©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS

(HINGLISH)

WAVE NATURE OF LIGHT

Example

1. Two sources of intensity I and 4I are used in
an interference experiment. Find the intensity
at a point where the waves from two sources
superimpose with a phase difference of (a)
zero, (b) $\pi / 2$, (c) π and (d) ratio of maximum and minimum intensity.

D Watch Video Solution

2. Two coherent sources of light of intensity ratio β produce interference pattern. Prove that in the interferencepattern
$\frac{I_{\max }-I_{\min }}{I_{\max }+\left(I_{\min }\right)}=\frac{2 \sqrt{\beta}}{1+\beta}$
where $I_{\max }$ and $I_{\min }$ are maximum and mininum intensities in the resultant wave.

D Watch Video Solution

3. A narrow monochromatic beam of light of intensity 1 is incident on a glass plate as shown in figure Another identical glass plate is kept close to the first one and parallel to it.

Each glass plate reflects 25% of the light incident on it and transmits intensities in the interference pattern formed by two beams
obtained after one reflection at each plate.

- Watch Video Solution

4. In Young's double slit expriment, separation between slits is 1 mm , distance of screen from
slits is 2.5 m . If wavelength of incident light is

400 nm . Determine
(a) Fringe width.
(b) Angular frige width.
(c) Distance between $4^{\text {th }}$ bright fringe and $3^{\text {rd }}$ dark fringe.
(d) If whole arrangement is immersed in water ($\mu_{\omega}=4 / 3$), new angular fringe width.

- Watch Video Solution

5. In a two slit experiment with
monochromatic light, fringes are obtained on
a screen placed at some distance from the
slits. If the screen is moved by $5 \times 10^{-2} \mathrm{~m}$, towards the slits, the change in fringe width is
$3 \times 10^{-5} \mathrm{~m}$. If separation between the slits is $10^{-3} \mathrm{~m}$, the wavelength of light used is

- Watch Video Solution

6. A beam of light consisting of two wavelengths 650 nm and 520 nm is used to obtain interference fringes in a Young's double slit experiment.
(a) Find the distance of the third bright fringe
on the screen from the central maximum for the wavelength 650 nm .
(b) What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide? The distance between the slits is 2 mm and the distance
between the plane of the slits and screen is

120 cm.

D Watch Video Solution

7. White coherent light $(400 \mathrm{~nm}-700 \mathrm{~nm})$ is sent through the slits of a YDSE. $D=0.5 \mathrm{~mm}$,
$D=50 \mathrm{~cm}$. There is a hole in the screen at a point 1.0 mm away (along the width of the fringes) from the central line.
(a) Which wavelength will be absent in the light coming from the hole?
(b) Which wavelength(s) will have a strong intensity?

D Watch Video Solution

8. In a YDSE, the separation between slits is
$2 m m$ where as the distance of screen from
the plane of slits is 2.5 m . Light of wavelengths
in the range $200-800 \mathrm{~nm}$ is allowed to fall on
the slits. Find the wavelengths in the visible region that will be present on the screen at 1 mm from central maximum. Also find the wavelength that will be present at that point of screen in the infrared as well as in the ultraviolet region.

D Watch Video Solution

9. White light is used to illuminate the two
slits in a Young's double slit experiment. The
separation between the slits is b and the
screen is at a distance $\mathrm{d}^{\prime}(\mathrm{gtb})$ from the slits. At
a point on the screen directly in front of one of the slits, certain wavelength are missing. Some of these missing wavelength are

- Watch Video Solution

10. In a Young's double slit interference experiment the fringe pattern is observed on a screen placed at a distance D from the slits.

The slits are separated by a distance d and are
illuminated by monochromatic light of
wavelength λ. Find the distance from the central point where the intensity falls to (a) half the maximum, (b) one fourth of the maximum.

D Watch Video Solution

11. In an interference arrangement similar to double-slit experiment, S_{1} and S_{2} are
illuminated with coherent source microwave source each of frequency 1 MHz . the sources are synchronized to have zero phase
difference. This slits are separated by distance
$d=150.0 \mathrm{~m}$ The intensity $I(\theta)$ is measured as
a funciton of θ, where θ is defined as shown in
figure. If I_{0} is maximum intensity, calculate
$I(\theta)$

For :
a. $\theta=0$ b. $\theta=30^{\circ}$
c. $\theta=90^{\circ}$

- Watch Video Solution

12. In figure S is a monochromatic point source emitting light of wavelength $\lambda=500 \mathrm{~nm}$. A thin lens of circular shape and focal length
0.10 m is cut into two identical halves L_{1} and
L_{2} by a plane passing through a doameter.
The two halves are placed symmetrically about the central axis $S O$ with a gap of 0.5 mm . The distance along the axis from A to L_{1} and L_{2} is
0.15 m , while that from L_{1} and L_{2} to O is
1.30 m . The screen at O is normal to $S O$.
(a) If the $3^{\text {rd }}$ intensity maximum occurs at point P on screen, find distance $O P$.
(b) If the gap between L_{1} and L_{2} is reduced
from its original value of 0.5 mm , will the distance $O P$ increases, devreases or remain
the same?

- Watch Video Solution

13. Two coherent radio-frequency point sources separated by $2.0 m$ are radiating in phase with $\lambda=0.50 \mathrm{~m}$. A detector moves in a circuit of large radius around the two sources in a plane containing them as shown in figure.

Find (a) the angular position of interference
maxima for $0 \leq \theta \leq 90^{\circ}$ and (b) number of maximum in the range $\left(-\frac{\pi}{2}\right) \leq \theta \leq \frac{\pi}{2}$ and in one complete rotation.

D Watch Video Solution

14. Two coherent point sources S_{1} and S_{2} vibrating in phase emit light of wavelength λ.

The separation between the sources is 2λ.

Consider a line passing through S_{2} and perpendicular to line $S_{1} S_{2}$. Find the position of farthest and nearest minima.
\square
15. figure shows three equidistant slits
illuminated by a monochromatic parallel beam of light. Let $B P_{0}-A P_{0}=\frac{\lambda}{3}$ and $D \gg \lambda$.

(a) Show that $\mathrm{d}=\sqrt{(2 \lambda D) / 3}$
(b) Show that the intensity at P_{0} is three times
the intensity due to any of the three slits
individually.
16. A parallel beam of monochromatic light is used in a Young's double slit experiment. The slits are separated by a distance d and the screen is placed parallel to the plane of the slits. Show that if the incident beam makes an angle $\theta=\sin ^{-1}\left(\frac{\lambda}{2 d}\right)$ with the normal to the plane of the slits, there will be a dark fringe at the centre Po of the pattern.
17. A coherent parallel beam of microwaves of wavelength $\lambda=0.5 \mathrm{~mm}$ falls on aYoung's double- slit apparatus. The separation between the slits is 1.0 mm . The intensity of microwaves is measured on a screen placed parallel to the plane of the slits at a distance of 1.0 m from it as shown in Fig. 2.42.

If the incident beam makes an angle or 30°
with the x-axis (as in the dotted arrow shown
in the figure), find the y-coordinates of the first
minima on either side of the central maximum.

Screen

- Watch Video Solution

18. In YDSE using monochromatic light the fringe pattern shifts by a certain distance on the screen when a mica sheet of refractive
index 1.6 and thickness 1.964 microns is
introduced in the path of one of the interfering waves. The mica sheet is then removed and the distance between the plane of slits and the screen is doubled. It is found that the distance between successive maxima
(or minima) now is the same as the observed fringe shift upon the introduction of the mica sheet. Calculate the wavelength of the light.
19. A monochromatic light of $\lambda=500 \mathrm{~nm}$ is incident on two identical slits separated by a distance of $5 \times 10^{-4} \mathrm{~m}$. The interference pattern is seen on a screen placed at a distance of $1 m$ from the plane of slits. A thin glass plate of thickness $1.5 \times 10^{-6} m$ and refractive index $\mu=1.5$ is placed between one of the slits and the screen. Find the intensity at the centre of the screen if the intensity is I_{0} in the absence of the plate. Also find the lateral shift of the central maxima and number of fringes crossed through centre.

- Watch Video Solution

20. A thin paper of thickness 0.02 mm having a refractive index 1.45 is pasted across one of the slits in a YDSE. The paper transimits $4 / 9$ of the light energy falling on it.
a. Find the ratio of maximum intensity to the minimum intensity in interference pattern.
b. How many fringes will cross through the center if an indentical paper piece is pasted on the other slit also? The wavelength of the light used is 600 nm .

- Watch Video Solution

21. In YDSE, the sources is red ligth of wavelength $7 \times 10^{-7} \mathrm{~m}$. When a thin glass plate of refractive index 1.5 is put in the path of one of the interfering beams, the central bright fringe shifts by $10^{-3} \mathrm{~m}$ to the position previously occupied by the 5th bright fringe.

If the source is now changed to green light of wavelength $10^{-7} \mathrm{~m}$, the central fringe shifts to
a position initially occupied by the sixth bright fringe due to red ligth. What will be refractive
index of glass plate for the second ligth for changed source of ligth?

D Watch Video Solution

22. A double slit apparatus is immersed in a liquid of refractive index 1.33 . It has slit and
the screen 1 mm . The slits are illuminated by a parallel beam of light whose wavelength in air is $6300 \AA$
a. calculate the fringe width.
b. One of the slits of the apparatus is covered
by a thin glass sheet of refractive index 1.53.

Find the smallest thickness of the sheet to bring athe adjacent minima on the axis.

- Watch Video Solution

23. A YDSE is performed in a medium of refractive index $4 / 3$, A light of 600 nm wavelength is falling on the slits having 0.45 nm separation. The lower slit S_{2} is covered b a
thin glass plate of thickness 10.4 mm and refractive index 1.5. The interference pattern is
observed on a screen placed 1.5 m from the slits as shown in figure. (All the wavelengths in this problem are for the given medium of refractive index $4 / 3$, ignore absorption.)

Now, if 600 nm , find the wavelength of the ligth that forms maximum exactly at point 0.
24. In a modified Young's double-slit experiment, a monochromatic uniform and parallel beam of light of wavelength $6000 \AA$ and intensity $(10 / \pi)$ W m^{-2} is incident normally on two circular apertures A and B of radii 0.001 m and 0.002 m , respectively. A perfectly transparent film of thickness $2000 \AA$ and refractive index 1.5 for the wavelength of $6000 \AA$ is placed in front of aperture A (see the figure). Calculate the power (in mW) received at the focal spot F of the lens. Then lens is
symmetrically placed with respect to the aperture. Assume that 10% of the power received by each aperture goes in the original direction and is brought to the focal spot.

- Watch Video Solution

25. In Young's experiment the upper slit is covered by a thin glass plate of refractive index 1.4 while the lower slit is covered by another glass plate, having the same thickness
as the first one but having refractive index 1.7
interference pattern is observed using light of wavelength $5400 \AA$

It is found that point P on the screen where the central maximum $(n=0)$ fell before the glass plates were inserted now has $3 / 4$ the original intensity. It is further observed that what used to be the fourth maximum earlier,
lies below point P while the fifth minimum lies above P .

Calculate the thickness of glass plate. (Absorption of light by glass plate may be neglected.

26. A vessel $A B C D$ of 10 cm width has two small
slits S_{1} and S_{2} sealed with idebtical glass
plates of equal thickness. The distance between the slits is 0.8 mm . POQ is the line perpendicular to the plane $A B$ and passing through O, the middle point of S_{1} and S_{2}. A monochromatic light source is kept at
$S, 40 \mathrm{~cm}$ below P and $2 m$ from the vessel, to
illuminate the slits as shown in the figure.

Calculate the position of the central bright fringe on the other wall CD with respect of the
line $O Q$. Now, a liquid is poured into the
vessel and filled up to $O Q$. The central bright
fringe is fiund to be at Q . Calculate the refractive index of the liquid.

D Watch Video Solution

27. A beam of light of wavelength 600 nm from a distant source
falls on a single slit 1.0 mm wide and the resulting diffraction pattern is
observed on a screen $2 m$ away. What is the distance between the first dark
fringe on either side of the central bright fringe?

D Watch Video Solution
28. A screen is placed 50 cm from a single slit,
which is illuminated with $6000 \AA$ light. If distance between the first and third minima in
the diffraction pattern is 3.0 mm , what is the width of the slit?

D Watch Video Solution

29. Angular width of central maximum in the

Fraunhoffer diffraction pattern of a slit is measured. The slit is illuminated by light of wavelength $6000 \AA$. When the slit is
illuminated by light of another wavelength, the angular width decreases by 30%.

Calculate the wavelength of this light. The
same decrease in the angular width of central
maximum is obtained when the original apparatus is immersed in a liquid. Find the refractive index of the liquid.

D Watch Video Solution

30. A lens of focal length $1 m$ forms Fraunhofer diffraction pattern of a single slit of width
0.04 cm in its focal plane. The incident light contains two wavwlength λ_{1} and λ_{2}. It is found that the fourth minimum crresponding
to λ_{1} and the fifth minimum corresponding to
λ_{2} occur at the same point 0.5 cm from the central maximum. Compute λ_{1} and λ_{2}

D Watch Video Solution

31. When sunlight is incident on water surface
at glacing angle of 37°, the reflected light is
found to be completely plane-polarised.
Determine (a) the refractive index of water and
(b) angle of refraction.

D Watch Video Solution
32. Two polaroids are oriented with their planes perpendicular to incident light and transmission axis making an angle of 30° with each other. What fraction of incident unpolarised light transmitted?

D Watch Video Solution

33. Disuss the intensity of transmitted light when a polaroid sheet is rotated between two crossed polaroids ?

- Watch Video Solution

34. Unpolarized light of intensity $32 \mathrm{Wm}^{-3}$ passes through three polarizers such that the transmission axis of the last polarizer is crossed with the first. If the intensity of the emerging light is $3 \mathrm{Wm}^{-2}$, what is the angle between the transmission axces of the first two polarizers ? At what angle will the transmitted intensity be maximum ?

1. Lifgt is

A. wave phenomenon
B. particle phenomenon
C. both particle and wave phenomenon
D. none

Answer: C

2. The speed of light depends

A. on elasticity of the medium only
B. on inertia of the medium only
C. on elasticity as well as inertia
D. neither on elasticity nor on inertia

Answer: D

3. The equation of a light wave i written as

$$
y=A \sin (k x-\omega t) . \text { Here y represents }
$$

A. displacement of either particles
B. pressure in the medium
C. density of the medium
D. electric field or magnetic field

Answer: D

D Watch Video Solution

4. When light is refracted into a medium
A. its wavelength and frequency remain
unchanged
B. its wavelength increases but frequency
remain unchanged
C. its wavelength decreases but frequency
remain unchanged
D. its wavelength anf frequency both
decrease

Answer: C

D Watch Video Solution

5. Wave nature of light follows because
A. light rays travel in a straight line
B. light exhibits the phenomena of reflection and refraction
C. light exhibits the phenomenon of interference, diffraction, polarisation etc.
D. light causes the phenomenon of photoelectric effect

Answer: C

D Watch Video Solution

6. Ray optics is valid when characteristic dimensions are
A. of the same order as the wavelength of light
B. much smaller than the wavelength of
light
C. much large than the wavelength of light
D. of the order of 1 mm

Answer: C

- Watch Video Solution

7. Light appears to travel in straight lines since
A. it is not absorbed by the atmosphere
B. it is reflected by the atmosphere
C. its wavelength is very small
D. its velocity is very large

Answer: C

D Watch Video Solution

8. The velocity of light in diamond, glass and water decreases in the following order
A. watergt glassgt diamond
B. diamondgt glassgt water
C. diamondgt watergt glass
D. watergt diamondgt glass

Answer: A

- Watch Video Solution

9. Choose the correct option:
A. Light of single wavelength is called monochromatic light.
B. The best monochromatic light are

LASERs in which the spread of
wavelength is very small but not zero.
C. The wavelength of visible light is around

380-780 nm. The obstacles or openings
encountered in normal situations are
generally of the order of mm. As
wavelength is several is thousands times
smaller than the usual obstacles or
openings. The diffraction (bending of
light) is almost neglible and light waves
propagate in straight lines and cast shadows of obstacles. This is the geometrical optics approximation. By
the above analysis rectilinear propagation of light can be explained. D. All options are correct.

Answer: D

10. Choose the correct option:
(i) A surface on which the wave disturbance in same phase at all points is called a wavefront.
(ii) The direction of a wave at a point is perpendicular to the wavefront through that point.
(iii) The wavefronts of a wave originating from
a point source is spherical.

The wavefronts for a wave going along a fixed direction are planes perpendicular to that direction.
A. (i), (ii)
B. (ii), (iii), (iv)
C. (i), (ii), (iii)
D. all

Answer: D

D Watch Video Solution

11. A wavefront and a ray of light are
A. perpendicular to each other

B. parallel to each other

C. converging towards each other
D. diverging from one another

Answer: A

D Watch Video Solution
12. Huygen's principle of secondary waves
A. allows us to find the focal length of a
thick lens
B. gives us the magnifying power of a microscope
C. is a geometrical method to find the position of a wavefront
D. is used to determine the velocity of lifgt

Answer: C

D Watch Video Solution

13. Huygen's priciple of secondary wavelets may be used to
A. find the velocity of light in vacuum
B. explain the particle behaviour of light
C. find the new position of the wavefront
D. explain photoelectric effect

Answer: C

D Watch Video Solution

14. Which one of the following phenomena is not explained by Huygens construction of wavefront?
A. refraction
B. reflection
C. diffraction
D. origin of spectra

Answer: D

15. By Huygen's wave theroy of light, we cannot explain the phenomenon of
A. interference
B. diffraction
C. photoelectric effect
D. polarisation

Answer: C

D Watch Video Solution

16. In the adjoining figure, a wavefront $A B$ moving in air is incident on a plane glass
surface XY. Its position CD, after refraction through a glass slab is shown also along with the normals drawn at A and D. The refractive index of glass with respect to air will be equal to

A. $\frac{B D}{A C}$
B. $\frac{A B}{C D}$
C. $\frac{A B}{A D}$
D. $\frac{A C}{A D}$

Answer: A

D Watch Video Solution

17. In the adjacent diagram, CP represents a wavefront and $A O \& B P$, the corresponding two rays. Find the condition on θ for
constructive interference at P between the ray

BP and reflected ray OP.

A. $\cos \theta=3 \lambda / 2 d$
B. $\cos \theta=\lambda / 4 d$
C. $\sec \theta-\cos \theta=\lambda / d$
D. $\sec \theta-\cos \theta=4 \lambda / d$

Answer: B

- Watch Video Solution

18. Which of the following sources gives best mionochromatic light?
A. A candle
B. A bulb
C. A mercury tube
D. A laser

Answer: D

- Watch Video Solution

19. A laser beam is used for carrying our
surgery because it
A. many wavelength
B. un-coordinated wavelength
C. coordinated waves of exactly the same
wavelength

D. divergent beams

Answer: C

D Watch Video Solution

20. Two sources of light are said to be coherent if the waves produced by them have the same
A. wavelength
B. amplitude

C. wavelength and amplitude

D. wavelength and a constant phase difference

Answer: D

- Watch Video Solution

21. To deminstrate the phenimenon of interference, we require two sources which emit radiation
A. two sources which emit radiations of the
same frequency
B. two sources which emit radiations of nearly the same frequency
C. two sources which emit radiations of the
same frequency and have a definite phase relationship
D. two sources which emit radiations of
different wavelengths

- Watch Video Solution

22. For the sustained interference of light, the necessary condition is that the two sources should
A. the same frequency
B. nearly the same frequency
C. the same frequency and have a definite
phase relationship
D. different wavelengths

Answer: C

D Watch Video Solution

23. Four light waves are represented by
i. $y=a_{1} \sin \omega t$
ii. $y=a_{2} \sin (\omega t+\varepsilon)$
iii. $y=a_{1} \sin 2 \omega t$
iv. $y=a_{2} \sin 2(\omega t+\varepsilon)$ Inteference fringes may
be observed due to superposition of
A. (i) and (ii), (iii) and (iv)
B. (i) and (iii), (iii) and (iv)
C. (ii) and (iv), (iii) and (iv)
D. (iii) and (iv) only

Answer: A

D Watch Video Solution
24. Young's experiment establishes that
A. light consists of waves
B. light consists of particles
C. light is neither particle nor wave
D. light is both particle and wave

Answer: A

D Watch Video Solution

25. The phenomenon of interference is shown
by
A. longitudinal mechanical waves only
B. transverse machanical transverse waves only
C. non-mechanical transverse waves only
D. all the above types of waves

Answer: D

D Watch Video Solution
26. In the interference pattern, energy is
A. created at the positions of maxima
B. destroyed at the positions of maxma
C. conserved but is redistributed
D. not conserved

Answer: C

D Watch Video Solution

27. For observing sustained interferencr with good contrast, which of the following option are correct?
(i) The sources must be coherent i.e. the phase
difference must remain constant.
(ii) The frequencies, wavelengths and amplitudes of interfering waves must be equal and light must be monochromatic.
(iii) The source must be close to each other and must be narrow.
(iv) If the interfering beams are polarised, they must be in the same state of polarisation.
A. (i), (ii)
B. (ii), (iii), (iv)
C. (i), (ii), (iii)

D. all

Answer: D

D Watch Video Solution

28. The contrast in the fringes in an interference pattern depends on
A. fringe width
B. wavelength
C. intensity ratio of the sources
D. distance between the slits

Answer: C

D Watch Video Solution

29. A Young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is
A. straight line
B. parabola

C. hyperbola

D. circle

Answer: C

D Watch Video Solution

30. If two slightly, different wavelengths are present in the light used in Young's double-slit experiment, then
A. the sharpness of fringes will more than
the case when only one wavelength is
prasent
B. the sharpness of fringes will decrease as
we move away from the central fringe
C. the central fringe will be white
D. the central fringe will be dark

Answer: C

31. A beam of electron is used $Y D S E$ experiment . The slit width is d when the velocity of electron is increased ,then
A. no interference is observed
B. fringe width increases
C. fringe width decreases
D. fringe width remains same

Answer: C

32. If three slits are used in Young's experiment instead of two, we get
A. no fringe pattern
B. the same fringe pattern as that with two slits
C. a pattern with fringe width reduced to
half of that in the two slit pattern
D. alternate bright and dim fringes

Answer: D

D Watch Video Solution

33. If a torch is used in place of monochromatic light in Young's experiment what will happen?
A. fringes will appear as for
monochromatic light
B. fringes will appear for a moment and
then they will disappear
C. no fringes will appear

D. only bright fringes will appear

Answer: C

D Watch Video Solution

34. If the source of light used in a young's
double slit experiment is changed from red to
violet
A. the fringe will become brighter
B. consecutive fringes will come closer

C. the intensity of minima will increase

D. the central bright fringe will become a

 dark fringe
Answer: B

D Watch Video Solution

35. A double-slit interference experiment is set
up in a chamber that can be completely evacuted. With monochromatic light, an interference pattern is observed when the
container is open to air. As the container is evacuated, a careful observer will note that the interference fringes
A. do not change at all
B. move slightly farther apart
C. move slightly closer together
D. disappear completely

Answer: B

D Watch Video Solution
36. Light of wavelength λ in air enters a medium of refractive index μ. Two points in
this medium, lying along the path of this light, are at a distance of x apartThe phase difference between these point is

$$
\begin{aligned}
& \text { A. } \mu\left(\frac{2 \pi}{\lambda}\right) x \\
& \text { B. } \frac{1}{\mu}\left(\frac{2 \pi}{\lambda}\right) x \\
& \text { C. }(\mu-1)\left(\frac{2 \pi}{\lambda}\right) x \\
& \text { D. } \frac{1}{\mu-1}\left(\frac{2 \pi}{\lambda}\right) x
\end{aligned}
$$

37. Ratio waves originating from sources S_{1} and S_{2} having zero phase difference and common wavelength λ will show completely destructive interference at a point P is $S_{1} P-S_{2} P$ is
A. 5λ
B. 2λ
c. $\frac{3 \lambda}{4}$
D. $\frac{11 \lambda}{2}$

Answer: D

D Watch Video Solution

38. In the double-slit experiment, the distance of the second dark fringe from the central line are 3 mm . The distance of the fourth bright fringe from the central line is
A. 6 mm
B. 8 mm
C. 12 mm

D. 16 mm

Answer: B

D Watch Video Solution

39. In a Young's double slit experiment (slit
distance d) monochromatic light of
wavelength λ is used and the figure pattern observed at a distance L from the slits. The angular position of the bright fringes are

$$
\text { A. } \sin ^{-1}\left(\frac{N \lambda}{d}\right)
$$

> B. $\sin ^{-1}\left(\frac{\left(N+\frac{1}{2}\right) \lambda}{d}\right)$
> C. $\sin ^{-1}\left(\frac{N \lambda}{L}\right)$
> D. $\sin ^{-1}\left(\frac{\left(N+\frac{1}{2}\right) \lambda}{L}\right)$

Answer: A

- Watch Video Solution

40. In Young's double slit experiment, the phase difference between the light waves
reaching third bright fringe from the central fringe will be $(\lambda=6000 \AA)$
A. zero
B. 2π
C. 4π
D. 6π

Answer: D
(Watch Video Solution
41. In the figure is shown Young's double slit experiment. Q is the position of the first bright fringe on the right side of $\mathrm{O} . \mathrm{P}$ is the $11^{\text {th }}$ bright fringe on the other side, as measured from Q. If the wavelength of the light used is 600 nm . Then $S_{1} B$ will be equal to

A. $6 \times 10^{-6} m$
B. $6.6 \times 10^{-6} \mathrm{~m}$
C. $3.138 \times 10^{-7} m$
D. $3.144 \times 10^{-7} m$

Answer: A

D Watch Video Solution
42. The Young's double slit experiment is carried out with light of wavelength $5000 \AA$.

The distance between the slits is 0.2 mm and
the screen is at 200 cm from the slits. The central maximum is at $y=0$. The third maximum will be at y equal to
A. 1.67 cm
B. 1.5 cm
C. 0.5 cm
D. 5.0 cm

Answer: B

D Watch Video Solution
43. Two slits at a distance of 1 mm are illuminated by a light of wavelength
$6.5 \times 10^{-7} \mathrm{~m}$. The interference fringes are observed on a screen placed at a distance of
$1 m$. The distance between third dark fringe and fifth bright fringe will be
A. 0.65 mm
B. 1.63 mm
C. 3.25 mm
D. 4.88 mm

Answer: B

D Watch Video Solution

44. A beam with wavelength λ falls on a stack of partially reflecting planes with separation d.

The angle θ that the beam should make with
planes so that the beams reflected from successive planes may interfere constructively
is (where $\mathrm{n}=1,2, \ldots$)

A. $\sin ^{-1}\left(\frac{n \lambda}{d}\right)$
B. $\tan ^{-1}\left(\frac{n \lambda}{d}\right)$
C. $\sin ^{-1}\left(\frac{n \lambda}{2 d}\right)$
D. $\cos ^{-1}\left(\frac{n \lambda}{2 d}\right)$

Answer: C

D Watch Video Solution

45. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase
behind X by $2 \pi d$ radian. If there is a maximum in direction D, the distance $X O$ using n as an
integer is given by

A. $\frac{\lambda}{2}(n-l)$
B. $\lambda(n+l)$
C. $\frac{\lambda}{2}(n+l)$
D. $\lambda(n-l)$

- Watch Video Solution

46. Two ideal slits S_{1} and S_{2} are at a distance d apart, and illuninated by light of wavelength
λ passing through an ideal source slit S placed on the line through S_{2} as shown. The distance between the planes of slits and the source slit is D. A screen is held at a distance
D from the plane of the slits. The minimum value of d for which there is darkness at O is
$(d \ll D)$

A. $\sqrt{\frac{3 \lambda D}{2}}$
B. $\sqrt{\lambda D}$
c. $\sqrt{\frac{\lambda D}{2}}$

D. $\sqrt{3 \lambda D}$

Answer: B

D Watch Video Solution

47.

Lights
of
wavelengths
$\lambda_{1}=4500 \AA, \lambda_{2}=6000 \AA$ are sent through a double slit arrangement simultaneously. Then
A. no interference pattern will be formed
B. the third bright fringe of λ_{1} will coincide with fourth bright fringe of λ_{2}
C. the third bright fringe of λ_{2} will coincide with fourth bright fringe of λ_{1}
D. the fringes of wavelength λ_{1} will be wider than fringes of wavelength λ_{2}

Answer: C

D Watch Video Solution

48. In Young's double slit experiment, the wavelength of red light is $5200 \AA$. The value of n for which nth bright band due to red light coincides with $(n+1)$ th bright band due to blue light $(\lambda=7800$ Angstrom $)$, is
A. 2
B. 3
C. 4
D. 5

- Watch Video Solution

49. The incident light on a Yound's experiment
has wavelengths 400 nm and 600 nm . The distance between the two interfering sources
is 2 mm and screen is at a distance of 1 m . The position from central fringe, where bright fringes of two wavelengths coincide first is at a distance of
A. 0.6 mm
B. 0.3 mm
C. 6 mm
D. 3 mm

Answer: A

D Watch Video Solution

50. In Young's experiment, the distance between the slits is 0.025 cm and the distance of the screen from the slits is 100 cm . If two distance between their second maxima in cm is
A. 0.048
B. 0.096
C. 0.12
D. 0.192

Answer: B

D Watch Video Solution
51. White light is used to illuminate the two slits in a Young's
double slit experiment. The separation
between the slits is b and the screen is at
a distance $d(\gg b)$ from the slits. At a point on the screen directly in front of one of the slits, certain wavelengths are missing. Some of these missing wavelength are
A. (i), (ii)
B. (ii), (iii)
C. (i), (iii)
D. (ii), (iv)
52. A Young's double slit experiment is performed with white light.
A. The central fringe will be white
B. There will not be completely dark fringe
C. The fringe next to the central will be red
D. The fringe next to the central will be
violet

Answer: C

- Watch Video Solution

53. In Young's doble-slit experiment, if the monochromatic source of light is replaced by white light, then one sees
A. no interference fringe pattern
B. coloured fringes
C. black and white fringes

D. white central fringe surrounded by a few

coloured fringes on either side

Answer: D

D Watch Video Solution

54. A Young's double-slit set-up for interference shifted from air to within water.

Then the
A. fringe pattern disappears
B. fringe width decreases
C. fringe width increases
D. fringe width remains unchanged

Answer: B

D Watch Video Solution

55. In a YDSE, $\lambda=4000 \AA$, fringes observed have a width β. The light illuminating the setup now has $\lambda=6000 \AA$ and the separation between the interfering sources is halved.

What is the ratio of the distance between the screen and the interfering sources before and now if the fringe and now if the fringe width ramains unaltered
A. $1 / 3$
B. $3 / 1$
C. $3 / 4$
D. $2 / 3$

Answer: B
56. In Young's double slit experiment, the sepcaration between the slits is halved and
the distance between the slits and the screen
is doubled. The fringe width is
A. will not change
B. will become half
C. will be doubled
D. will become four times

Answer: D
57. Yong's double-slit experiment is carried out by using green, red and blue light, one color at a time. The fringe widths recorded are β_{G}, β_{R} and β_{B}, respectively. Then
A. $\beta_{G}>\beta_{B}>\beta_{R}$
B. $\beta_{B}>\beta_{G}>\beta_{R}$
C. $\beta_{R}>\beta_{B}>\beta_{G}$
D. $\beta_{R}>\beta_{G}>\beta_{B}$

Answer: D

- Watch Video Solution

58. In two separate set-ups of YDSE, using light of same wavelength, fringes of equal width are observed. If ratio of slit separation in the equal width are observed. If ratio of slit separation in the two is $2: 3$, the ratio of the distance between source and screen in the two set-ups is
A. $2: 3$
B. $3: 2$
C. $4: 9$
D. 9: 4

Answer: A

D Watch Video Solution

59. In a Young's double-slit experment, the fringe width is β. If the entire arrangement is
now placed inside a liquid of refractive index μ
, the fringe width will become
A. β
B. $\frac{\beta}{\mu}$
μ
C. $\frac{\beta}{\mu+1}$
D. $\frac{\beta}{\mu-1}$

Answer: B
(Watch Video Solution
60. In Young's double-slit experiment using
$\lambda=6000 \AA$, distance between the screen and
the source is 1 m . If the fringe-width on the screen is 0.06 cm , the distance between the two coherent sources is
A. 0.01 mm
B. 1 cm
C. 0.01 mm
D. 1 mm

Answer: D
61. The distance between two coherent sources is 0.1 mm . The fringe-width on a screen
1.2 m away from the source is 6.0 mm . The wavelength of light used is
A. $4000 \AA$
B. $5000 \AA$
C. $6000 \AA$
D. $7200 \AA$

Answer: B

- Watch Video Solution

62. An interference pattern is obtained by

Young's double-slit arrangement and the
fringe-width is β. If the distance between the slits is halved and the distance of the screen
fron the slits is made three times, the new fringe-width will be tripled
A. 0.25β
B. 2β
C. 6β
D. 8β

Answer: C

D Watch Video Solution

63. In Young's double-slit experiment, we get

60 fringes in the field of view if we use light of
wavelength $4000 \AA$. The number of fringes we
will get in the same field of view if we use light of wavelength $6000 \AA$ is
A. 40
B. 90
C. 60
D. 50

Answer: A
(Watch Video Solution
64. In a Young's double-slit experiment, let S_{1}
and S_{2} be the two slits, and C be the centre of
the screen. If $\angle S_{1} C S_{2}=\theta$ and λ is
wavelength, the fringe width will be
A. $\frac{\lambda}{\theta}$
B. $\lambda \theta$
C. $\frac{2 \lambda}{\theta}$
D. $\frac{\lambda}{2 \theta}$

Answer: A
65. The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double-slit experiment is
A. infinite
B. five
C. three
D. zero

Answer: B

D Watch Video Solution

66. In Young's double slit experiment, how many maximas can be obtained on a screen
(including the central maximum) on both sides
of the central fringe if $\lambda=2000 \AA$ and $d=7000 \AA ?$
A. 12
B. 7

C. 18

D. 4

Answer: B

- Watch Video Solution

67. In a Young's double-slit experiment, the
intensity ratio of maxima and minima is infinite. The ratio of the amlitudes of two sources
A. infinity
B. unity
C. two
D. cannot be predicted

Answer: B

D Watch Video Solution
68. Two coherent monochromatic light beams
of intensities 1 and 41 are superposed. The
maximum and minimum possible intensities in
the resulting beam are
A. ${ }^{\wedge} 4 \mathrm{I}$ and I
B. `5l and 31
C. 91 and I
D. 91 and 3I

Answer: C
(Watch Video Solution
69. Interference fringes are obtained due to
the interference of wave from two coherent sources of light with amplitudes a_{1} and $a_{2}\left(a_{1}=2 a_{2}\right)$. The ratio of the maximum and minimum intensities of light in the interference pattern is
A. 2
B. 4
C. 9
D. ∞

Answer: C

- Watch Video Solution

70. In the Young's double-slit experiment, the interference pattern is found to have intensity
ratio between gright and dark fringes as 9.

This implies that
(i) the intensities at the screen due to the two
slits are 5 units and 4 units respectively
(ii) the intensities st the screen due to the slits are 4 units and 1 unit respectively
(iii) the amplitude ratio is 3
(iv) the amplitude ratio is 2
A. (i), (ii)
B. (ii), (iii)
C. (i), (iii)
D. (ii), (iv)

Answer: D

D Watch Video Solution
71. In Young's double slit experiment, one of the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:

> A. $\frac{I_{m}}{9}(4+5 \cos \phi)$
> B. $\frac{I_{m}}{3}\left(1+2\left(\cos ^{2}\right) \frac{\phi}{2}\right)$
> C. $\frac{I_{m}}{5}\left(1+4\left(\cos ^{2}\right) \frac{\phi}{2}\right)$
> D. $\frac{I_{m}}{9}\left(1+8\left(\cos ^{2}\right) \frac{\phi}{2}\right)$

Answer: D

D Watch Video Solution

72. A ray of light intensity I is incident on a parallel glass-slab at a point A as shown in figure. It undergoes partial reflection and refraction. At each reflection 25% of incident energy is reflected. The rays $A B$ and $A^{\prime} B^{\prime}$
undergo interference. The ratio $I_{\max } / I_{\min }$ is

A. $4: 1$
B. 8:1
C. 7: 1
D. $49: 1$

Answer: D

73. In a YDSE with identical slits, the intensity of the central bright fringe is I_{0}. If one of the slits is covered, the intensity at the same point is
A. I_{0}
B. $I_{0} / 2$
C. $\frac{I_{0}}{4}$
D. $\frac{I_{0}}{2 \sqrt{2}}$

Answer: C

D Watch Video Solution

74. The maximum intensity of fringes in Young's experiment is I. If one of the slit is closed, then the intensity at that place becomes I_{o}. Which of the following relation is true?

$$
\text { A. } I=I_{0}
$$

$$
\text { B. } I=2 I_{0}
$$

C. $I=4 I_{0}$
D. (4)there is no relation between I and I_{0}

Answer: C

D Watch Video Solution

75. In Young's double slit experiment the intensity of light on the screen where the where the path difference is λ is $\mathrm{k}(\lambda$ being the wavelength of light used). The intensity at a point where the path difference is $\frac{\lambda}{4}$ will be
A. $I / 4$
B. $I / 2$
C. I
D. zero

Answer: B

D Watch Video Solution

76. In Young's double slit experiment intensity at a point is $\left(\frac{1}{4}\right)$ of the maximum intersity.

Angular position of this point is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}(\lambda / d) \\
& \text { B. } \sin ^{-1}(\lambda / 2 d) \\
& \text { C. } \sin ^{-1}(\lambda / 3 d) \\
& \text { D. } \sin ^{-1}(\lambda / 4 d)
\end{aligned}
$$

Answer: C

D Watch Video Solution

77. In Young's double slit experiment, the two
slits acts as coherent sources of equal amplitude A and wavelength λ. In another experiment with the same set up the two slits are of equal amplitude A and wavelength λ but are incoherent. The ratio of the intensity of light at the mid-point of the screen in the first case to that in the second case is
A. 1:2
B. 2:1
C. $4: 1$

D. 1:1

Answer: B

D Watch Video Solution

78. If the intensities of the two interfering beam in Young's double-slit experiment are I_{1} and I_{2}, then the constrast between the maximum and minimum intensities are good when

$$
\text { A. }\left|I_{1}-I_{2}\right| \text { is large }
$$

B. $\left|I_{1}-I_{2}\right|$ is small
C. either I_{1} or I_{2} is zero

$$
\text { D. } I_{1}=I_{2}
$$

Answer: D

D Watch Video Solution

79. In Young's interference experiment, if the slit are of unequal width, then
A. fringes will not be formed

B. the positions of minimum intensity will

not completely dark

C. bright fringes will not be formed at the centre of the screen

D. distance between two consecutive

bright fringe will not be equal to the
distance between two consecutive dark fringes

Answer: B

80. In Young's experiment with one source and two slits, one of the slits is covered with black paper. Then
A. the fringes will be barker
B. the fringes will be narrower
C. the fringes will be broader
D. the fringes will be obtained and the screen will have uniform illumination

Answer: D

D Watch Video Solution

81. In Young's interference expriment with one
source and two slits, one slit is covered with a
cellophane of sheet which absorbs half the intensity. Then
A. no fringes are obtained
B. bright fringes will be brighter and dark fringes will be darker

C. all fringes will be darker

D. bright fringes will be less bright and dark fringes will be less dark

Answer: D

D Watch Video Solution

82. Three waves of equal frequency having amplitudes $10 \mu m, 4 \mu m, 7 \mu m$ arrive at a given point with successive phase difference of $\pi / 2$,
the amplitude of the resulting wave in μm is

given by

A. 4
B. 5
C. 6
D. 7

Answer: B
(Watch Video Solution
83. Fig, here shows P and Q as two equally intense coherent sources emitting radiations of wavelength 20 m . The separation PQ si 5 m , and phase of P is ahead of the phase Q by 90°.

A, B and C are three distant points of observation equidistant from the mid - point of $P Q$. The intensity of radiations of A, B, C will be in the ratio
A. $0: 1: 4$
B. $4: 1: 0$
C. $0: 1: 2$
D. 2:1:0

Answer: D

D Watch Video Solution

84. In Young's experiment, monochromatic
light is used to illuminate the two slits A and
B. Interference fringes are observed on a screen placed in front of the slits. Now if a thin glass plate is placed normally in the path of
the beam coming from the slit

A. the fringes will disappear
B. the fringe width will increase
C. the fringe width will decrease

D. there will be no change in the fringe

width but the pattern shifts

Answer: D

- Watch Video Solution

85. In a Young's double-silt experiment the source slit S and the two slits A and B are horizontal with slit A above slit B. The fringe are observed on a vertical screen. The optical path length from S to B is increased slightly by
introducing a tranparent slab. As a result the

fringe pattern on the screen moves

A. vertically downwards
B. vertically upwards
C. horizontally to the left
D. horizontally to the right

Answer: A

D Watch Video Solution

86. When a transparent parallel plate of uniform thickness t and refractive index μ is interposed normally in the path of a beam of light, the optical path is
A. increased by μt
B. decreased by μt
C. decreased by $(\mu-1) t$
D. increased by $(\mu-1) t$

Answer: D

87. Light of wavelength $5000 \AA$ is travelling in air. A thin glass plate ($\mathrm{mu}=1.5$) of thickness

1 mm is placed in the path of light. The change in phase of light is
A. zero
B. $\pi / 2$
C. π
D. $(3 \pi) / 2$

Answer: A

D Watch Video Solution

88. If a transparent medium of refractive index
$\mu=1.5$ and thickness $t=2.5 \times 10^{-5} m$ is
inserted in front of one of the slits of Young's

Double Slit experiment, how much will be the
shift in the interference patten? The distance
between the slits is 0.5 mm and that between
slits and screen is 100 cm
A. 5 cm
B. 2.5 cm
C. 0.25 cm
D. 0.1 cm

Answer: B

D Watch Video Solution

89. A thin sheet of glass (refractive index 1.5) of
thickness 6 microns, introduced in the path of one of the interfering beams in a double-slit
experiment shift the central fringe to a position earlier occupied by the fifth bright fringe. The wavelength of light used is
A. $3000 \AA$
B. $6000 \AA$
C. $4500 \AA$
D. $7000 \AA$

Answer: B

D Watch Video Solution
90. A thin mica sheet of thickness $2 \times 10^{-6} \mathrm{~m}$
and refractive index $(\mu=1.5)$ is introduced in
the path of the first wave. The wavelength of the wave used is $5000 \AA$. The central bright maximum will shift
A. 2 fringes upward
B. 2 fringes downward
C. 10 fringes upward
D. none of these

Watch Video Solution

91. Interference fringes were produced in Young's double-slit experiment using light of wavelength $5000 \AA$. When a film of thickness
$2.5 \times 10^{-3} \mathrm{~cm}$ was placed in front of one of the slits, the fringe pattern shifted by a distance equal to 20 fringe-widths. The refractive index of the material of the film is
A. 1.25
B. 1.35
C. 1.4
D. 1.5

Answer: C

D Watch Video Solution

92. When one of the slits of Young's experiment is covered with a transparent sheet of thickness 4.8 mm , the central fringe shifts to a position originally occupied by the 30th bright fringe. What should be the
thickness of the sheet if the central fringe has
to shift to the position occupied by 20th bright fringe?
A. 3.8 mm
B. 1.6 mm
C. 7.6 mm
D. 3.2 mm

Answer: D

D Watch Video Solution
93. In the ideal double-slit experiment, when a glass-plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is
A. 2λ
B. $2 \lambda / 3$
C. $\lambda / 3$

D. λ

Answer: A

D Watch Video Solution

94. A monochromatic beam of light fall on

YDSE apparatus at some angle (say θ) as
shown in figure. A thin sheet of glass is inserted in front of the lower slit s_{2}. The central bright fringe (path difference $=0$)
will be obtained

A. at O
B. above O
C. below O
D. anywhere depending on angle θ, thickness of plate t

Answer: D

D Watch Video Solution

95. In double slit experiment fringes are obtained using light of wavelength $4800 \AA$ One
slit is covered with a thin glass film of refractive index. 1.4 and another slit is covered by a film of same thickness but refractive index
1.7. By doing so, the central fringe is shifted to
fifth bright fringe in the original pattern. The thickness of glass film is
A. $8 \mu m$
B. $6 \mu m$
C. $4 \mu m$
D. $10 \mu m$

Answer: A

D Watch Video Solution
96. When exposed to sunlight, thin films of oil on water often exhibit brilliant colours due to
the phenomenon of
A. disperion of light
B. interference of light
C. absorption of light
D. scattering of light

Answer: B

- Watch Video Solution

97. When viewed in white light, soap bubbles

show colours because of
A. interference
B. scattering
C. diffraction
D. dispersion

Answer: A

D Watch Video Solution
98. A parallel beam of sodium light of wavelength $6000 \AA$ is incident on a thin glass plate of $\mu=1.5$, such that the angle of refraction in the plate is 60°. The smallest thickness of the plate which will make it appear dark by reflected light is
A. $40 \AA$
B. $4 \AA$
C. $400 \AA$
D. $4000 \AA$

Answer: D
99. If wavelength $4500 \AA$ and $6000 \AA$ are found to be missing in the reflected spectrum in thin
air film interference, the thickness of the film for normal incidence is nearly
A. $9000 \AA$
B. $10500 \AA$
C. $5250 \AA$
D. $4240 \AA$

Answer: A

- Watch Video Solution

100. White light may be considered to be mixture of waves of λ ranging between $3900 \AA$ and $7800 \AA$. An oil film of thickness $10,000 \AA$ is examined normally by the reflected light. If $\mu=1.4$, then the film appears bright for
A. $4000 \AA, 4667 \AA, 5600 \AA, 7000 \AA$ B. $4308 \AA, 5091 \AA, 6222 \AA$

C. $4000 \AA, 5091 \AA, 5600 \AA$

D. $4667 \AA, 6222 \AA, 7000 \AA$

Answer: B

D Watch Video Solution

101. A person sets up Young's experiment
using a sodium lamp and placing two slits $1 m$
from a screen. The person is not sure of slit separation and he varies the separation and finds that the interference fringes disappear if
the slits are too far apart. The angular resolution of his eye is $(1 / 60)^{\circ}$. How far apart are the slits when he just cannot see the interference pattern? $(\lambda=5980 \AA)$
A. 5 mm
B. 4.01 mm
C. 2.025 mm
D. 3.025 mm

Answer: C

102. The penetration of light into the region of geometrical shadow is called
A. polarisation
B. interference
C. diffraction
D. refraction

Answer: C

D Watch Video Solution
103. Diffraction effects are easier to notice in
the case of sound waves than in the case of light waves because
A. sound waves are longitudinal
B. sound is perceived by the car
C. sound waves are mechanical waves
D. sound waves are of longer wavelength

Answer: D

104. A parallel monochromatic beam of light is incident normally on a narrow slit. A diffraction patten is formed on a screen placed perpendicular to the direction of incident beam. At the first maximum of the diffraction pattern the phase difference between the rays coming from the edges of the slit is
A. 0
B. $\pi / 2$
C. π
D. 2π

Answer: D

D Watch Video Solution

105. Diffraction pattern of a single slit consists
of a central bright band which is
A. wide, and is flanked by alternate dark and bright bands of decreasing intensity
B. narrow, and is flanked by alternate dark and dright bands of equal intensity
C. wide, and is flanked by alternate dark and bright bands of equal intensity
D. narrow, and is flanked by alternate-dark and bright bands of decreasing intensity

Answer: A

- Watch Video Solution

106. To observe diffraction, the size of the obstacle
A. should be of the same order as the
wavelength
B. should be much larger than the
wavelength
C. has no relation to wavelength
D. should be exactly half the wavelength

Answer: A
107. A diffraction is obtained by using a beam of red light. What will happen if the red light is replaced by the blue light?
A. the diffraction pattern remains changed
B. diffraction bands become narrower and
crowded togather
C. bands became broader and farther apart
D. bands disappear

Answer: B

D Watch Video Solution

108. Yellow light is used in a single slit diffraction experiment with slit width of 0.6 mm. If yellow light is replaced by X-rays, then the observed pattern will reveal,
A. that the central maxima is narrower
B. no diffraction pattern
C. more number of fringes

D. less number of fringes

Answer: A

D Watch Video Solution

109. A slit of width a illuminated by red light of
wavelength $6500 \AA$. The first minimum will fall at $\theta=30^{\circ}$ if a is
A. $3250 \AA$

$$
\text { B. } 6.5 \times 10^{-4} \mathrm{~mm}
$$

C. 1.3 micron
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C

D Watch Video Solution

110. A single slit of width 0.20 mm is
illuminated with light of wavelength 500 nm .

The observing screen is placed 80 cm from the slit. The width of the central bright fringe will be
A. $1 m m$
B. $2 m m$
C. 4 mm
D. 5 mm

Answer: C

D Watch Video Solution

111. Light of wavelength $6328 \AA$ is incident normally on a slit having a width of 0.2 mm .

The distance of the screen from the slit is
0.9 m . The angular width of the central maximum is
A. 0.09°
B. 0.72°
C. 0.18°
D. 0.36°

Answer: D

- Watch Video Solution

112. A beam of light of wavelength 600 nm
from a distant source
falls on a single slit 1.0 mm wide and the resulting diffraction pattern is
observed on a screen $2 m$ away. What is the distance between the first dark
fringe on either side of the central bright fringe?
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm

D. $2.4 m m$

Answer: D

D Watch Video Solution

113. The amplitude modulated (AM) radio wave bends apreciably round the cornes of a $1 m \times 1 m$ board but the frequency modulated
(FM) wave only negligible bends.lf the average wavelengths of AMandFM waves are
λ_{0} and λ_{f}.
A. $\lambda_{a}>\lambda_{r}$
B. $\lambda_{a}=\lambda_{r}$
C. $\lambda_{a}<\lambda_{r}$
D. we do not have sufficient information to
decide about the relation of λ_{a} and λ_{r}

Answer: A
(Watch Video Solution
114. The fringe pattern observed on Young's double-slit experiment is
A. a diffraction pattern
B. an interference pattern
C. a combination of diffraction and
interference pattern
D. neither a diffraction nor an interference
pattern

Answer: C

115. Which of the following properties show that light is a transverse wave?
A. Reflection
B. Interference
C. diffraction
D. polarisation

Answer: D
116. Longitudinal waves do not exhibit

A. refaction

B. reflection
C. diffraction

D. polarisation

Answer: D

117. Through which character we can distiguish the light waves from sound waves
A. interference
B. refraction
C. polarisation
D. reflection

Answer: C

- Watch Video Solution

118. Which of the following cannot be polarised?
A. Radio wave
B. Infrared radiation
C. X-rays
D. Sound waves in air

Answer: D

D Watch Video Solution
119. In the propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is
A. 0°
B. 45°
C. 90°
D. 180°

Answer: C

120. In case of linearly polarised light, the magnitude of the electric field vector
A. does not change with time
B. varies periodically with time
C. increases and decreases linearly with
time
D. is parallel to the direction of
propagation

Answer: B
121. When a beam of light is used to determine
the position of an object, the maximum accuracy is achieved if the light is
A. polarised
B. of longer wavelength
C. of shorter wavelength
D. of high intensity
122. Which of the following diagrams represent the veriation of electric field vector with time for a circularly polarised light

Answer: A

D Watch Video Solution

123. A ray of light is incident on the surface of
a glass plate at an angle of incidence equal to Brewster's angle ϕ. If μ represents the refractive index of glass with respect to air,
then the angle between reflected and refracted rays is
A. $90^{\circ}+\phi$
B. $\sin ^{-1}(\mu \cos \phi)$
C. 90°
D. $90^{\circ}-\frac{\sin ^{-1}(\sin \phi)}{\mu}$

Answer: C

- Watch Video Solution

124. When light is incident on a transparent
surface at the polarising angle, which of the
following is completely polarised?
A. Reflected light
B. Refracted light
C. Both reflected refracted light
D. Neither reflected nor refracted light

Answer: A

- Watch Video Solution

125. The angle of incidence at which reflected
light is totally polarized for reflection from air to glass (refractive index n),
A. $\sin ^{-1}(n)$
B. $\sin ^{-1}\left(\frac{1}{n}\right)$
C. $\tan ^{-1}\left(\frac{1}{n}\right)$
D. $\tan ^{-1}(n)$

Answer: D

- Watch Video Solution

126. The angle of polarisation for any medium
is 60°. What will be critical angle for this?
A. $\sin ^{-1} \sqrt{3}$
B. $\tan ^{-1} \sqrt{3}$
C. $\cos ^{-1} \sqrt{3}$
D. $\frac{\sin ^{-1} 1}{\sqrt{3}}$

Answer: D
(Watch Video Solution
127. When the angle of incidence on a material
is 60°, the reflected light is completely polarised. The velocity of the refracted ray inside the materials is (in $\mathrm{m} / / \sec ^{\wedge}(-1)$)

> A. 3×10^{8}
> B. $\left(\frac{3}{\sqrt{2}}\right) \times 10^{8}$
> C. $\sqrt{3} \times 10^{8}$
> D. 0.5×10^{8}

Answer: C

128. Plane polarised light is passed through a polaroid. On viewing through the polaroid we find that when the polaroid is given one complete rotation about the direction of light
A. the intensity of light gradually decreases to zero and remains at zero

B. the intensity of light gradually increases

to a maximum and remains maximum
C. there is no change in the intensity of light
D. the intensity of light varies such that it
is twice maximum and twice zero

Answer: D

D Watch Video Solution

129. A beam of light $A O$ is incident on a glass
slab $(\mu=1.54)$ in a direction as shown in
figure. The reflected ray $O B$ is passed
throught a Nicol prism. On viewinf through a

Nicole prism, we find rotating the prism that $\left(\tan ^{-1} 1.54=57^{\circ}\right)$

A. the intensity is reduced down to zero
and remains zero
B. the intensity reduces down some what and rises again
C. there is no change in intensity

D. the intensity gradually reduces to zero

and then again increases

Answer: D

D Watch Video Solution

130. The graph showing the dependence of intensity of transmitted light on the angle between polariser and analyser is

B. $45^{\circ} \underset{\sim}{90^{\circ} 135^{\circ} 180^{\circ}}$
C.

D. $\quad \stackrel{45^{\circ} 90^{\circ} 135^{\circ} 180^{\circ}}{ }$

Answer: B

D Watch Video Solution

131. When an unpolarized light of intensity I_{0}
is incident on a polarizing sheet, the intensity
A. zero
B. I_{0}
C. $\frac{1}{2} I_{0}$
D. $\frac{1}{4} I_{0}$

Answer: C
132. Four polaroids are placed such that the optic axis of each is inclined at an angle of 30°
with the optic axis of the preceding one. If unpolarised light of intensity I_(0) falls on the
first polaroid, the light transmitted from the fourth is
A. I_{0}
B. $I_{0} / 16$
C. $0.21 I_{0}$
D. none

Answer: C

- Watch Video Solution

133. Two polaroids are placed in the path of unpolarized beam of intensity I_{0} such that no
light is emitted from the second polarid. If a third polaroid whose polarization axis makes
an angle θ with the polarization axis of first polaroid, is placed between these two polariods then the intensity of light emerging from the last polaroid will be
A. $\left(\frac{I_{0}}{8}\right) \sin ^{2} 2 \theta$
B. $\left(\frac{I_{0}}{4}\right) \sin ^{2} 2 \theta$
C. $\left(\frac{I_{0}}{2}\right) \cos ^{4} \theta$
D. $I_{0} \cos ^{4} \theta$

Answer: A

D Watch Video Solution

134. A beam of unpolarised light is passed first
through tourmaline crystan A and then
through another tourmaline crystal B oriented
so that its principal plane is parallel to that of
A. The intensity of the emergent light is I. If A now rotated by 45° in a plane perpendicular to the direction of the incident ray, the intensity of the emergent light will be
A. $\frac{I}{2}$
B. $\frac{I}{\sqrt{2}}$
C. I
D. $\frac{I}{4}$

Answer: A
135. An optically active compound
A. produces polarised light
B. rotates the plane of polarisation of polarised light
C. converts a plane of polarised light into
circularly polarised light
D. converts a circulary polarised light into
plane polarised light

Answer: B

D Watch Video Solution

136. the reason of seeing the sun a little before the sunrise is
A. reflection of the light
B. refraction of the light
C. scattering of the light
D. dispersion of the light

Answer: C

D Watch Video Solution

137. Check the correct statements on scattering of light
$S 1$: Rayleigh scattering is responsible for the bluish appearance of sky
$S 2$: Rayleigh scattering is proportional to
$1 / \lambda^{4}$ when the size of the scatterer is much
less than λ

S3: Clouds having droplets of water (large
scattering objects) scatter all wavelengths are almost equal and so are generally white
$S 4$: The sun looks reddish at sunset and sunrise due to Rayleigh scattering
A. S1 only
B. S1 and S2
C. S2 and S3
D. S1, S2, S3 and S4

Answer: D

138. If the ratio of amounts of scattering of two light waves is $1: 4$, the ratio of their wavelength is
A. $1: 2$
B. $\sqrt{2}: 1$
C. $1: \sqrt{2}$
D. $1: 1$

Answer: B

- Watch Video Solution

139. An astronaut in a spsceship sees the outer

space as

A. white
B. black
C. blue
D. red

Answer: B
140. The sky would appear red instead of blue if
A. atmospheric particles scatter blue light more than red light
B. atmospheric particles scatter all colours
equally
C. atmospheric particles scatter red light
more than the blue light
D. the sun was much hotter

Answer: C
(Watch Video Solution

