©゙doubtnut

CHEMISTRY

BOOKS - MTG CHEMISTRY (HINGLISH)

EQUILIBRIUM

Equilibrium In Physical Process

1. Which of the following is not a general characteristic of equilibrium involving physical processes ?
A. Equilibrium is possible only in a closed system at a given temperature.
B. The equilibrium is dynamic in nature.
C. Measurable properties of the system keep changing.
D. Equilibrium can be attained from both sides of the reaction.

D Watch Video Solution

2. Match the colume I with column II and mark the appropriate choice.

Column I
(A) Liquid \Longleftrightarrow Vapour
(B) Splid \Longleftrightarrow Liquid
(C) Solid \Longleftrightarrow Vapour
(D) Solute(s)

Solute(solution)
(i) Satu
(ii) Boili
(iii) Subli
(iv) Melt:
A. $(A) \rightarrow(i),(B) \rightarrow(i i i),(C) \rightarrow(i i),(D) \rightarrow(i v)$
B. $(A) \rightarrow(i i),(B) \rightarrow(i v),(C) \rightarrow(i i i),(D) \rightarrow(i)$
C. $(A) \rightarrow(i v),(B) \rightarrow(i i),(C) \rightarrow(i),(D) \rightarrow(i i i)$
D. $(A) \rightarrow(i i i),(B) \rightarrow(i v),(C) \rightarrow(i i),(D) \rightarrow(i)$

Answer: B

- View Text Solution

1. A reaction is said to be in equilibrium when
A. the rate of transformation of reactanta to products is equal to the rate of transformation of products to the reactants
B. 50% of the reactants are converted to products
C. the reaction is near completion and all the reactants are converted to products
D. the volume of reatants is just equal to the volume of the products.

Answer: A

- Watch Video Solution

2. Which of the following is not true about a reversible reaction ?
A. The reaction does not proceed to completion.
B. It cannot be influenced by catalyst
C. Number of moles of reactants and products is always euqal.
D. It can be attained only in a closed container.

Answer: C

- Watch Video Solution

3. For the reaction: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$:
A. Equal volumes of $P C l_{5}, P C l_{3}$ and $C l_{2}$ are present.
B. Equal masses of $P C l_{5}, P C l_{3}$ and $C l_{2}$ are present.
C. The concentrations of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and Cl_{2} become constant.
D. Reaction comes to a stop.

Answer: C

4. Study the given figure and label X, Y, and Z .

. X
X
Y
Z
A. Backword reaction Forward reacton Products
B. X Y Z
$\begin{array}{lll}\text { B. } & \begin{array}{ll}\text { Backword reaction } & \text { Forward reacton } \\ & \text { Equilibrium } \\ X & Y \\ \text { C. } & Z \\ \text { Reversible reaction } & \text { Irreversible reacton }\end{array} & \text { Equilibrium }\end{array}$
D. X Y Z
Forward reaction Forward reaction Backward reaction

Answer: B

1. Consider the following graph and mark the correct statement.

A. Chemical equilibrium in the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I$ can be attained from either directions.
B. Equilibrium can be obtained when H_{2} and I_{2} are mixed in an open
vessel.
C. The concentration of HI keeps increasing with time.
D. We can find out equailibrium concentration of H_{2} and I_{2} from the given graph.

Answer: A

- View Text Solution

2. In an experiment, $N O_{3}$ gas is prepared and taken into 3 test tubes X, Y and Z. NO_{2} gas which is brown in colour dimerises into $\mathrm{N}_{2} \mathrm{O}_{4}$ which is colourless. Test tube X is kept at roop temperature, Y is kept in ice and Z is kept in hot water. What colour changes will you observe in the test tubes and why
$2 \mathrm{NO}_{2(g)} \Leftrightarrow N_{2} \mathrm{O}_{4(g)}, \Delta H=-57.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Broun Colourless

A. In test tube X , brown colour intensifies since backward reaction is
favoured at low temperature.
B. In test tube Y , brown colour intensifies since backward reaction takes place at roop temperature.
C. In test tube Z, brown colour intensifies since high temperature favours the backward reaction.
D. Brown colour of test tubes X, Y and remains same since there is no effect of change in temperature on the reaction .

Answer: C

D View Text Solution

3. Fill in the blanks in the given table with the appropriate choice.

A. $\begin{array}{lllll}p & q & r & s & t \\ \mathrm{H}_{2} \mathrm{CO}_{3} & \mathrm{SO}_{4}^{2-} & \mathrm{NH}_{4}^{+} & \mathrm{NH}_{2}^{-} & \mathrm{H}_{3} \mathrm{O}^{+}\end{array}$
B. $\begin{array}{lllll}p & q & r & s & t \\ \mathrm{HCO}_{3}^{-} & \mathrm{H}_{2} \mathrm{SO}_{3} & \mathrm{NH}_{2}^{-} & \mathrm{NH}_{4}^{+} & \mathrm{H}_{3} \mathrm{O}^{+}\end{array}$
${ }_{C} p$
$q \quad r$
$\begin{array}{lllll}\mathrm{H}_{2} \mathrm{CO}_{3} & \mathrm{H}_{2} \mathrm{SO}_{3} & \mathrm{NH}_{2}^{-} & \mathrm{NH}_{4}^{+} & \mathrm{H}_{3} \mathrm{O}^{+}\end{array}$
D. $\begin{array}{lllll}p & q & r & s & t \\ \mathrm{HCO}_{3}^{-} & \mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{NH}_{2}^{+} & \mathrm{NH}_{2}^{-} & \mathrm{OH}\end{array}$

Answer: A

- View Text Solution

Law Of Chemical Equilibrium And Equilibrium Constant

1. For the reaction, $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$ What is K_{c} when the equilibrium concentration of

$$
\left[S O_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M} \text { and }\left[S O_{3}\right]=1.90 \mathrm{M} ?
$$

A. $12.229 \mathrm{Lmol}^{-1}$
B. $24.5 \mathrm{Lmol}^{-1}$
C. $36.0 \mathrm{Lmol}^{-1}$
D. $2.67 \times 10^{3} \mathrm{Lmol}^{-1}$

D Watch Video Solution

2. $P C l_{5}, P C l_{3}$ and $C l_{2}$ are at equilibrium at 500 K with concentration 2.1 $\mathrm{M} \mathrm{PCl}_{3}, 2.1 \mathrm{M} \mathrm{Ml}_{2}$ and $1.9 \mathrm{MPCl}_{5}$.

The equilibrium constant for the given reaction is

$$
P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}
$$

A. 2.32
B. 1.79
C. 4.2
D. 3.8

Answer: A

- Watch Video Solution

3. For the following reaction :
$N O_{(g)}+O_{3(g)} \Leftrightarrow N O_{2(g)}+O_{2(g)}$
The value of K_{c} is 8.2×10^{4}. What will be the value of K_{c} for the reverse reaction ?
A. 8.2×10^{4}
B. $\frac{1}{8.2 \times 10^{4}}$
C. $\left(8.2 \times 10^{4}\right)$
D. $\sqrt{8.2 \times 10^{4}}$

Answer: B

- Watch Video Solution

4. If the equilibrium constant for the given reaction is 0.25
$N O \Leftrightarrow \frac{1}{2} N_{2}+\frac{1}{2} O_{2}$, then the equilibrium constant for the reaction $\frac{1}{2} N_{2}+\frac{1}{2} O_{2} \Leftrightarrow N O$ will be
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

5. If the equilibrium constant for the reaction,
$2 X Y \Leftrightarrow X_{2}+y_{2}$ is 81,
what is the value of equilibrium constant for the reaction $X Y \Leftrightarrow \frac{1}{2} X_{2}+\frac{1}{2} Y^{2}$
A. 81
B. 9
C. 6561
D. 40.5

Answer: B

- Watch Video Solution

6. If the value of equilibrium constant K_{c} for the reaction, $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is 7. The equilibrium constant for the reaction $2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \Leftrightarrow 4 N H_{3}$ will be
A. 49
B. 7
C. 14
D. 28

Answer: A

7. At $473 \mathrm{~K}, K_{c}$ for the reaction
$P C l_{5(g)} \Rightarrow P C l_{3(g)} C l_{2(g)}$ is 8.3×10^{-3}. What will be the value of K_{c} for the formation of PCl_{5} at the same temperature ?
A. 8.3×10^{3}
B. 120.48
C. 8.3×10^{-3}
D. 240.8

Answer: B

- Watch Video Solution

Homogeneous Equilibrium

1. Which of the following is an example of homogeneous equilibrium ?

$$
\text { A. } 2 S O_{2(g)}+O_{2(g)} \Leftrightarrow 2 S O_{3(g)}
$$

B. $C_{(s)}+H_{2} O_{(g)} \Leftrightarrow C O_{(g)}+H_{2(g)}$
C. $\mathrm{CaCO}_{3(s)} \Leftrightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$
D. $\mathrm{NH}_{4} \mathrm{NS}_{(s)} \Leftrightarrow \mathrm{NH}_{3(g)}+\mathrm{H}_{2} S_{(g)}$

Answer: A

- Watch Video Solution

2. Which of the following relations between the reactions and euilibrium constant for a general reaction $a A+b B \Leftrightarrow c C+d D$ is not correct ?
A. $a A+b B \Leftrightarrow c C+d D: K_{c}$
B. $c C+d D \Leftrightarrow a A+b B: K_{c}^{\prime}=\frac{1}{K_{c}}$
C. $n a A+n b B \Leftrightarrow n c C+n d D: K_{c}^{\prime \prime}=K_{c}^{n}$
D. $a A+b B \Leftrightarrow c C+d D: K_{c}=K_{p}$

Answer: D

3. 1 mole of NO 1 mole of O_{3} are taken in a 10 L vessel and heated. At equilibrium, 50% of NO (by mass) reacts with O_{3} according to the equation :
$N O_{(g)}+O_{3(g)} \Leftrightarrow N O_{2(g)}+O_{2(g)}$.
What will be the equilibrium constant for this reaction?
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

4. When sulphur is heated at $900 \mathrm{~K}, S_{8}$ is converted to S_{2}. What will be the equilibrim constant for the reaction if initial pressure of 1 atm falls by
25% at equilibrium?
A. $0.75 \mathrm{~atm}^{3}$
B. $2.55 \mathrm{~atm}^{3}$
C. $25.0 \mathrm{~atm}^{3}$
D. $1.33 \mathrm{~atm}^{3}$

Answer: D

- Watch Video Solution

5. 5 moles of PCl_{5} are heated in a closed vessel of 5 litre capacity. At equilibrium 40% of $P C l_{5}$ is found to be dissociated. What is the value of K_{c} ?
A. 0.266 M
B. 0.133 M
C. 2.5 M
D. 0.20 M

Answer: A

- Watch Video Solution

6. For a reaction, $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}, 1.5$ moles of $S O_{2}$ and 1 mole of O_{2} are taken in a 2 L vessel. At equilibrium the concentration of $S O_{3}$ was found to be $0.35 \mathrm{~mol} L^{-1}$ The K_{c} for the reaction would be
A. $5.1 \mathrm{~L} \mathrm{~mol}^{-1}$
B. $1.4 \mathrm{~L} \mathrm{~mol}^{-1}$
C. $0.6 \mathrm{~L} \mathrm{~mol}^{-1}$
D. $2.95 \mathrm{~L} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

7. 18.4 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ is taken in a 1 L closed vessel and heated till the equilibrium is reached.
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
At equilibrium it is found that 50% of $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated. What will be the value of equilibrium constant?
A. 0.2
B. 2
C. 0.4
D. 0.8

Answer: C

- Watch Video Solution

8. 5 moles of $S O_{2}$ and 5 moles of O_{2} react in a closed vessel. At equilibrium 60% of the SO_{2} is consumed. The total number of gaseous moles $\left(\mathrm{SO}_{2}, \mathrm{O}_{2}\right.$ and $\left.\mathrm{SO}_{3}\right)$ in the vessel is:-
A. 5.1
B. 3.9
C. 10.5
D. 8.5

Answer: D

- Watch Video Solution

9. At 500 K , the equilibrium costant for the reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ is 24.8 If $\frac{1}{2} \mathrm{~mol} / \mathrm{L}$ of HI is present at equilibrium, what are the concentrations of H_{2} and I_{2}, assuming that we started by taking HI and reached the equilibrium at 500 K ?
A. $0.068 \mathrm{~mol} \mathrm{~L}^{-1}$
B. $1.020 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $0.10 \mathrm{~mol} \mathrm{~L}^{-1}$
D. $1.20 \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: C

- Watch Video Solution

10. In the system $X+2 Y \Leftrightarrow Z$, the equilibrium concentration are,
$[X]=0.06 \mathrm{~mol} \mathrm{~L}^{-1},[Y]=0.12 \mathrm{~mol} \mathrm{~L}^{-1}$,
$[Z]=0.216 \mathrm{~mol} \mathrm{~L}^{-1}$. Find the equilibrium constant of the reaction.
A. 250
B. 500
C. 125
D. 273

Answer: A

11. For the reaction $a+b \Leftrightarrow c+d$, initially concentrations of a and b are equal and at equilibrium the concentration of will be twice of that of a. What will be equilibrium constant for the reaction?
A. 2
B. 9
C. 4
D. 3

Answer: C

- Watch Video Solution

12. In the relation, $K_{p}=K_{c}(R T)^{\Delta n}$ the value of Δn is
A. number of moles of gaseous reactants-number of moles of gaseous products in a balanced equation
B. number of moles of gaseous products number of moles of gaseous reactants in a balanced equation
C. number of moles of gaseous products \times number of moles of gaseous reactants in a balanced equation
D. number of moles of gaseous reactants + number of moles of gaseous products in balanced equation

Answer: B

- Watch Video Solution

13. For which of the following reaction $K_{p}=K_{c}$?
A. $P C l_{3(g)}+C l_{2(g)} \Leftrightarrow P C l_{4(g)}$
B. $H_{2(g)}+\mathrm{Cl}_{2(g)} \Leftrightarrow 2 \mathrm{HCl}_{(g)}$
C. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. $\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

Answer: B

D Watch Video Solution

14. For the reaction $2 \mathrm{NO}_{2(g)} \Leftrightarrow N_{2} O_{4(g)}, K_{p} / K_{c}$ is equal to
A. $\frac{1}{R T}$
B. $\sqrt{R T}$
C. $R T$
D. $(R T)^{2}$

Answer: A

Watch Video Solution

15. For the reaction $N_{2(g)}+O_{2(g)} \Rightarrow N O_{(g)}$, the value of K_{c} at $800^{\circ} \mathrm{C}$ is 0.1. What is the value of K_{p} at this temperature?
A. 0.5
B. 0.01
C. 0.05
D. 0.1

Answer: D

- Watch Video Solution

16. At $350 \mathrm{~K}, K_{p}$ for the reaction given below is $3.0 \times 10^{10} \mathrm{bar}^{-1}$ at equilibrium. What be the value of K_{c} at this temperature ?
$2 N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N_{2} O_{(g)}$
A. $7.4 \times 10^{11} \mathrm{~L} \mathrm{~mol}^{-1}$
B. $8715 \times 10^{10} \mathrm{~L} \mathrm{~mol}^{-1}$
C. $0.08 \mathrm{~L} \mathrm{~mol}^{-1}$
D. $8.715 \times 10^{11} \mathrm{~L} \mathrm{~mol}^{-1}$

Answer: D

D Watch Video Solution

Heterogeneous Equilibrium

1. The value of K_{c} for the following equilibrium is
$\mathrm{CaCO}_{3(s)} \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2(g)}$.
Given $K_{p}=167$ bar at 1073 K.
A. $1.896 \mathrm{~mol} \mathrm{~L}^{-1}$
B. $4.38 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
C. $6.3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
D. $6.626 \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: A

2. Calculate K_{p} for the equilibrium,
$\mathrm{NH}_{4} H S_{(s)} \Leftrightarrow N H_{3(g)}+H_{2} S_{(g)}$
if the total pressure inside reaction vessel s 1.12 atm at $105 .{ }^{\circ} C$.
A. 0.56
B. 1.25
C. 0.31
D. 0.63

Answer: C

- Watch Video Solution

3. $\mathrm{NH}_{4} \mathrm{COONH}_{4}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$. If equilibrium pressure is 3 atm for the above reaction, K_{p} will be
A. 27
B. 4
C. 3
D. 9

Answer: B

- Watch Video Solution

4. The expression for equilibrium constant, K_{c} for the following reaction is

$$
2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(s)} \Leftrightarrow 2 \mathrm{CuO} \mathrm{O}_{(s)}+4 \mathrm{NO}_{2(g)}+O_{2(g)}
$$

A. $K_{c}=\frac{\left[\mathrm{CuO}_{(s)}\right]^{2}\left[\mathrm{NO}_{2(g)}\right]^{4}\left[\mathrm{O}_{2(g)}\right]}{\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(s)}\right]^{2}}$
B. $K_{c}=\frac{\left[\mathrm{NO}_{2(g)}\right]^{4}\left[\mathrm{O}_{2(\mathrm{~g})}\right]}{\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~g})}\right]^{2}}$
C. $K_{c}=\left[\mathrm{NO}_{2(g)}\right]^{4}\left[\mathrm{O}_{2(g)}\right]$
D. $K_{c}=\frac{\left[\mathrm{CuO}_{(s)}\right]^{2}}{\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(g)}\right]^{2}}$
5. The expression for equilibrium constant, K_{c} for the following reaction is

$$
\mathrm{Fe}_{(a q)}^{3+}+3 \mathrm{OH}_{(a q)}^{-} \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3(s)}
$$

A. $K_{c}=\frac{\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}}$
B. $K_{c}=\frac{\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]}$
C. $K_{c}=\frac{1}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}}$
D. $K_{c}=\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]$

Answer: C

- Watch Video Solution

6. What is the equilibrium expression for the reaction $P_{4(s)}+5 O_{2(g)} \Leftrightarrow P_{4} O_{10(s)} ?$
A. $k_{c}=\frac{\left[P_{4}\right]\left[O_{2}\right]^{5}}{\left[P_{4} O_{10}\right]}$
B. $K_{c}=\frac{1}{\left[O_{2}\right]^{5}}$
C. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$
D. $K_{c}=\left[O_{2}\right]^{5}$

Answer: B

- Watch Video Solution

Applications Of Equilibrium Constant

1. $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Rightarrow 2 \mathrm{NO}_{2}, K_{c} 5.7 \times 10^{-9}$ at 298 K At equilibrium :-
A. concentration of NO_{2} is higher than that of $\mathrm{N}_{2} \mathrm{O}_{4}$
B. concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is higher than that of NO_{2}
C. both $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{4} have same concentration
D. concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} keeps on changing.

- Watch Video Solution

2. Study the figure below and mark the correct statement about K_{c} and dependence of extent of reaction on it.

A.
$X \quad Y \quad Z$
Reaction does not occur Reaction processds to completion Reaction
B.

X
Y
Z
Reaction completes Reaction does not occur Reactants and produc
C.
X Y

Reaction hardly occurs Reactants and products are at equilibrium
D.

X

 YReaction proceeds to completion Reactants and products are at equi

Answer: C

- Watch Video Solution

3. Predict the direction of the reaction from comparison of Q_{c} and K_{c} Mark the incorrect statement.

A. If $Q_{c}<K_{c}$, reaction goes from left to right.
B. If $Q_{c}=K_{c}$, reaction goes from right to left.
C. If $Q_{c}>K_{c}$, net reaction goes from right to left.
D. If $Q_{c}=K_{c}$, reactants and products are at equilibrium.

Answer: B

4. In the following reaction:
$2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(g)} \Leftrightarrow 2 \mathrm{NOCl}_{(g)}$
it is observed that equilibrium is not attained and the rate of forward reaction is greater than rate of backward reaction. Which of the following is true for the reaction?
A. $K_{p}=Q_{p}$
B. $Q_{p}>K_{p}$
C. $Q_{p}<K_{p}$
D. $Q_{p}=0$

Answer: C

- Watch Video Solution

5. 0.6 moles of $P l_{5}, 0.3$ mole of $P C l_{3}$ and 0.5 mole of $C l_{2}$ are taken in a 1 L flask to obtain the following equilibrium ,
$P C l_{5(g)} \Rightarrow P C l_{3(g)}+C l_{2(g)}$ If the equilibrium constant K_{c} for the reaction is 0.2 Predict the direction of the reaction.
A. Forward direction
B. Backward direction
C. Direction of the reaction cannot be predicted
D. Reaction does not move in any direction.

Answer: B

- Watch Video Solution

Relation Between Equilibrium Constant Constant Reaction Quotient And Gibbs Energy

1. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_{c} is:

$$
\text { A. } \Delta G=R T \ln K_{c}
$$

B. $-\Delta G=R T \ln K_{c}$
C. $\Delta G^{\circ}=R T \ln K_{c}$
D. $-\Delta G^{\circ}=R T \ln K_{c}$

Answer: D

- Watch Video Solution

2. For a reversible reactionn at 298 K the equilibrium constant K is 200 .

What is value of ΔG° at 298 K ?
A. -13.13 kcal
B. -0.13 kcal
C. -3.158 kcal
D. -0.413 kcal

Answer: C

Factors Affecting Equilibria

1. The following reaction is at equilibrium ,
$\underset{\text { Yellow }}{\mathrm{Fe}_{(a q)}^{3+}}+\underset{\text { Colourless }}{S C N_{(a q)}} \Rightarrow \underset{\text { Deep red }}{[\mathrm{Fe}(\mathrm{SNC})]_{(a q)}^{2+}}$
Yellow Colourless Deep red
$K_{c}=\frac{[F e(S C N)]}{\left[F e^{3+}\right][S C N]}$
In the above reaction, colour intensity of red colour can be increased by
A. addition of KSCN
B. addition of oxalic acid which reacts with Fe^{3+} ions
C. addition of Hg^{2+} ions which react with $S C N^{-}$ions
D. red colour intensity cannot be changed.

Answer: A

- Watch Video Solution

2. Consider the equilibrium set up :
$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)}$
What will be the effect of the following on the equilibrium of the reaction ?
(i) Addition of H_{2} (ii) Addition of $\mathrm{CH}_{3} \mathrm{OH}$
(iii) Removal of CO (iv) Removal of $\mathrm{CH}_{3} \mathrm{OH}$
A.

(i)

(ii)
(iii)
(a) Forward direction Backward direction Backward direction
B.

(i)

(ii)
(iii)
(a) Backward direction Backward direction Forward direction
C.

$$
(i)
$$

(ii)
(iii)
(a) Forward direction Forward direction Backward direction B
D.

(i)

(ii)
(iii)
(a) Backward direction Forward direction Forward direction B

Answer: A

3. Formation of ClF_{3} from Cl_{2} and F_{2} is an exothermic process. The equilibrium system can be represented as
$C l_{2(g)}+3 F_{2(g)} \Rightarrow 2 C l F_{3(g)}, \Delta H=-329 k J$ Which of the following will increase quantity of ClF_{3} in the equilibrium mixture ?
A. Increase in temperature, decrease in pressure addition of Cl_{2}
B. Decrease in temperature and pressure, addition of ClF_{3}
C. Increase in temperature and pressure, removal of Cl_{2}
D. Decrease in temperature, increase in pressure, addition of F_{2}

Answer: D

- Watch Video Solution

4. Which of the following reaction will not affected on increasing the
A. $2 \mathrm{H}_{2(g)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)}$
B. $4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \Leftrightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$
C. $C H_{4(g)}+2 S_{2(g)} \Leftrightarrow C S_{2(g)}+2 H_{2} S_{(s)}$
D. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$

Answer: C

- Watch Video Solution

5. In which of the following reaction the increase in pressure will favour the increase in products?
A. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
B. $P C l_{3(g)}+C l_{2(g)} \Leftrightarrow P C l_{5(g)}$
C. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
D. $2 \mathrm{CO}_{2(g)} \Leftrightarrow 2 C O_{(g)}+O_{2(g)}$
6. In a vessel N_{2}, H_{2} and NH_{3} are at equilibrium. Some helium gas is introduction into the vessel so that total pressure increases while temperature and volume remain constant. According to Le Chatelier's principle, the dissociation of NH_{3}
A. increases
B. decreases
C. remains unchanged
D. equilibrium is disturbed.

Answer: C

- Watch Video Solution

7. When I_{2} dissociates to its atomic from the following reaction occurs :
$I_{2(g)} \Leftrightarrow 2 I_{(g)}, \Delta H^{\circ}=+150 \mathrm{~kJ} \mathrm{~mol}^{-1}$

The reaction is favoured at
A. low temperature
B. high temperature
C. no change with temperature
D. high pressure.

Answer: B

- Watch Video Solution

8. For the reaction,
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$, the forward reaction at constant temperature is favoured by:
A. introducing an inert gas at constant volume
B. introducing Cl_{2} at constant volume
C. introducing PCl_{5} at constant volume
D. reducing the volume of the container.

Answer: C

- Watch Video Solution

9. The reaction $2 \mathrm{SO}_{2}+2 \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ will be favoured by
A. high temperature and low pressure
B. low temperature and high pressure
C. high temperature and high pressure
D. low temperature and low pressure.

Answer: B

- Watch Video Solution

10. The yield of NH_{3} in the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, \Delta H=-22.08 \mathrm{kcal}$ is affected by
A. change in pressure and temperature
B. change in temperature and concentration of N_{2}
C. change in pressure and concentration of N_{2}
D. change in pressure, temperature and concentration of N_{2}.

Answer: D

- Watch Video Solution

Acids Bases And Salts

1. According to Lewis concept acid is
A. proton donor
B. electron pair donor
C. proton acceptor
D. electron pair acceptor .

Answer: D

- Watch Video Solution

2. Which of thef following is not Lewis acid
A. $B F_{3}$
B. $A l C l_{3}$
C. FeCl_{3}
D. PH_{3}

Answer: D

- Watch Video Solution

3. Conjugate acid of SO_{4}^{2-} is
A. HSO_{4}^{-}
B. H^{+}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. SO_{4}^{2-}

Answer: A

- Watch Video Solution

4. Which of the following species can act both as an acid as well as a base ?
A. SO_{4}^{2-}
B. HSO_{4}^{-}
C. PO_{4}^{3-}
D. OH^{-}

- Watch Video Solution

5. According to Bronsted - Lowry concept of acids and bases a conjugate acid - base paie can exist as

Mark the option in which conjugate pair is not correctly matched.

Species	Conjugate acid	Conjugate base
A. HCO_{3}^{-}	CO_{3}^{2-}	$\mathrm{H}_{2} \mathrm{CO}_{3}$
Species	Conjugate acid	Conjugate base
B. $H P O_{4}^{2-}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	PO_{4}^{3-}
Species	Conjugate acid	Conjugate base
C. NH_{3}	$\mathrm{NH}_{2}{ }^{-}$	PO_{4}^{3-}
Species	Conjugate acid	Conjugate base
$H S^{-}$	S^{2-}	$H_{2} S$

Answer: B

6. Classify the following as acid or base according to Bronsted - Lowry concept.
(i) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) SO_{4}^{2-}
(iv) HCl
(i)
(ii)
(iii)
(iv)
A.

Bronsted acid Bronsted base Bronsted base Bronsted acid
B. ${ }^{(i)}$ (ii) (iii) (iv)

Bronsted acid Bronsted acid Bronsted acid Bronsted base
C. ${ }^{(i)}$
(ii) (iii) (iv)

Bronsted base Bronsted acid Bronsted base Bronsted acid
D. (i) (ii) (iii) (iv)

Bronsted acid Bronsted acid Bronsted base Bronsted base

Answer: C

- Watch Video Solution

\qquad while electrophiles are \qquad .
A. Lewis bases, Lewis acids
B. Lewis acids, Lewis bases
C. Bronsted acids, Bronsted bases
D. Lewis acids Bronsted bases

Answer: A

D Watch Video Solution

8. Which of the following salts will give basic solution on hydrolysis ?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. $K C l$
C. $\mathrm{K}_{2} \mathrm{CO}_{3}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Answer: C

9. Which of the following salts with a concentration .1 M will give a basic solution?
A. Ammonium acetate
B. Ammonium chloride
C. Ammonium sulphate
D. Sodium acetate

Answer: D

- Watch Video Solution

Ionization Of Acids And Bases

1. Which of the following salts does show its correct nature mentioned against it ?
A. KBr solution - Neutral
B. NaCN solution - Acidic
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$ solution - Acisdic
D. KF solution - Basic

Answer: B

- Watch Video Solution

Column I
(A) $\mathrm{CH}_{3} \mathrm{COONa}$
2. (B) $\mathrm{NH}_{4} \mathrm{CI}$
(C) NaNO_{3}
(D) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$

Column II
(i)Almost neutral $p H>7$ or <7
(ii) Acidicp $H<7$
(iii) Alkaline $p H>7$
(iv)Neutral $p H=7$
A. $(A) \rightarrow(i),(B) \rightarrow(i i),(C) \rightarrow(i i i),(D) \rightarrow(i v)$
B. $(A) \rightarrow(i i),(B) \rightarrow(i i i),(C) \rightarrow(i v),(D) \rightarrow(i)$
C. $(A) \rightarrow(i i i),(B) \rightarrow(i i),(C) \rightarrow(i v),(D) \rightarrow(i)$
D. $(A) \rightarrow(i v),(B) \rightarrow(i),(C) \rightarrow(i i i),(D) \rightarrow(i i)$

Answer: C

- Watch Video Solution

3. The pH of $0.001 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution will be
A. 2
B. 8.4
C. 11.3
D. 2.7

Answer: C

4. What will be the pH of $1 \times 10^{-4} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution ?
A. 10.4
B. 3.7
C. 3
D. 13

Answer: B

- Watch Video Solution

5. A solution of $H C I$ has $\mathrm{p} H=5$. If 1 mL of it is diluted to $1 L$ what will be the $p H$ of resulting solution?
A. 3.45
B. 6.96
C. 8.58
D. 10.25

Answer: B

6. If the pH of a solution is 2 , the hydrogen ion concentration in moles per litre is
A. 1×10^{-14}
B. 1×10^{-2}
C. 1×10^{-7}
D. 1×10^{-12}

Answer: B

- Watch Video Solution

7. 0.05 mole of NaOH is added to 5 liters of water What will be the pH of the solution?
A. 12
B. 7
C. 2
D. 10

Answer: A

- Watch Video Solution

8. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?
A. 3.8
B. 5.04
C. 2.42
D. 9.2

Answer: C

9. What is pOH of an aqueous solution with hydrogen ion concentration equal to $3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$?
A. 9.47
B. 4.52
C. 12.69
D. 11.69

Answer: A

- Watch Video Solution

10. The degree of ionisation of an acid HA is 0.00001 at 0.1 M concentration. Its dissociation constant will be
A. 10^{-9}
B. 10^{-11}
C. 10^{-8}
D. 10^{-7}

Answer: B

- Watch Video Solution

11. What will be the ionisation constant of formic acid if its 0.01 M solution is 14.5% ionised?
A. 2.1×10^{-4}
B. 14.5
C. 0.145
D. 1.45×10^{-4}

Answer: A

12. What is the percentage dissociation of 0.1 M solution of acetic acid ?

$$
\left(K_{a}=10^{-5}\right)
$$

A. 10%
B. 100%
C. 1%
D. 0.01%

Answer: C

- Watch Video Solution

13. $N H_{4} C N$ is a salt of weak acid $H C N\left(K_{a}=6.2 \times 10^{-10}\right)$ and a weak base $\mathrm{NH}_{4} \mathrm{OH}\left(K_{b}=1.8 \times 10^{-5}\right) .1$ molar solution of $\mathrm{NH}_{4} \mathrm{CN}$ will be :-
A. neutral
B. strongly acidic
C. strongly basic
D. weakly basic.

Answer: D

- Watch Video Solution

14. For poly basic acid, the dissociation constant have a different valves for each step.
$H_{3} A \Leftrightarrow H^{+}+A, K e q=K a_{1}$
$H_{2} A \Leftrightarrow H^{+}+A^{-2}, K e q=K a_{2}$
$H A^{2} \Leftrightarrow H^{+}+A^{3-}, K e q=K a_{3}$
What is the observed trend of dissociation constant im successive stages
?
A. $K_{a_{1}}>K_{a_{2}}>K_{a_{3}}$
B. $K_{a_{1}}=K_{a_{2}}=K_{a_{3}}$
C. $K_{a_{1}}<K_{a_{2}}<K_{a_{3}}$
D. $K_{a_{1}}=K_{a_{2}}+K_{a_{3}}$

D Watch Video Solution

15. Equimoler solulition of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K have the values of Ka as $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively, what will be the order of their acidic strength ?
A. $H F>H C N>H C O O H$
B. $H F>H C O O H>H C N$
C. $H C N>H F>H C O O H$
D. $H C O O H>H C N>H F$

Answer: B

- Watch Video Solution

16. Given below are the dissociation constant values of few acids. Arrange them in order of increasing acidic strength.
$\mathrm{H}_{2} \mathrm{SO}_{3}=1.3 \times 10^{-2}, \mathrm{HNO}_{2}=4 \times 10^{-4}$
$\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}, \mathrm{HCN}=4 \times 10^{-10}$
A. $\mathrm{HCN}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HNO}_{2}>\mathrm{H}_{2} \mathrm{SO}_{3}$
B. $\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HNO}_{2}<\mathrm{HCN}<\mathrm{H}_{2} \mathrm{SO}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCN}<\mathrm{H}_{2} \mathrm{SO}_{3}<\mathrm{HNO}_{2}$
D. $\mathrm{HNO}_{2}<\mathrm{H}_{2} \mathrm{SO}_{3}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCN}$

Answer: A

- Watch Video Solution

17. $p K_{a}$ of a weak acid is 5.76 and $p K_{b}$ of a weak base is 5.25 . What will be the pH of the salt formed by the two ?
A. 7.255
B. 7.005
C. 10.225
D. 4.255

Answer: A

D Watch Video Solution

18. What is the pH of a solution obtained by mixing 10 mL of 0.1 M HCl and $40 \mathrm{~mL} \mathrm{0.2} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 0.74
B. 7.4
C. 4.68
D. 0.468

Answer: D

19. Dissociation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NH}_{4} \mathrm{OH}$ in squeous solution are 10^{-5} if pH of a $\mathrm{CH}_{3} \mathrm{COOH}$ solution is 3 , what will be the pH of $\mathrm{NH}_{4} \mathrm{OH}$?
A. 3.0
B. 4.0
C. 10.0
D. 11.0

Answer: D

- Watch Video Solution

Buffer Solutions

1. An acidic buffer solution can be prepared by mixing solution of
A. sodium acetate and acetic acid
B. ammonium acetate and ammonium hydroxide
C. sodium chloride and sodium hydroxide
D. potassium sulphate and sulphuric acid.

Answer: A

- Watch Video Solution

2. Mark the appropriate choice to fill up the blanks in the given paragraph.

A solution which maintains constant pH when small amounts of acid or base are added is known as a (i). A mixture of acetic acid and sodium acetate acts as $\underline{(i i)}$ with a pH around $(\underline{i i i})$ and a mixture of ammonium chloride and ammonium hydroxide acts as $(i v)$ with a pH around $\underline{(v)}$
(i)
A. buffer capacity
(iii) (iv)
(v)
$\begin{array}{lllll}(i) & (i i) & (i i i) & (i v) & (v) \\ \text { B. } & (v) & \end{array}$
$\begin{array}{lllll}(i) & (i i) & (i i i) & (i v) & (v) \\ \text { B. } & (v) & \end{array}$
9.25 acidic buffer
4.75
C. ${ }^{(i)}$
(ii)
(iii) (iv)
buffer solution basic buffer 4.75 acidic buffer 9.25
D. ${ }^{(i)}$ (ii) (iii) (iv)
(v)
buffer solution acidic buffer 4.75 basic buffer 9.25

Answer: D

- Watch Video Solution

Solubility Equilibria Of Sparingly Soluble Solids

1. For a reaction, $A_{x}, B_{y} \Leftrightarrow x A^{y+}+y B^{x-}, K_{s p}$ xan be represented as
A. $\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}$
B. $[A]^{y}[B]^{x}$
C. $[A]^{x}[B]^{y}$
D. $[A]^{x+y}[B]^{x-y}$

Answer: A

2. The solubility product of BaCl_{2} is 3.2×10^{-9}. What will be solubility in $\mathrm{mol} L^{-1}$
A. 4×10^{-3}
B. 3.2×10^{-9}
C. 1×10^{-3}
D. 1×10^{-9}

Answer: C

3. Solubility of $C a F_{2}$ is $0.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. The value of $K_{s p}$ for the salt is
A. 5×10^{-12}
B. 2.5×10^{-16}
C. 1×10^{-13}
D. 5×10^{-13}

Answer: D

- Watch Video Solution

4. Match the column I with column II and mark the appropriate choice.
Column I
Column II
(A) $\mathrm{Fe}(\mathrm{OH})_{3}$
(i) $K_{s p}=s^{2}$
(B) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
(ii) $\quad K_{s p}=27 s^{4}$
(C) $\mathrm{CH}_{3} \mathrm{COOAg}$ (iii) $K_{s p}=108 s^{5}$
(D) $C a_{3}\left(\mathrm{PO}_{4}\right) \quad$ (iv) $\quad K_{s p}=4 s^{3}$
A. $(A) \rightarrow(i i i),(B) \rightarrow(i i),(C) \rightarrow(i v),(D) \rightarrow(i)$
B. $(A) \rightarrow(i i),(B) \rightarrow(i v),(C) \rightarrow(i),(D) \rightarrow(i i i)$
C. $(A) \rightarrow(i),(B) \rightarrow(i i i),(C) \rightarrow(i i),(D) \rightarrow(i v)$
D. $(A) \rightarrow(i v),(B) \rightarrow(i),(C) \rightarrow(i i i),(D) \rightarrow(i i)$

Answer: B

5. solubility product of radium sulphate is 4×10^{-9}. What will be the solubility of Ra^{2+} in $0.10 \mathrm{M} \mathrm{NaSO}{ }_{4}$?
A. $\times 10^{-10} M$
B. $2 \times 10^{-5} M$
C. $4 \times 10^{-5} M$
D. $2 \times 10^{-10} M$

Answer: A

- Watch Video Solution

6. At $20^{\circ} \mathrm{C}$, the Ag^{+}ion concentration in a saturated solution $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $1.5 x 10^{-4} \mathrm{~mol} /$ litre. At $20^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ would be
A. 1.687×10^{-12}
B. 1.75×10^{-10}
C. 3.0×10^{-8}
D. 4.5×10^{-10}

Answer: A

- Watch Video Solution

7. The solubility product of AgCl is 1.56×10^{-10} find solubility in $\mathrm{g} / \mathrm{ltr}$
A. 143.5
B. 108
C. 1.57×10^{-8}
D. 1.79×10^{-3}

Answer: D

8. What will be the solubility of AgCl in 0.05 M NaCl aqueous solution if solubility product of AgCl is 1.5×10^{-10} ?
A. $3 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
B. $0.05 \mathrm{~mol} \mathrm{~L}^{-1}$
C. $1.5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
D. $3 \times 10^{9} \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: A

Watch Video Solution

9. Solubility product expression of salt $M X_{4}$ which is sparingly soluble with a solubility s can be given as
A. $256 s^{5}$
B. $16 s^{3}$
C. $5 c$
D. $25 s^{4}$

Answer: A

- Watch Video Solution

10. Which of the following is not an application of solubility product ?
A. Predicting precipitation formation
B. Predicting solubility of sparingly soluble salt
C. Predicting pH of a buffer solution
D. Qualitative analysis

Answer: C

- Watch Video Solution

11. Predict if there will be any precipitate by mixing 50 mL of 0.01 M NaCl and 50 mL of $\mathrm{M} \mathrm{AgNO}_{3}$ solution. The solubility product of AgCl is 1.5×10^{-10}.
A. Since ionic product is greater than solubility product no precipitate will be formed.
B. Since ionic product is lesser than solubility product, precipitation will occur .
C. Since ionic product is greater than solubility product, precipitation will occur.
D. Since ionic product and solubility product are same, precipitation will not occur.

Answer: C

- Watch Video Solution

12. The solubility product of AgCl is 1.8×10^{-10}. Precipitation of AgCl will occur only when equal volumes of solutions of :
A. $10^{-8} \mathrm{M} \mathrm{Ag}^{+}$and $10^{-8} \mathrm{M} \mathrm{Cl}{ }^{-}$ions
B. $10^{-3} \mathrm{M} \mathrm{Ag}^{+}$and $10^{-3} \mathrm{M} \mathrm{Cl}{ }^{-}$ions
C. $10^{-6} \mathrm{M} A g^{+}$and $10^{-6} \mathrm{M} \mathrm{Cl}{ }^{-}$ions
D. $10^{-10} \mathrm{M} \mathrm{Ag}^{+}$and $10^{-10} \mathrm{M} \mathrm{Cl}{ }^{-}$ions

Answer: B

- Watch Video Solution

13. Calculate pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins to precipitate from a solution containing $0.10 M M g^{2+}$ ions. $\left(K_{S P} o f M g(O H)_{2}=1 \times 10^{-11}\right)$
A. 4
B. 6
C. 9

D. 7

Answer: C

- Watch Video Solution

14. What is minimum concentration of SO_{4}^{2-} required to precipitate BaSO_{4} in solution containing 1×10^{-4} mole of Ba^{2+} ? $\left(K_{s p}\right.$ of $\mathrm{BaSO}_{4}=4 \times 10^{-10}$)
A. $4 \times 10^{-10} M$
B. $2 \times 10^{-10} M$
C. $4 \times 10^{-6} M$
D. $2 \times 10^{-3} M$

Answer: C

- Watch Video Solution

15. A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$, and Hg^{2+} it treated with $10^{-16} M$ sulphide ion. If the $K_{s p}$ of $M n S, F e S, Z n S$ and $H g S$ are $10^{-15}, 10^{-23}, 10^{-20}$, and 10^{-54}, respectively, which one will precipitate first?
A. FeS
B. MnS
C. HgS
D. ZnS

Answer: C

- Watch Video Solution

Higher Order Thinking Skills

1. At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has $90.55 \% C O$ by mass:
$C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}$
Calculate K_{c} for the reaction at the above temperature.
A. 1.53
B. 0.153
C. 0.53
D. 0.76

Answer: B

- Watch Video Solution

2. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a $20 L$ reaction vessel at $500 K$. At this temperature, the equilibrium constant K_{c} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?
A. Forward
B. Backward
C. At equilibrium
D. Data is insufficient

Answer: B

- Watch Video Solution

3. $N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}, K_{c}=4$. This reversible reaction is studied graphically as shown in the figure. Select the correct statement out of $I, I I$ and $I I I$.

I: Reaction quotient has maximum value at point A

II : Reaction proceeds left to right at a point when
$\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]=\left[\mathrm{NO}_{2}\right]=0.1 \mathrm{M}$

III : $K=Q$ when point D or F is reached:

A. I,II
B. II,III
C. I,III
D. I,II,III

Answer: B

4. At 473 K , equilibrium constant, K_{c} for decomposition of phosphorus pentachloride, $P C l_{5}$ is 8.3×10^{-3}. If decomposition is depicted as :
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}, \Delta_{r} H^{\circ}=124.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
what would be the effect on reaction if the temperature is increased ?
A. Reaction will shift in the backward direction.
B. Reaction will shift in the forward direction.
C. Reaction is in equilibrium.
D. Reaction first moves forward and then remains at equilibrium.

Answer: B

- Watch Video Solution

5. The \% yield of ammonia as a function of time in the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)^{\prime} \Delta H<0$ at $\left(p, T_{1}\right)$ is given below

If this reaction is conducted at $\left(p, T_{1}\right)$, with $T_{2}>T_{1}$ the $\%$ yield by of ammonia as a function of time is represented by
A.

B.

Answer: B

- Watch Video Solution

6. The ionisation constant of benzoic acid (PhCOOH) is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-3}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility is pure water?

$$
\text { A. } 4
$$

B. 3.32
C. 3.01
D. 2.5

Answer: B

- Watch Video Solution

7. A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and Hg^{2+} is treated with $10^{-16} M$ sulphide ion. If $K_{s p}$ od $\mathrm{MnS}, \mathrm{ZnS}$ and HgS are $10^{-15}, 10^{-25}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first?
A. FeS
B. MnS
C. HgS
D. ZnS

Answer: C

D View Text Solution

8. What will be the amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ (in g) which must be added to 500 mL of $0.2 \mathrm{M} \mathrm{NH} \mathrm{N}_{4} \mathrm{OH}$ to yield a solution of pH 9.35 ? $\left[\right.$ Given,$p K_{a}$ of $\left.\mathrm{NH}_{4}^{+}=9.26, p K_{b} N H_{4} O H=14-p K_{a}\left(N H_{4}^{+}\right)\right]$
A. 5.35
B. 6.47
C. 10.03
D. 7.34

Answer: A

1. We know that the relationship between K_{c} and K_{p} is $K_{p}=K_{c}(R T)^{\Delta n}$

What would be the value of Δn for the reaction :
$\mathrm{NH}_{4} \mathrm{Cl}_{(s)} \Leftrightarrow \mathrm{NH}_{3(g)}+\mathrm{HCl}_{(g)} ?$
A. 1
B. 0.5
C. 1.5
D. 2

Answer: D

- View Text Solution

2. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, the standard free energy is $\Delta G^{\Theta}>0$. the equilibrium constant (k) would be.
A. $K=0$
B. $K>1$
C. $K=1$
D. $K<1$

Answer: D

- Watch Video Solution

3. Which of the following is not a general characteristic of equilibrium involving physical processes?
A. Equilibrium is possible only in a closed system at a given temperature.
B. All measurable properties of system remain constant.
C. All the physical processes stop at equilibrium.
D. The opposing processes occur at the same rate and there is dynamic but stable condition.

- Watch Video Solution

4. $P C I_{5}, P C I_{3}$ and $C I_{2}$ are in equilibrium at 500 K in a closed container and their concentration are $0.8>10^{-3} \mathrm{~mol} L^{-1}$ and $1.2 \times 10^{-3} \mathrm{~mol} L^{-1}$ and $1.2 \times 10^{-3} \mathrm{~mol} L^{-1}$ respectively. The value of K_{c} for the reaction $P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$ will be
A. $1.8 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
B. 1.8×10^{-3}
C. $1.8 \times 10^{-3} \mathrm{~L} \mathrm{~mol}^{-1}$
D. 0.55×10^{4}

Answer: B

- Watch Video Solution

5. Which of the following statements is incorrect ?
A. In equilibrium mixture of ice and water kept in perfectly insulated flask, amss of ice and water does not change with time.
B. The intensity of red colour increase when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate.
C. On addition of catalyst, the equilibrium constant value is not affected.
D. Equilibroum constant for a reaction with negative ΔH value decreases as the temperature increases.

Answer: B

- View Text Solution

6. When hydrochloric aicd is addded to cobalt and nitrate solution at room temperautre, the following reaction takes place and the reaction
mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information mark the corect ansewer.

$$
\left[\underset{\text { pink }}{\left.\left(\mathrm{Co}_{2} \mathrm{O}\right)_{6}\right]^{3+}}(a q)+4 \mathrm{CI}^{-} \Leftrightarrow\right.
$$

$\mathrm{CoCI}_{4}{ }^{2-}(a q)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
blue
A. $\Delta H>0$ for the reaction
B. $\Delta H<0$ for the reaction
C. $\Delta H=0$ for the reaction
D. The sign of ΔH cannot be predicted on the basis of this information.

Answer: A

- Watch Video Solution

7. The Ph OF NEUTRAL WATER AT $25^{\circ} \mathrm{C}$ is 7.0 . As the temperature increases, ionisation of water increases, however the concentration of
H^{+}ions nad $O H^{-}$ions equal. What will be the ph of puire water at $60^{\circ} C$?
A. Equal to 7.0
B. Greater than 7.0
C. Less than 7.0
D. Equal to zero

Answer: C

- Watch Video Solution

8. The ionisation cosntabnt of an acid, K_{a} is the meaure of strength of an acid. The K_{a} values of acetic acid, hypochlorous acid and formic acid are $1.74 \times 10^{-5}, 3.0 \times 10^{-8}$ and 1.8×10^{-4} respectively. Which of the following orders of ph of $0.1 \mathrm{~mol} d m^{-3}$ solutions of these acids is correct ?
A. Acetic acid $>$ Hypochlorous acid $>$ Formic acid
B. Hypochlorous acid $>$ Acetic acid $>$ Formic acid
C. Formic acid $>$ Hypochlorous acid $>$ Acetic acid
D. Formic acid $>$ Acetic acid $>$ Hypochlorous acid

Answer: B

- Watch Video Solution

9. $K_{a 1}, K_{a 2}$ and $K_{a 3}$ are the respective ionisation constants for the following reactions.
$H_{2} S \Leftrightarrow H^{+}+H S^{-}, H S^{-} \Leftrightarrow H^{+} S^{-2}$
$H_{2} S \Leftrightarrow 2 H^{+}+S^{2-}$
The correct relationship between $K_{a 1}, K_{a 2}$ and $K_{a 3}$ is
A. $K_{a_{3}}=K_{a_{1}} \times K_{a_{2}}$
B. $K_{a_{3}}=K_{a_{1}}+K_{a_{2}}$
C. $K_{a_{3}}=K_{a_{1}}-K_{a_{2}}$
D. $K_{a_{3}}=K_{a_{1}} / K_{a_{2}}$

D Watch Video Solution

10. Acidity of $B F_{3}$ can be explained on ths basis of which of the follwoing concepts?
A. Arrhenius concept
B. Bronsted - Lowry concept
C. Lewis concept
D. Bronsted - Lowry as well as Lewis concept

Answer: C

D Watch Video Solution

11. Which of the following will produce a buffer sollution when mixed in equal volumes ?
A. $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$
B. $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$
C. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
D. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COONa}$ and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$

Answer: C

- Watch Video Solution

12. In which of the following solvents is silver chloride most soluble ?
A. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}$ solution
B. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ solution
C. $\mathrm{H}_{2} \mathrm{O}$
D. Aqueous ammonia

Answer: D

13. What will be the value of pH of 0.01 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{CH}_{3} \mathrm{COOH}\left(K_{1}=1.74 \times 10^{-5}\right) ?$
A. 3.4
B. 3.6
C. 3.9
D. 3.0

Answer: A

Watch Video Solution
14. K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} and K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5} The pH of ammonium acetate will be :
A. 7.005
B. 4.75
C. 7.0
D. between 6 and 7

Answer: C

- Watch Video Solution

15. Which of the following options will be correct for the stage of half completion of the reaction : $A \Leftrightarrow B$?
A. $\Delta G^{\circ}=0$
B. $\Delta G^{\circ}>0$
C. $\Delta G^{\circ}<0$
D. $\Delta G^{\circ}=-R T \ln 2$

Answer: A

16. On increasing the pressure, in which dirction will the gas phase reaction proceed to re-establish equilibrium, is predicated by applying the Le Chatelier's principle. Consider the reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Which of the following is correct, if the total pressure at which the equlibrium is established, is increased without changing the temperature ?
A. K will remain same.
B. K will decrease.
C. K will increase.
D. K will increase initially and decrease when pressure is very high.

Answer: A

- Watch Video Solution

17. What will be the correct order of vapour pressure of water, acetone and ether at $30 .{ }^{\circ} \mathrm{C}$. Given that among these compounds, water has maximum boiling point and ether has minimum boiling point ?
A. Water < Ether < Acetone
B. Water < Acetone < Ether
C. Ether < Acetone < Water
D. Acetone < Ether < Water

Answer: B

- Watch Video Solution

18. At 500 K , equlibrium constant, K_{c} for the following reaction is 5 .

$$
1 / 2 H_{2}(g)+1 / 2(g) \Leftrightarrow H I(g)
$$

What would be the equilibrium constant K_{c} for the reaction $2 h i(g) \Leftrightarrow H_{2}(g)+l_{2}(g)$
A. 0.04
B. 0.4
C. 25
D. 2.5

Answer: A

- Watch Video Solution

19. In which of the following reactions, the equilibrium reamins unaffected on addition of small amount of argon at constant volume?
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. The equilibrium will remain unaffected in all the three cases.

Answer: D

Assertion And Reason

1. Assertion : When ice and water are kept in a perfectly insulated thermos flask at 273 K and the atmospheric pressure, there is no change in mass of ice and water.

Reason : The system is in static equilibrium.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

2. Assertion : The equilibrium constant for the reverse reaction is equal to the inverse of the equilibrium constant for the forward reaction .

Reason : The value of equilibrium constant is independent of initial concentrations of the reactants and products.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

3. Assertion : For the reaction : $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}, K_{p}=K_{c}$ Reason : Concentration of gaseous reactants and products is taken as unity.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

- Watch Video Solution

4. Assertion : K_{p} can be less than, greater than or equal to K_{c}

Reason : Relation between K_{p} and K_{c} depends on the change in
number of moles of gaseous reactants and products (Δn).
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

5. Assertion : If reaction quotient, Q_{c} for a particular reaction is greater than K_{c} the reaction will proceed in the direction of reactants.

Reason : Reaction quotient is defined in the same way as the equilibrium constant K_{c} except that the concentrations in Q_{c} are not necessarily equilibrium values.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

6. Assertion : In the dissociation of PCl_{5} at constant pressure and temperature addition of helium at equilibrium increases the dissociation of PCl_{5}.

Reason : Helium reacts with $C l_{2}$ and hence shifts the equilibrium in forward direction.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

7. Assertion : Weak acids have very strong conjugate bases while strong acids have conjugate bases.

Reason : Conjugate acid - base pair differ only by one proton.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

8. Assertion :- A solution of $\mathrm{NH}_{4} \mathrm{Cl}$ in water is acidic in nature. Reacon : - Ammonium ions undergo hydroysis to from $\mathrm{NH}_{4} \mathrm{OH}$.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

9. Statement: The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate.

Explanation: The ionisation of acetic acid is suppressed by the addition of sodium acetate.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

10. Assertion : Higher order ionization constants $\left(K_{a_{2}}, K_{a_{3}}\right)$ are smaller than the lower order ionization constant $\left(K_{a_{1}}\right)$ of polyprotic acid.

Reason : Polyprotic acid solutions contain a mixture of acids.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

11. Assertion : Benzoic acid is stronger acid than acetic acid.

Reason : K_{a} for benzoic acid is 6.5×10^{-5} and for acetic acid is 1.74×10^{-5}.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

12. Assertion : The strength of haloacids increases in the order :

$$
H I \ll B H r \ll H C l \ll H F
$$

Reason : Strength of acid HA depends only on the electronegatively difference between H and A .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

- View Text Solution

13. Assertion : The pH of $\mathrm{NH}_{4} \mathrm{Cl}$ solution in water is less than 7 and pH of $\mathrm{CH}_{3} \mathrm{COONa}$ solution is more than 7.

Reason : $\mathrm{NH}_{4} \mathrm{Cl}$ is a salt of weak $\mathrm{NH}_{4} \mathrm{OH}$ and strong acid HCl whereas $\mathrm{CH}_{3} \mathrm{COONa}$ is salt of a weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ and strong base NaOH .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

14. Assertion : pH of the buffer solution is not affected by dilution.

Reason : $p H=p K_{a}+\log \frac{[\text { Conjugate acid] }}{[\text { Base }]}$
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

15. Assertion : The solubility of salts of weak acids like phosphates decreases at lower pH.

Reason : The is because at lower pH concentration of cations increases.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

Watch Video Solution

