times 10^{-6} T$ north ward
B. $5 \times 10^{-6} T$ south ward
C. $2.5 \times 10^{-7} T$ north ward
D. $2.5 \times 10^{-7} T$ south ward

Answer: B

- Watch Video Solution

12. $A B$ and $C D$ are long staright conductors,
distance d apart, carrying a current I. The magnetic field on $B C$ due to the currents in
$A B$ and $C D$

A. is zero at all points
B. is zero at this midpoint
C. has different magnitudes at different points
D. is maximum at its midpoints

Answer: C

- Watch Video Solution

13. A straight conductor carriers a current alon
the z-axis Consider the points
$A(a, 0,0), B(0,-a, 0), C(-a, 0,0) \quad$ and
$D(0, a, 0)$
(i) All four points have magnetic fields of the
same magnitude.
(ii) All four points have magnetic fields of the different direction.
(iii) The magnetic fields at A and C are in opposite directions
(iv) The magnetic fields at A and B are mutually perpendicular
A. (i),(ii)
B. (ii),(iii)
C. (i),(ii)
D. all

Answer: D

D Watch Video Solution

14. A long wire carrying i is bent to form a plane angle θ. Find the magnetic field B at a point on the bisector of this angle situated at
a distance x from the vertex is written in the form of $K \frac{\cot \theta}{4}$ Tesla.Then, find the value of K.

A. $\frac{\mu_{0} i}{\pi d} \cot \left(\frac{\theta}{4}\right), \odot$
B. $\frac{\mu_{0} i}{2 \pi d} \cot \left(\frac{\theta}{4}\right), \odot$
C. $\frac{\mu_{0} i}{4 \pi d} \cot \left(\frac{\theta}{2}\right), \odot$
D. $\frac{\mu_{0} i}{4 \pi d} \cot \left(\frac{\theta}{4}\right), \odot$

Answer: B

D Watch Video Solution

15. A wire carrying current I is shaped as
shown. Section $A B$ is a quarter circle of radius
r. The magnetic field is directed

A. along the bisector of the anlge $A C B$, away from $A B$
B. along the bisector of the angle $A C B$,
towards $A B$
C. perpendicular to the plane of the paper, directed into the paper
D. at an angle $\pi / 4$ in the plane of the paper

Answer: C

D Watch Video Solution

16. $A B C D$ is a square loop made of a uniform conducting wire. A current enters the loop at
A and leaves at D. The magnetic field is

A. zero only at the centre of the loop
B. maximum at the centre of the loop
C. zero at all point outside the centre loop
D. zero at all points inside the loop

Answer: C

D Watch Video Solution

17. In the loop shown, all curved sections are either semicircles or quarter circles. All the
loops carry the same current. The magnetic
fields at the centres have magnitudes
B_{1}, B_{2}, B_{3} and B_{4}

(i)B_(4)
$i s \max i \mu m(i i) \mathrm{B}_{-}(3) i s \min i \mu m(i i i)$
B_(4)gtB_(1)gtB_(2)gtB_(3)(iv)
B_(1)gtB_(4)gtB_(3)gtB_(2)'
A. (i),(ii),(iii)
B. (ii),(iii)
C. (i),(ii)
D. (ii),(iv)

Answer: A

D View Text Solution

18. Evaluate magnitude and direction of magnetic field at a point P in the following cases

(ii)

P is the centre of square.
(iii)

P is the centre of equilateral triangle.
(iv)

A. (i),(ii)

B. (ii),(iii)

C. (i),(iii)

D. all

Answer: D

D Watch Video Solution

19. A cell is connected between the point A and
C of a circular conductor $A B C D$ of centre
$O, \angle A O C=60^{\circ}$. If B_{1} and B_{2} are the magnitude of magnetic fields at O due to the currents in $A B C$ and $A D C$ respectively, the ratio
of B_{1} / B_{2} is.

A. 0.2
B. 6
C. 1
D. 5

Answer: C

D Watch Video Solution

20. A battery is connected between two points
A and B on the circumference of a uniform conducting ring of radius r and resistance R.

One of the arcs $A B$ of the ring subtends an
angle θ at the centre. The value of the magnetic induction at the centre due to the current in the ring is
A. proportional to $2\left(180^{\circ}-\theta\right)$
B. inversely proportional to r
C. zero, only if $\theta=180^{\circ}$
D. zero for all values of θ

Answer: D

D Watch Video Solution

21. Two thick wires and two thin wires, all of
the same materais and same length from a square in the three differenct ways, P, Q and
R as shwon in figure with current connection shown, the magneitc feidl at the centre of the
square is zero in cases.

A. In P only
B. In P and Q only
C. In Q and R only
D. P and R only

Answer: D

D Watch Video Solution

22. L is a circular ring made of a uniform wire,
currents enters and leaves the ring through
straight conductors which, if produces, would have passed through the centre C of ring. The magnetic field at C

(i) due to the straight conductors is zero
(ii) due to the loop is zero
(iii) due to the loop is proportional to θ
(iv) due to loop is proportional to $(\pi-\theta)$
A. (i),(ii)
B. (ii),(iii)
C. (i),(iii)
D. all

Answer: A

D Watch Video Solution

23. The resistance of wire $A B C$ is double of resistance of wire $A D C$. The magnetic field at
O is

A. $\frac{\mu_{0} i}{12 R}, \odot$
B. $\frac{\mu_{0} i}{6 R}, \odot$
C. $\frac{\mu_{0} i}{3 R}, \odot$
D. $\frac{\mu_{0} i}{2 R}, \odot$

Answer: A
24. The magnetic field at O is

A. $\frac{\mu_{0} i}{2 \pi}\left(\frac{\sqrt{3}}{\pi}-\frac{1}{3}\right)$
B. $\frac{\mu_{0} i}{2 a}\left(\frac{\sqrt{2}}{\pi}-\frac{1}{2}\right)$
C. $\frac{\mu_{0} i}{a}\left(\frac{\sqrt{3}}{\pi}-\frac{1}{3}\right)$
D. $\frac{\mu_{0} i}{4 a}\left(\frac{\sqrt{3}}{\pi}-\frac{1}{3}\right)$

Answer: A

D Watch Video Solution

25. L is a circular loop (in y-z plane) carrying an
anticlockwise current. P is a point on its axis

OX dl is an element of length on the loop at a
point A on it. The magnetic field at P

A. (i),(ii)
B. (ii),(iii)
C. (i),(iii)
D. (i),(iv)

Answer: D

D Watch Video Solution

26. A circular current-carrying coil has a radius
R. The distance from the centre of the coil, on
the axis, where B will be $1 / 8$ of its value at the centre of the coil is
A. $\frac{R}{\sqrt{3}}$
B. $\sqrt{3} R$
C. $2 \sqrt{3} R$
D. $\frac{2 R}{\sqrt{3}}$

Answer: B

- Watch Video Solution

27. A circular coil of radius R carriers an electric current. The magnetic field due to the coil at a point on the axis of the coil located at
a distance r from the centre of the coil, such
that $r \gg R$, varries as

$$
\text { A. } \frac{1}{r}
$$

B. $\frac{1}{r^{3 / 2}}$
C. $\frac{1}{r^{2}}$
D. $\frac{1}{r^{3}}$

Answer: D

D Watch Video Solution

28. The field normal to the plane of a wire of n

turns and radis r which carriers i is measured
on the axis of the coil at a small distance h
from the centre of the coil. This is smaller than
the field at the centre by the fraction.
A. $\frac{3}{2} \cdot \frac{h^{2}}{r^{2}}$
B. $\frac{2}{3} \cdot \frac{h^{2}}{r^{2}}$
C. $\frac{3}{2} \cdot \frac{r^{2}}{h^{2}}$
D. $\frac{2}{3} \cdot \frac{r^{2}}{h^{2}}$

Answer: A

D Watch Video Solution

29. If we double the radius of the coil keeping
the current through it unchanged, the magnetic field on its axis at very very far away points
A. double
B. three times
C. four times
D. one fourth

Answer: B
30. A charge q coulomb moves in a circle at n revolution per second and the radius of the circle is r metre. Then magnetic feild at the centre of the circle is

$$
\begin{aligned}
& \text { A. } \frac{2 \pi q}{n r} \times 10^{-7} \\
& \text { B. } \frac{2 \pi q}{r} \times 10^{-7} \\
& \text { C. } \frac{2 \pi n q}{r} \times 10^{-7} \\
& \text { D. } \frac{2 \pi r n}{q} \times 10^{-7}
\end{aligned}
$$

Answer: C

D Watch Video Solution

31. Two long straight wires, each carrying a current I in opossite directions asre separated by a distasnce R. The magnetic induction at a point mid way between the wire is
A. $\frac{\mu_{0} I}{\pi r}$
B. $\frac{2 \mu_{0} I}{\pi r}$
C. $\frac{\mu_{0} I}{2 \pi r}$
D. zero

Answer: B

D Watch Video Solution

32. Two parallel wires carrying equal currents
i_{1} and i_{2} with $i_{1}>i_{2}$. When the current are in
the same direction, the $10 m T$. If the direction
of i_{2} is reversed, the field becomes $30 m T$. The
ratio i_{1} / i_{2} is
A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution

33. The values of i so that magnetic field at R
is zero
2.5 A

$$
\longleftarrow 2 \mathrm{~m} \rightarrow 1
$$

$$
\longleftarrow 5 \mathrm{~m} \longrightarrow \mid
$$

A. $1 A$
B. $2 A$
C. 3A
D. 4 A

Answer: A

- Watch Video Solution

34. Two long wire carrying current $2 i$ and i are placed along co-ordinate axes x and y respectively. The locus of point where magnetic field is zero is

A. $2 y-x=0$
B. $x-2 y=0$

$$
\text { C. } y-x=0
$$

D. $y=0$

Answer: A

D Watch Video Solution

35. Three long wires, each carrying current i are placed as shown. The middle wire is along
Y-axis. The locus of point on the X-axis where
magnetic field is zero is

A. $x=0$
B. $x=\frac{d}{\sqrt{3}}$
C. $x=-\frac{d}{\sqrt{3}}$
D. all
36. Two long parallel wires are at a distance $2 d$ apart. They carry steady equal currents flowing out of the plane of the paper, as shown. The variation of the magnetic field B along the line $X X$ is given by

(3)

C.

Answer: B

D Watch Video Solution

37. A staright wire of length $\left(\pi^{2}\right)$ meter is
carrying a current of $2 A$ and the magnetic
field due to it is measured at a point distant
1 cm from it. If the wire is to be bent into a
circles and is to carry the same current as
before, the ratio of the magnetic field at its
centre to that obtained in the first case would be
A. $50: 1$
B. : 50
C. 100: 1
D. 1: 100

Answer: B
38. A length of wire carries a steady current I.

It is bent first to form a circular plane coil of
one turn. The same length is now bent more sharply to give double loop of smaller radius.

If the same current I is passed, the ratio of the magnitude of magnetic field at the centre with its first value is:
A. a quarter of its first value
B. unaltered
C. four times of its first value

D. a half of its first value

Answer: C

- Watch Video Solution

39. Two concentric coils carry the same current
in opposite directions. The diameter of the inner coil is equal currents. The outer coil. If the magnetic field produced by the outer coil at the common centre are $1 T$, the net field at the centre is
A. $1 T$
B. $2 T$
C. $3 T$
D. $4 T$

Answer: A

- Watch Video Solution

40. Two identical coils have a common centre
and their planes are at right angles to each
other. They carry equal currents. If the
magnitude of the magnetic field at the centre
due to one of the coils is B then that due to
the combination is
A. B
B. $\sqrt{2} B$
C. $\frac{B}{\sqrt{2}}$
D. $2 B$

Answer: B

D Watch Video Solution
41. Two similar coils of radius R are lying concentriclaly with their planes at right angels
to each other. The currents flowing in them
are I and $2 I$ respectively. The resulant magntic
field induction at the centre will be
A. $\frac{\sqrt{5} \mu_{0} I}{2 R}$
B. $\frac{2 \mu_{0} I}{2 R}$
C. $\frac{\mu_{0} I}{2 R}$
D. $\frac{\mu_{0} I}{R}$

Watch Video Solution

42. Two concentric coplanar circular loops of radii r_{1} and r_{2} carry currents of respectively i_{1} and i_{2} in opposite direction (one clockwise and the other anticlockwise). The magnetic induction at the centre of the loops is half that due to i_{1} alone at the centre. if $r_{2}=2 r_{1}$. the value of i_{2} / i_{1} is
A. 2
B. $1 / 2$
C. $/ 4$
D. 1

Answer: D

D Watch Video Solution

43. Two similar coils are kept mutually perpendicular such that their centres coincide.

At the centre, find the ratio of the magnetic field due to one coil and the resultant
magnetic field by both coils, if the same current is flown
A. $1: \sqrt{2}$
B. $1: 2$
C. 2:1
D. $\sqrt{3}: 1$

Answer: A
(Watch Video Solution
44. A current loop consists of two identical semicircular parts each of radius R, one lying in the $x-y$ plane and the other in $x-y$ plane. If
the current in the loop is i, the resultant magnetic field due to two semicircular parts at their common centre is
A. $\frac{\mu_{0} i}{2 \sqrt{2} R}$
B. $\frac{\mu_{0} i}{2 R}$
C. $\frac{\mu_{0} i}{4 R}$
D. $\frac{\mu_{0} i}{\sqrt{2} R}$

Answer: A

D Watch Video Solution

45. Three long wires, each carrying current i are placed parallel to each other. The distance between I and $I I$ is $3 d$, between $I I$ and $I I I$ is
$4 d$ and between $I I I$ and I is $5 d$. Magnetic field at site of wire $I I$

A. $\frac{5 \mu_{0} i}{24 \pi d}$
B. $\frac{10 \mu_{0} i}{24 \pi d}$
C. $\frac{15 \mu_{0} i}{24 \pi d}$
D. $\frac{20 \mu_{0} i}{24 \pi d}$

Answer: A
46. Two long straight parallel wieres are $2 m$ apart, perpendicular to the plane of the paper.

The wire A carries a current of $9.6 A$, directed into the plane of the paper. The wire B carries
a current such that the magnetic field of induction at the point P, at a distance of $\frac{10}{11}$ m from the wire B, is zero. find
a. the magnitude and directiion of the current in B.
b. the magnitude of the magnetic field of induction of the pont S.
c. the force per unit length on the wire B.

A. $1 A$
B. $2 A$
C. $3 A$
D. $4 A$

Answer: C

- Watch Video Solution

47. The magnetic field at O is

A. zero
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

48. Find the Net Magnetic field at point P due
to the current I_{1}, I_{2}, I_{3}.

A. zero
B. 1
C. 2
D. 3

Answer: A

D Watch Video Solution
49. A long wire carrying a current i is bent to form a plane angle. The magnitude of magnetic field at height d, above the point of bending
A. $\frac{\sqrt{2} \mu_{0} i}{4 \pi d}$
B. $\frac{3 \sqrt{2} \mu_{0} i}{4 \pi d}$
C. $\frac{5 \sqrt{2} \mu_{0} i}{4 \pi d}$
D. $\frac{7 \sqrt{2} \mu_{0} i}{4 \pi d}$

Answer: A

- Watch Video Solution

50. Two straight long conductors $A O B$ and
$C O D$ are perpendicular to each other and carry currents I_{1} and I_{2}. The magnitude of the
magnetic induction at a point P at a distance
d from the point o in a direction perpendicular to the plane $A B C D$ is :

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0}}{2 \pi d}\left(i_{1}+i_{2}\right) \\
& \text { B. } \frac{\mu_{0}}{2 \pi d}\left(i_{1}-i_{2}\right) \\
& \text { C. } \frac{\mu_{0}}{2 \pi a}\left(i_{1}^{2}+i_{2}^{2}\right)^{1 / 2} \\
& \text { D. } \frac{\mu_{0}}{2 \pi a} \frac{i_{1} i_{2}}{\left(i_{1}+i_{2}\right)}
\end{aligned}
$$

Answer: C

- Watch Video Solution

51. The magnetic field at O is

A. $\frac{\mu_{0} I}{2 R} \sqrt{\left(\frac{1}{4}+\frac{1}{\pi^{2}}\right)}$
B. $\frac{\mu_{0} I}{2 R} \sqrt{\left(\frac{1}{2}+\frac{1}{\pi^{2}}\right)}$
C. $\frac{\mu_{0} I}{R} \sqrt{\left(\frac{1}{4}+\frac{1}{\pi^{2}}\right)}$
D. $\frac{\mu_{0} I}{R} \sqrt{\left(\frac{1}{4}+\frac{1}{\pi}\right)}$

Answer: A

- Watch Video Solution

52. The magnetic field at O is

A. $\left(\frac{\mu_{0} I}{4 R}\right) \sqrt{1+\frac{2}{\pi^{2}}+\frac{2}{\pi}}$
B. $\left(\frac{\mu_{0} I}{2 R}\right) \sqrt{1+\frac{2}{\pi^{2}}+\frac{2}{\pi}}$

> C. $\left(\frac{\mu_{0} I}{4 R}\right) \sqrt{1+\frac{1}{\pi^{2}}+\frac{1}{\pi}}$
> D. $\left(\frac{\mu_{0} I}{R}\right) \sqrt{1+\frac{2}{\pi^{2}}+\frac{2}{\pi}}$

Answer: A

D Watch Video Solution

53. A long straight wire along the z - axis carries a current I in the negative z-direction. The magnetic vector field \vec{B} at a point having coordinates (x, y) in the $Z=0$ plane is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} I(y \hat{i}-x \hat{j})}{2 \pi\left(x^{2}+y^{2}\right)} \\
& \text { B. } \frac{\mu_{0} I(x \hat{i}+y \hat{j})}{2 \pi\left(x^{2}+y^{2}\right)} \\
& \text { C. } \frac{\mu_{0} I(x \hat{i}-y \hat{j})}{2 \pi\left(x^{2}+y^{2}\right)} \\
& \text { D. } \frac{\mu_{0} I(x \hat{i}-y \hat{j})}{2 \pi\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

Answer: A

D Watch Video Solution

54. A non - popular loop of conducting wire carrying a current I is placed as shown in the
figure. Each of the straight sections of the loop is of the length $2 a$. The magnetic field due to this loop at the point $P(a, 0, a)$ points in the direction

$$
\text { A. } \frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})
$$

B. $\frac{1}{\sqrt{3}}(-\hat{j}+\hat{k}+\hat{i})$
C. $\frac{1}{\sqrt{3}}(\hat{j}+\hat{k}+\hat{i})$
D. $\frac{1}{\sqrt{2}(\hat{i}+\hat{k})}$

Answer: D

- Watch Video Solution

55. Two long parallel wires, $A B$ and $C D$, carry equal currents in opposite directions. They lie
in the x-y plane, parallel to the x-axis, and pass
through the points $(0,-a, 0)$ and $(0, a, 0)$
respectively, Figure. The resultant magnetic field is:

A. (i),(ii)
B. (ii),(iii)
C. (i),(ii)

Answer: D

D Watch Video Solution

56. Due to currents in infinite long wire at A
and B, magnetic field is maximum at M and at
P, magnetic field as shown. Then

A. Current is A and B is equal in magnitude and outside the plane of paper

B. Current is A and B is equal in

magnitude and inside the plane of paper
C. Current in A and B is equal in magnitude, in A outside, in B inside

D. Current in A and B is equal in magnitude, in A inside, in B inside

Answer: C

D Watch Video Solution
57. The magnetic field is zero at mid point of
$A B$ and at P as shown

A. The current is equal in both wires and inside
B. The magnetic field of M in upward
C. The magnetic field is maximum at

$$
x= \pm \frac{a}{2}
$$

D. All options are correct

Answer: D

D View Text Solution

58. A long, straight wire of radius R carries a current distributed uniformly over its cross
section. The magnitude of the magnetic field is
A. (i),(ii)
B. (ii),(iii)
C. (i),(iii)
D. (i),(iv)

Answer: B

- Watch Video Solution

59. A solid metallic cylinder carriers a direct current. The magnetic field produce by it exists
A. outside the cylinder only
B. inside the cylinder only
C. both inside and outside the cylinder
D. neither inside and outside the cylinder

D Watch Video Solution

60. A hollow tube is carrying an electric current along its length distributed uniformly over its surface. The magnetic field
A. (i),(ii)
B. (ii),(iii)
C. (i),(ii)
D. (ii),(iv)

Answer: B

- Watch Video Solution

61. Current flows through a straight cylindrical conductor of radius r. The current is distributed uniformly over its cross-section.

The magnetic field at a distanace x from the axis of the conductor has magnitude B:
A. (i),(ii)
B. (ii),(iii),(iv)
C. (i),(ii),(iii)
D. all

Answer: D

- Watch Video Solution

62. In a coaxial, straight cable, the central conductor and the outer conductor carry equal currents in opposite directions. The magnetic field is zero.
A. outside the cable
B. outside the cable
C. inside the inner conductor
D. in between the two conductors

Answer: A

D Watch Video Solution
63. A current I flows along the length of an infinitely long, straight , thin - walled pipe.

Then
A. The magnetic field at all points inside
the pipe is zero same but not zero
B. The magnetic field at any point inside
the pipe is zero
C. The magnetic field is zero on the axis of
the pipe
D. The magnetic field is different at
different points inside the pipe

Answer: B

64. A long straight wire of radius a carries a steady current i. The current is uniformly distributed across its cross section. The ratio of the magnetis field at $(a) /(2)$ and $(2 a)$ is
A. $1 / 4$
B. 4
C. 1
D. $1 / 2$
65. The magnetic field due to a conductor fo unifrom cross section of radius a and carrying a steady current is represented by
A.
(1) $B \uparrow$?
B.

C.
(3) $B \uparrow$

D.

Answer: A

D Watch Video Solution

66. An infinitely long hollow conducting cylinder with inner radius $\frac{r}{2}$ and outer radius
R carries a uniform current ra density along its length . The magnitude of the magnetic
field, $|\vec{B}|$ as a function of the radial distance r from the axis is best represented by
(1) $|\vec{B}|$?
B.
(2) $|\vec{B}|$
$\xrightarrow[{R / 2 \xrightarrow[R]{(3)} \mid \vec{B}} \mid]{ }$
C.
(4) $|\vec{B}| \uparrow$

D.

Answer: D
67. A coaxial cable consists of a thin inner conductor fixed along the axis of a hollow outer conductor. The two conductor carry equal currents in opposite directions. Let
B_{1} and B_{2} be the magnetic fields in the region between the conductors and outside the conductor, respectively. Then,

> A. $B_{1} \neq 0, B_{2} \neq 0$
> B. $B_{1}=B_{2}=0$
> C. $B_{1} \neq, B_{2}=0$

D. $B_{1}=0, B_{2} \neq 0$

Answer: C

D Watch Video Solution

68. In previous question, if both conductors
carry equal currents in the same direction
A. $B_{1} \neq 0, B_{2} \neq 0$
B. $B_{1}=B_{2}=0$
C. $B_{1} \neq, B_{2}=0$

D. $B_{1}=0, B_{2} \neq 0$

Answer: A

D View Text Solution

69. let B be the magnetic field at a point between the two conductors, at a distance x
from the axis. Let B_{2} be the magnetic field at a point outside conductor, at a distance $2 x$ from the axis

$$
\text { A. } B_{1}=B_{2}
$$

B. $B_{1}=2 B_{2}$
C. $B_{2}=2 B_{1}$
D. $B_{2}=4 B_{1}$

Answer: A

D View Text Solution

70. A long, straight, hollow conductor (tube) carrying a current has two sections A and C of unequal cross sections joined by a conical section B. 1,2 and 3 are points on a line parallel
to the axis of the conductor. The magnetic fields at 1,2 and 3 have magnitudes
B_{1}, B_{2} and B_{3}. Then,

A. $B_{1}=B_{2}=B_{3}$
B. $B_{1}=B_{2} \neq B_{3}$
C. $B_{1}<B_{2}<B_{3}$
D. B_{2} cannot be found unless the

dimensions of the section B are known

Answer: A

D Watch Video Solution

71. Consider a coaxial cable which consists of an inner wire of radius a surrounded by an outer shell of inner and outer radii b and c
respectively. The inner wire carries an electric current i_{0} and the outer shell carries an equal current in opposite direction. Find the magnetic field at a distance x from the axis where (a) $x<a$, (b) $a<x<b$, (c) $b<x<c$ and (d) $x>c$. Assume that the current density is uniform in the inner wire and also uniform in the outer shell.

$$
\text { A. for } x<a, B=\frac{\mu_{0} I x}{2 \pi a^{2}}
$$

B. for $a<x<b, B=\frac{\mu_{0} I}{2 \pi x}$
C. for $b<x<c, B=\frac{\mu_{0} I\left(C^{2}-x^{2}\right)}{2 \pi x\left(c^{2}-b^{2}\right)}$
D. all

Answer: D

- Watch Video Solution

72. A long solenoid is fabricated by closely winding a wire of radius 0.5 mm over a cylindrical nonmagnetic frame so that the successive turns nearly touch each other.

What would be the magnetic field B at the centre of the solenoid if it carries a current of 5 A?

$$
\text { A. } 2 \pi \times 10^{-2} T
$$

B. $2 \pi \times 10^{-3} T$
C. $2 \pi \times 10^{-4} T$
D. $2 \pi \times 10^{-5} T$

Answer: B

D Watch Video Solution
73. A long solenoid carrying a current produces a magnetic field B along its axis. If the current is doubled and the number of turns per cm is halved, the new vlaue of the magnetic field is
A. B
B. $2 B$
C. $4 B$
D. $B / 2$

- Watch Video Solution

74. There are 50 turns of a wire in every cm length of a long solenoid. If 4 ampere current is flowing in the solenoid, the approximate value of magnetic field along its axis at an internal point and at one end will be respectively
A.
$12.6 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}, 6.3 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$
B.

$$
12.6 \times 10^{-3} W b / m^{2}, 25.1 \times 10^{-3} W b / m^{2}
$$

C.

$$
25.1 \times 10^{-3} W b / m^{2}, 12.6 \times 10^{-3} W b / m^{2}
$$

D.

$$
25.1 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}, 6.3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}
$$

Answer: C

D Watch Video Solution
75. A coil having N turns is would tightly in
the form of a spiral with inner and outer radii
a and b respectively. When a current I passes
through the coil, the magnetic field at the centre is.

> A. $\frac{\mu_{0} N I}{b}$
> B. $\frac{2 \mu_{0} N I}{a}$
> C. $\frac{\mu_{0} N I}{2(b-a)} \ln \left(\frac{b}{a}\right)$
> D. $\frac{\mu_{0} I}{2(b-a)} \ln \left(\frac{b}{a}\right)$

Answer: C

- Watch Video Solution

76. A charge Q is uniformly distributed over the surface of non - conducting disc of radius
R. The disc rotates about an axis perpendicular to its plane and passing through its centre with an angular to its plane and passing through its centre of the disc. If we keep both the amount of charge placed on the disc and its angular velocity to be constant and vary the radius of the disc then the variation of the magnetic induction at the
centre of the disc will br represented by the
figure:

A.
B.
(2)

C.
(3)

D.

Answer: A
77. Two identical conducting wires
$A O B$ and $C O D$ are placed at right angles to each other. The wire $A O B$ carries an electric current I_{1} and $C O D$ carries a current I_{2}. The magnetic field on a point lying at a distance d from O , in a direction perpendicular to the plane of the wires $A O B$ and $C O D$, will be given by

$$
\text { A. } \frac{\mu_{0}}{2 \pi d}\left(I_{1}+I_{2}\right)
$$

B. $\frac{\mu_{0}}{2 \pi d}\left(i_{1}^{2}+I_{2}^{2}\right)$
C. $\frac{\mu_{0}}{2 \pi d}\left(I_{1}^{2}+I_{2}^{2}\right)^{1 / 2}$
D. $\frac{\mu_{0}}{2 \pi d}\left(\frac{I_{1}}{I_{2}}\right)$

Answer: C

- Watch Video Solution

