©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS
 (HINGLISH)

OPTICAL INSTRUMENTS

Example

1. (a) An object is seen through a simple microscope of focal length 12 cm . Find the
angular magnification produced if the image is
formed at the near point of the eye which is 25 cm away from it.
(b) A $10 D$ lens is used as a magnifier. Where shold the object be placed to obtain maximum angular magnification for a nirmal eye (near point $=25 \mathrm{~cm})$?

D Watch Video Solution

2. A small object is placed at a distance of
3.6 cm from a magnifier of focal length 4 cm .
(a) Find the position of the image.
(b) Final linear magnification.
(c) Find the angualr magnification.

- Watch Video Solution

3. A compound microscope has a magnifying power 30 . The focal length of its eye-piece is

5 cm . Assuming the final to be at the least distance of distinct vision $(25 \mathrm{~cm})$, calculate the magnification produced by objective.
4. In a compound microscope, the objects is

1 cm form the objective lens. The lenses are 30 cm apart and the intermediate image is 5 cm from the eye-piece. What magnification is produced?

- Watch Video Solution

5. The separation L between the objective
($f=0.5 \mathrm{~cm}$) and the eye-piece ($f=5 \mathrm{~cm}$) of a compound microscope is 7 cm . Where should
a small object be placed so that the eye is least strained to see the image? Fin dthe angular magnification produced by the microscope.

- Watch Video Solution

6. A compound microscope has an objective of
focal length 2 cm and an eye-piece of focal length 3 cm . An object is placed at a distance of 2.4 cm in front of the field lens. Find the magnifying power of the instrument and
length of the tube is (a) final image is at infinity and (b) final image is at least distance of distinct vision.

- Watch Video Solution

7. Find the maximum magnifying power of a compound microscope having a $25 D$ lens as
the objetcive, a $5 D$ lens as the eye-piece and the separation 30 cm between the two lenses.

The least distance for clear vision is 25 cm .
8. A compound microscope has a magnifying power of 100 when the image is formed at infinity. The objective has focal length 0.5 cm and the tube length is 6.5 cm . Find the focal length of the eye-piece.

D Watch Video Solution

9. A compound microscope consists of an objective of focal length 1 cm and an eye-piece of focal length 5 cm . An object is placed at a
distance of 0.5 cm from the objective. What should be the separation between the lenses
so that the microscope projects an inverted real image of the object on the screen 30 cm behind the eye-piece?

D Watch Video Solution

10. A compound microscope is used to enlarge an object kept at a distance $0.03 m$ from uuts objective which consists of serval convex lenses in contact and has focal length 0.03 m .

If a lens focal length 0.1 mis removed from the objective, find out the distance by which the eye-piece of the microscope must be moved to refocus the image.

- Watch Video Solution

11. An astronomical telescope has an angular magnification of magnitude 5 for distant object. The separation between the objective and eyepiece is 36 cm and the final image is
formed at infinity. Determine the focal length of objective and eyepiece.

D Watch Video Solution

12. A telescope has an objective of focal length

50 cm and an eyepiece of focal length 5 cm .

The least distance of distinct vision is 25 cm .

The telescope is focused for distinct vision on a scale $2 m$ away from the objective. Calculate
(a) magnification produced and (b) separation between objective and eyepiece.
13. The diameter of the moon is $3.5 \times 10^{3} \mathrm{~km}$ and its distance from the earth is
$3.8 \times 10^{5} \mathrm{~km}$. It is seen through a telescope
having focal lengths of objective and eye-piece as 4 m and 10 cm respectively. Calculate magnifying power of telescope (b) length of telescope tube and (c) anngular size of image of moon.
14. An astronomical telescope consisting of an
objective of focal length 60 cm and eye-piece of focal length 3 cm is focused on the moon so that the final image is formed at least distance
vision, i.e. 25 cm from the eye-piece piece.
Assuming the angular diameter of moon as
$1 / 2^{\circ}$ at the objective, calculate (a) angular
size and (b) lenear size of image seen through
the telescope.
15. (a) A normal eye has retina 2 cm behind the eye lens. What is the power of the eye lens ehen the eye is (i) fully relaxed, (ii) most strained ?
(b) The near point and the far point of a hild are at 10 cm and 100 cm . If the retain is 2.0 cm behind the eye lens, what is the range of the power of the eye lens?
(c) A young boy can adjust the power of his eye lens between 50 D and 60 D . His fat point is infinity. (i) what is the distance of his retina from the ye lens? (ii) What is near point?
16. (a) A nearsighted person cannot clearly see beyond 200 cm . Find the power of the lens needed to see objectes at large distances.
(b) A farsighted person cannot see objects placed closer to 50 cm . Find the power of the lens needed to see the objets at 20 cm .
(c) A person wears glasses of power $-2.5 D$. Is
the person farsighted or nearsighted? What is
the far point of the person without the glasses?
17. The near and far points of a person are at 40 cm and 250 cm respectively. Find the power of the lens he/she should use while reading at 25 cm . With this lens on the eye, what maximum distance is clearly visible?

D Watch Video Solution

18. (a) A 40-year-old professor requires eyeglasses with lenses of $2 D$ power to read a
book at 25 cm . What is his near point?
(b) After 10 years he finds that while wearing
same specks he must hold the book 40 cm from his eyes. What is his near point now, what power lens does he require now to read a book again at 25 cm ?

D Watch Video Solution

19. A lady cannot see objects closer than 40 cm
from the left eye and closer than 100 cm from
the right eye. While on a mountaineering trip,
she is lose from her team. She tries to make an
astronomical trip, form her reading glasses to
look fro her teammates. (a) Which glass
should she use as the eyepiece? (b) What magnification can she get with relaxed eye?

D Watch Video Solution

20. A person uses $+1.5 D$ glasses to have normal vision from 25 cm onwards. He uses a
$20 D$ lens as a simple microscope to see an
object. Calculate the maximum magnifying
power, if he uses the microscope
(a) together with his glasses
(b) without the glasses.

- Watch Video Solution

Exercises

1. Choose incorrect option:
A. The size of image on the retina is
roughly proportional to the angle
subtended by the object on the eye. This
angle is knows as visual angle. The
optical instruments are used to increase
the visual angle.
B. In normal adjustement, eye is least
strained and final image is formed at
infinity.
C. The magnifying power is written with a
unit X.
D. All options are correct.

Answer: D

D Watch Video Solution

2. Choose the correct option:
A. When the eye is focused on distant object, the focal length of eye-lens has its maximum value which is equal to its
distance form the retina.
B. When the eye is focused on a closer
object, the focal length of the eye-lens
decreases. The process of adjusting focal
length is called accommodation. The
focal length cannot be adjusted beyond
a limit to from the image on the retina.

Thus there is a minimum distance for the clear vision of an object.
C. The nearest point for which the image
can be focused on the retina is called
the near point of the eye. The distance
of the near point form the eye is called
the least distance for clear vision. The
farthest point up to which an eye can
clearly see is called the far point.
D. All options are correct.

Answer: D

- Watch Video Solution

3. A simple magnifying lens is used in such a
way that an image is formed at 25 cm away
from the eye. In order to have 10 times magnification, the focal length of the lens should be
A. 5 cm
B. 2 cm
C. 25 mm
D. 0.1 mm

Answer: C
4. The size of an object as perceived by an eye depends primarily on
A. actual size of the object
B. distance of the object from the eye
C. aperture of the pupil
D. size of the image formed on the retina

Answer: D

5. Choose the correct option:

A. The far and near point for normal eye are usually taken to be infinite and 25 cm respectively.
B. In eye, convex eye-lens forms real, inverted and diminished image at the retina.
C. The human eye is most sensitive to yellow-green light wavelength $5550 \AA$ and least to violet red. D. All options are correct.

Answer: D

D Watch Video Solution
6. Choose the correct option regarding compound microscope:
A. Compound microscope consists of two
convergent lenses. Lens (of focal length
f_{0}) facing the object is called objective
or field lens while the lens (of focal
length f_{e}) facing the eye, eye-piece or ocular. The objective has a smaller aperture and smaller focal length than eye-piece.
B. For a microscope, magnifying power or
angular magnification is minimum when
final image is at ∞ and maximum when
final image is at D.
C. For a given microscope, magnifying
power (MP) for normal adjustment
remians parctially unchanged if objective
and ey-piece are interchanged. In normal
setting, f_{0} and f_{e} should be smaller to
have grater $M . P$.
D. All options are correct.

7. Which of the following is correct regarding

 telescope?A. In Astronomical telescope, aperture and
focal length of objective is large than
eye-piece.
B. In Terrestrial telescope, three convex
lenses are used and final image is errect.
C. In Galilean telescope, two lenses, one convex (objective) and one concave (eyepiece) are used.
D. All options are correct.

Answer: D

D Watch Video Solution
8. The magnifying power of a compound microscope is
A. objective magnification / eyepiece magnification
B. objective
magnification
C. eyepiece
magnification
D. objective
magnification
magnification \times eyepiece
magnification / objective
magnification + eyepiece

Answer: B

9. A compound microscope has a magnifying power 30. The focal length of its eye-piece is 5 cm . Assuming the final to be at the least distance of distinct vision $(25 \mathrm{~cm})$, calculate the magnification produced by objective.
A. 5
B. 7.5
C. 10
D. 15

Answer: A

D Watch Video Solution

10. A compound microscope has an objective of focal length 2.0 cm and an eye-piece of focal
length 6.25 cm and distance between the objective and eye-piece is 15 cm . If the final image is formed at the least distance vision
$(25 \mathrm{~cm})$, the distance of the object form the objective is
A. 1.5 cm
B. 2.5 cm
C. 3.0 cm
D. 4.0 cm

Answer: B

D Watch Video Solution

11. In previous question, the magnifying power of the microscope is
A. 10
B. 15
C. 20
D. 30

Answer: C

D Watch Video Solution
12. The focal length of the objective and the eye piece of a compound microscope are 2.0 cm and 3.0 cm , respectively. The distance
between the objective and the eye piece is 15.0
cm . The final image formed by the eye piece is at infinity. The two lenses are thin. The distance in cm of the object and the image produced by the objective, measured from the objective lens, are respectively
A. 2.4 and 12.0
B. 2.4 and 15.0
C. 2.3 and 12.0
D. 2.3 and 3.0
13. In a compound microscope, the intermediate image is
A. virtual, erect the magnified
B. real, erect and magnified
C. real, inverted and magnified
D. virtual, erect and reduced

Answer: C
14. The focal lengths of the objective and of the eye-piece of a compound microscope are f_{0} and f_{e} respectively. If L is the tube length and D, the least distance of distinct vision, then its angular magnification, when the image is formed at infinity, is

$$
\begin{aligned}
& \text { A. }-\left(1-\frac{L}{f_{0}}\right)\left(\frac{D}{f_{e}}\right) \\
& \text { B. }-\frac{L}{f_{0}}\left(1+\frac{D}{f_{e}}\right) \\
& \text { C. }-\frac{L}{f_{0}}\left(1-\frac{D}{f_{e}}\right)
\end{aligned}
$$

D. $-\frac{L}{f_{0}} \cdot \frac{D}{f_{e}}$

Answer: D

D Watch Video Solution

15. The focal length of the objective of a compound microscope is f_{0} and its distance
from the dyepiefe is L. The object is placed at a distance u from the objective. For proper working of the instrument.,
A. $(i),(i i)$
B. $(i i),(i i i)$
C. $(i i),(i v)$
D. $(i),(i v)$

Answer: C

- Watch Video Solution

16. When the length of a microscope tube increases, its magnifying power
A. decreases
B. increases
C. does not change
D. becomes zero

Answer: A

D Watch Video Solution

17. An astronomical telescope has an angular magnification of magnitude 5 for distant object. The separation between the objective and the eyepiece is 36 cm and the final image
is formed at infinity. The focal length f_{0} of the
objective and the focal length f_{0} of the eyepiece are
A. 45 cm and -9 cm
B. 50 cm and 10 cm
C. 7.2 cm and 5 cm
D. 30 cm and 6 cm

Answer: D

D Watch Video Solution
18. Four convergent lenses have focal lengths
$100 \mathrm{~cm}, 10 \mathrm{~cm}, 4 \mathrm{~cm}$ and 0.3 cm . For a telescope
with maximum possible magnificaiton, we choose the lenses of focal lengths
A. $100 \mathrm{~cm}, 0.3 \mathrm{~cm}$
B. $10 \mathrm{~cm}, 0.3 \mathrm{~cm}$
C. $10 \mathrm{~cm}, 4 \mathrm{~cm}$
D. $100 \mathrm{~cm}, 4 \mathrm{~cm}$

Answer: A

- Watch Video Solution

19. A planet is observed by an astronomical refracting telescope having an objective of ofcal length 16 m and an eyepiece of focal length 2 cm . Then,
A. (i),only
B. (ii), only
C. (i), (ii) only
D. all

- Watch Video Solution

20. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focused on a distant object in such a way that parallel rays emerge form the eye lens. If the object makes an angle of 2° at the objective, the angular width if the image is
A. 10°
B. 24°

C. 50°

D. 48°

Answer: B

D Watch Video Solution

21. The diameter of the moon is $3.5 \times 10^{3} \mathrm{~km}$
and its distance from the earth is
$3.8 \times 10^{5} \mathrm{~km}$. It is seen by a telescope having
the focal length of the objective and the eye-
piece as $4 m$ and 10 cm respectively. The
diameter of the image of the moon will be approximately
A. 2°
B. 20°
C. 40°
D. 50°

Answer: B
(Watch Video Solution
22. In an astronomical telescope in normal adjustment a straight black line of length L is drawn on inside part of objective lens. The eye piece forms a real image of this line. The length of this image is I. The magnification of the telescope is

$$
\begin{aligned}
& \text { A. } \frac{L}{l} \\
& \text { B. } \frac{L}{l}+1 \\
& \text { C. } \frac{L}{l}-1 \\
& \text { D. } \frac{L+l}{L-l}
\end{aligned}
$$

Answer: A

- Watch Video Solution

23. An astronomical telescope in normal adjustement receives light from a distant source S. The tube length is now decreased slightly
A. a virtual image of S will be formed at a
finite distance
B. no image will be formed

C. a small, real image of S will be formed

 behind the eye-piece, closer to itD. a large, real image of S will be formed behind the eye-piece, far away from it

Answer: A

D Watch Video Solution

24. In the pervious quenstion, if the tube length is increased slightly from its position of normal adjustement,
A. a virtual image of S will be formed at a finite distance
B. no image will be formed
C. a small, real image of S will be formed
behind the eye-piece, closer to it
D. a large, real image of S will be formed
behind the eye-piece, far away from it

Answer: D

25. In a reflecting astronomical telescope, if the objetcive (a spherical mirror) is replaced by a parabolic mirror of the same focal length and aperture, then
A. the final image will be erect
B. the large image will be obtained
C. the telescope will gather more light
D. spherical aberration will be absent

Answer: D

26. If the focal length of the objective lens is increased then
A. magnifying power of microscope will increase but that of telescope will
decrease
B. magnifying power of microscope and telescope both will increase
C. magnifying power of microscope and telescope both will decrease

D. magnifying power of microscope will

decrease but that of telescope will increase

Answer: D

D Watch Video Solution

27. For observing cricket math a binocular is preferred to a terrestrial telescope because
A. the binocular gives the proper threedimensional view
B. the binocular has a shorter length
C. the telescope has chromatic aberrations

D. the telescope has chromatic aberrations

Answer: A

- Watch Video Solution

28. In which of the following that final image is

 erect?(i) Simple microscope
(ii) Compound microscope
(iii) Astronomical telescope
(iv) Terrestrial telescope
A. $(i),(i i)$
B. $(i i),(i i i)$
C. $(i i),(i v)$
D. $(i),(i v)$

Answer: D

- Watch Video Solution

29. For a telescope to have large resolving power the
A.focal length of its objetive should be large
B. focal length of its eye-piece should be
large
C. focal length of its eye-piece should be small
D. aperture of its objective should be large

Answer: D

D Watch Video Solution

30. Wavelength of light used in an optical instrument are $\lambda_{1}=4000 \AA$ and $\lambda_{2}=5000 \AA$ then ratio of their respective resolving powers (corresponding to λ_{1} and λ_{2}) is
A. $16: 25$
B. 9:1
C. $4: 5$
D. 5: 4

Answer: D

D Watch Video Solution

31. Two points separated by a distance of
0.1 mm can just be resolved in a microscope when a light of wavelength $6000 \AA$ is used. If
the light of wavelength $4800 \AA$ is used this
limit of resolution becomes
A. 0.08 mm
B. 0.10 mm
C. 0.12 mm
D. 0.06 mm

Answer: A
(Watch Video Solution
32. The resolving power of an astronomical telescope is 0.2 seconds. If the central half portion of the objective lens is covered, the resolving power will be
A. 0.1 sec
B. 0.2 sec
C. 1.0 sec
D. 0.6 sec

Answer: A
33. The angular resolution of a 10 cm diameter telescope at a wavelength $5000 \AA$ is of the order
A. $10^{6} \mathrm{rad}$
B. $10^{-2} \mathrm{rad}$
C. $10^{-4} \mathrm{rad}$
D. $10^{-6} \mathrm{rad}$

Answer: D
34. The resolving power of acompound microscope can be increased if we
A. use infrared light for illuminating the
object under observation instead of
visible light
B. use ultraviolet light for illuminating the
object under observation instead of
visible light

C. use an objective of large focal length

D. none of the above

Answer: B

D Watch Video Solution

35. How can we increase the resolving power of a microscope?
A. decrease the focal length of the objective

B. increase the focal length of the objetcive

C. decrease the aperture-diameter of the objective
D. increase the aperture-diameter of the objective

Answer: D

D Watch Video Solution

36. Choose the correct option:
A. The limit of resolution of eye is one minute i.e. two objects will be visible distinctly to the eye if the angle subtended by them at the eye is lesser than one minute.
B. The persistance of vision is $(1 / 10)$
second i.e if time interval between two
consecutive light pulses is lesser than
0.1 sec , eye cannot distinguish them
separately. This fact is taken into
account in motion pictures.
C. According to Rayleigh criterion,
resolving limit of eye $\theta=1.22 \lambda / d$, where λ is wavelength of light values of
λ and d for eye, it turns to be one minute.

D. All options are correct.

Answer: D

37. The focal length of a normal eye lens is about
A. $1 m m$
B. 2 cm
C. 25 cm
D. $1 m$

Answer: B
38. When we see an object, image formed on
the retina is
(i) real (ii) virtual
(iii) erect (iv) inverted
A. $(i),(i i)$
B. $(i i),(i i i)$
C. $(i i),(i v)$
D. $(i),(i v)$

Answer: D

39. The maximum focal length of the eye lens of a person is greater than its distance from the retina. The eye is
A. always strained in looking at an object
B. strained for objects at large distance
only
C. strained fro objects at short distance
only
D. unstrained for all distances

D Watch Video Solution

40. The human eye has a lens which has
A. soft protion at its centre
B. hard surface
C. varying refractive index
D. constant refractive index
41. The resolving limit of eye is 1 min . At a distance of $x k m$ from the eye, two persons stand with a lateral separation of $3 m$. For the two persons to be just resolved by the naked eye, x shuold be
A. 10 km
B. 20 km
C. 15 km
D. 30 km

Answer: A

- Watch Video Solution

42. Two point white dots are 1 mm apart on a black paper. They are viewed by eye of pupil diameter 3mm. Approximately, what is the maximum distance at which these dits can be resolved by the eye? [Take wavelelngth of light $=500 \mathrm{~nm}$]
A. $6 m$
B. $3 m$
C. $5 m$
D. $1 m$

Answer: C

D Watch Video Solution

43. An astronaut is looking down on earth's
surface from a space shuttle at an altitude of

400 km . Assuming that the astronaut's pupil
diameter is 5 mm and the wavelength of visible light is 500 nm . The astronaut will be able to resolve linear object of the size of about.
A. $0.5 m$
B. $5 m$
C. 50 m
D. 500 km

Answer: C

44. 1.

Identify the wrong description of the above figures
A. 1 represents farsightedness

B. 2 correction for shorsightedness

C. 3respresents farsightedness
D. 4correction for farsightedness

Answer: A

D Watch Video Solution

45. Mark the correct options
(i) If the far point goes ahead, the power of the divergent lens should be reduced
(ii) If the near point goes ahead, the power of
the convergent lens should be reduced
(iii) If the far point is $1 m$ away from the eye, divergent lens should be used
(iv) If the near point is $1 m$ away from the eye, divergent lens should be used
A. $(i),(i i)$
B. $(i),(i i i)$
C. $(i i),(i v)$
D. $(i),(i v)$

Answer: B
46. In the case of hypermetropia
(i) the image of a near object is formed behind
the retina
(ii) the image of a distant object is formed in
front of the retina
(iii) a concave lens should be used fro correction
(iv) a concave lens should be used for correction
A. $(i),(i i)$
B. $(i),(i i i)$
C. $(i i),(i v)$
D. $(i),(i v)$

Answer: D

- Watch Video Solution

47. Astigmatism for a human eye can be removed by using
A. concave lens
B. convex lens
C. cylindrical lens
D. prismatic lens

Answer: C

- Watch Video Solution

48. A man, wearing glasses of power $+2 D$ can read clearly a book placed at a distance of 40 cm from the eye. The power of the lens
required so that he can read at 25 cm from the eye is
A. $+4.5 D$
B. +4.0 D
C. $+3.5 D$
D. +3.0 D

Answer: C
(Watch Video Solution
49. A person whose far-point is at 30 cm wants to read at 50 cm . The power of the lens should be

> A. $-1.0 D$
> B. $-1.33 D$
> C. $-1.62 D$
> D. $-2.0 D$

Answer: B

D Watch Video Solution
50. A person wears glasses of power $-2.5 D$.

The defect of the eye and the far point of the person without the glasses are, respectively
A. farsightedness, 40 cm
B. nearsightedness, 40 cm
C. astigmatism, 40 cm
D. nearsightedness, 250 cm

Answer: B

- Watch Video Solution

51. A far-sighted man can see clearly at a distance of 1.0 m . The power of the lens that would make him see clearly at a distance of $0.2 m$ is
A. $4 D$
B. $-4 D$
C. $6 D$

$$
\text { D. }-6 D
$$

Answer: A
52. The near point of a person is 50 cm and the
far point is 1.5 m . The spectacles required for reading purpose and for seeing distant objects are respectively

$$
\begin{aligned}
& \text { A. }+2 D,-\frac{2}{3} D \\
& \text { B. }+\frac{2}{3} D,-2 D \\
& \text { C. }-2 D,+\frac{2}{3} D \\
& \text { D. }-\frac{2}{3} D,+2 D
\end{aligned}
$$

Answer: A

D Watch Video Solution

53. An eye specialist prescribes spectacles
having combination of convex lens of focal
length 40 cm in contact with a concave lens of
focal length 25 cm . The power of this lens combination in diopters is
A. +1.5
B. -1.5

C. +6.67

$$
\text { D. }-6.67
$$

Answer: B

- Watch Video Solution

54. How should people wearing spectacles
work with a microscope
A. they cannot use the microscope at all
B. they should keep on wearing their spectacles
C. they should take off spectacles
D. (2) and (3) are both way

Answer: C

D Watch Video Solution
55. Chromatic aberrations in the formation of image by a lens arise becauses
A. of non-paraxial rays
B. radii of curvatures of the two sides are not the same
C. of the defect in grinding
D. the focal length varies with wavelength

Answer: D

- View Text Solution

56. Which of the following quantities related
to a lens depend on the wavelength or wavelengths of the incident light?
(Choose the incorrect option)
A. power
B. focal length
C. chromatic aberration
D. radii of curvature

Answer: D

57. Let f_{v} and f_{r} are the focal lengths of a convex lens for violet and red lights respectively. If F_{v} and F_{r} are the focal lengths of a concave lens for violet and red light respectively, then
A. $f_{B}>f_{R}$ and $F_{B}>F_{R}$
B. $f_{B}<f_{R}$ and $F_{B}>F_{R}$
C. $f_{B}>f_{R}$ and $F_{B}<F_{R}$
D. $f_{B}<f_{R}$ and $F_{B}<F_{R}$

Answer: D

D Watch Video Solution

58. An achromaic convergent system of focal length +20 cm is made of two lenses (in contact) of materials having dispersive powers in the ratio $1: 2$.Their focal lenths must be respectively
A. $10 \mathrm{~cm},-20 \mathrm{~cm}$
B. $20 \mathrm{~cm}, 10 \mathrm{~cm}$

C. $-10 \mathrm{~cm},-20 \mathrm{~cm}$

D. $20 \mathrm{~cm},-10 \mathrm{~cm}$

Answer: A

D Watch Video Solution

59. A combination of two thin lenses of the same material with focal lengths f_{1} and f_{2}, arranged on a common axis minimizes chromatic aberration, if the distance between them is
A. $\frac{\left(f_{1}+f_{2}\right)}{4}$
B. $\frac{\left(f_{1}+f_{2}\right)}{2}$
C. $\left(f_{1}+f_{2}\right)$
D. $2\left(f_{1}+f_{2}\right)$

Answer: B

D Watch Video Solution

60. The dispersive powers of crown and flint glasses are 0.02 and 0.04 respectively. In an achromatic combination of lenses the focal
length of flint glass lens is 40 cm . The focal length of crown glass lens will be
A. -20 cm
B. +20 cm
C. -10 cm
D. +10 cm

Answer: A
(Watch Video Solution
61. The dispersive power of the material of lens
of focal length 20 cm is 0.8 . The longitudinal chromatic aberration of the lens is
A. 0.08 cm
B. $0.08 / 20 \mathrm{~cm}$
C. 1.6 cm
D. 0.16 cm

Answer: C

D Watch Video Solution
62. Spherical aberration in a thin lens can be reduced by
A. using monchromatic light
B. using a doublet combination
C. using a circular annular mask over lens
D. increasing the size of lens

Answer: C

D Watch Video Solution

63. Spherical aberration in a lens
A. is minimum when most of the deviation
is at the first surface
B. is minimum when most of the deviation
is at the second surface
C. is minimun when the total deviation is
equally distributed over the two surface
D. does not depend on the above
consideration

Answer: A
(D) Watch Video Solution

