©゙doubtnut
 India's Number 1 Education App

CHEMISTRY

BOOKS - MTG CHEMISTRY (HINGLISH)

REDOX REACTIONS

Redox Reactions In Terms Of Electron Transfer Reactions

1. Which of the following statements is not true?
A. In a chemical reaction, oxidation is always accompanied by reduction.
B. When a negative ion changes to neutral species, the process is oxidation.
C. Oxidizing agent has a tendency to lose electrons.
D. Conversion of MnO_{4}^{2-} to MnO_{4}^{-}is oxidation.

- Watch Video Solution

2. Which of the following is not a redox reaction?
A. $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}$
C. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
D. $2 K+F_{2} \rightarrow 2 K F$

Answer: C

Watch Video Solution

3. Which substance is serving as a reducing agent in the following reaction?
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{Ni} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ni}^{2+}$
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
B. Ni
C. H^{+}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

4. A redox reaction is shown in the diagrams. Identify the reaction.

A. $Z n_{(s)}+C u_{(a q)}^{2+} \rightarrow Z n_{(a q)}^{2+}+C u_{(s)}$
B. $C u_{(s)}+2 A g_{(a q)} \rightarrow C u_{(a q)}^{2+}+2 A g_{(s)}$
C. $2 A g_{(s)}+C u_{(a q)}^{2+} \rightarrow 2 A g_{(a q)}^{+}+C u_{(s)}$
D. $2 C u_{(s)}+Z n_{(a q)}^{2+} \rightarrow C u_{(a q)}^{2+}+Z n_{(s)}$

- Watch Video Solution

5. Identify the redox reaction taking palce in a beaker.

Initial stage

Final stage
A. $Z n_{(s)}+C u_{(a q)}^{2+} \rightarrow A n_{(a q)}^{2+}+C u_{(s)}$
B. $C u_{(s)}+2 A g_{(a q)} \rightarrow C u_{(a q)}^{2+}+2 A g_{(s)}$
C. $C u_{(s)}+Z n_{(a q)}^{2+} \rightarrow Z n_{(s)}+C u_{(a q)}^{2+}$
D. $2 A g_{(s)}+C u_{(a q)}^{2+} \rightarrow 2 A g_{(a q)}^{+}+C u_{(s)}$

Answer: B

- Watch Video Solution

1. Which of the following is not a rule for calculating oxidation number?
A. For ions, oxidation number is equal to the charge on the ion.
B. The oxidation number of oxygen is -2 in all of its compounds.
C. The oxidation number of fluorine is -1 in all of its compounds.
D. Oxidation number of hydrogen is +1 except in binary hydrides of alkali metals and alkaline earth metals where it is -1 .

Answer: B

- Watch Video Solution

2. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is
A. 0
B. +1
C. +2
D. +4

Answer: A

- Watch Video Solution

3. Oxidation state of iron in $\mathrm{Fe}(\mathrm{CO})_{4}$ is
A. +1
B. -1
C. +2
D. 0

Answer: D

4. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} O_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}>\mathrm{S}_{2} \mathrm{O}_{6}^{2-}>\mathrm{SO}_{4}^{2-}>\mathrm{SO}_{3}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}>\mathrm{SO}_{3}^{2-}>\mathrm{S}_{2} \mathrm{O}_{4}^{2-}>\mathrm{SO}_{4}^{2-}$
C. $\mathrm{SO}_{4}^{2-}>\mathrm{S}_{2} \mathrm{O}_{6}^{2-}>\mathrm{SO}_{3}^{2-}>\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$
D. $\mathrm{SO}_{3}^{2-}>\mathrm{SO}_{4}^{2-}>\mathrm{S}_{2} \mathrm{O}_{4}^{2-}>\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$

Answer: C

- Watch Video Solution

5. Oxidation numbers of Mn in its compounds $\mathrm{MnCl}_{2}, \mathrm{Mn}(\mathrm{OH})_{3}, \mathrm{MnO}_{2}$ and KMnO_{4} respectively are:-
A. $+2,+4,+7,+3$
B. $+2,+3,+4,+7$
C. $+7,+3,+2,+4$
D. $+7,+4,+3,+2$

Answer: B

- Watch Video Solution

6. Arrange the oxides of nitrogen in increasing order of oxidation state of N from +1 to +5 .
A. $\mathrm{N}_{2} \mathrm{O}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{NO}$
B. $\mathrm{N}_{2} \mathrm{O}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}$
D. $\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}<\mathrm{NO}_{2}<\mathrm{N}_{2} \mathrm{O}_{3}<\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: B

- Watch Video Solution

7. The oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is
A. +6
B. +7
C. +8
D. 0

Answer: A

- Watch Video Solution

8. Match the compounds given in column I with oxidation states of carbon given in column II and mark the appropriate choice.

Column I
Column II
(A) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(i) $\quad+3$
(B) CHCl_{3}
(ii) -3
(C) $\mathrm{CH}_{3} \mathrm{CH}_{3}$
(iii) +2
(D) $(\mathrm{COOH})_{2}$
(iv) 0
A. (A) \rightarrow (iv),
, (B
\rightarrow
(iii), (C) \rightarrow
(ii), (D) \rightarrow (i)
B. (A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv)
C. (A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), (D) \rightarrow (i)
D. (A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iv)

Answer: A

- Watch Video Solution

9. Among the following identify the species with an atom in +6 oxidation state.
A. MnO_{4}^{-}
B. $C r(C N)_{6}^{3-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

10. The pair of the compounds in which both the metals are in the highest possible oxidation state is,
A. $\mathrm{McO}_{2}, \mathrm{FeCl}_{3}$
B. $\mathrm{McO}_{4}^{-}, \mathrm{CrO}_{2} \mathrm{Cl}_{2}$
C. $\mathrm{MnCl}_{2}, \mathrm{CrCl}_{3}$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{-}$

Answer: B

- Watch Video Solution

11. An element that never has a positive oxidation state in any of its compounds is
A. 0
B. N
C. Cl
D. F

Answer: D

- Watch Video Solution

12. Oxidation number if iodine in $\mathrm{IO}_{3}^{-}, \mathrm{IO}_{4}^{-}, \mathrm{KI}$ and I_{2} respectively are
A. $-2,-5,-1,0$
B. $+5,+7,-1,0$
C. $+2,+5,+1,0$
D. $-1,+1,0,+1$

Answer: B

13. Various oxidation states of few elements are mentioned. Which of the options is not correctly matched ?
A. Phosphorus: +3 to +5
B. Nitrogen : +1 to +5
C. lodine : -1 to +7
D. Chromium : -3 to +6

Answer: D

- Watch Video Solution

14. Carbon is in the lowest oxidation state in
A. CH_{4}
B. CCl_{4}
C. $C F_{4}$
D. CO_{2}

- Watch Video Solution

15. Which of the following is a decreasing order of oxidation states of the central atoms?
A. $\mathrm{PCl}_{5}, \mathrm{HIO}_{4}, \mathrm{Cl}_{2} \mathrm{O}_{7}^{2-}, \mathrm{Cl}_{2} \mathrm{O}$
B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{HIO}_{4}, \mathrm{PCl}_{5}$
C. $\mathrm{HIO}_{4}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{PCl}_{5}, \mathrm{Cl}_{2} \mathrm{O}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{HIO}_{4}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{PCl}_{5}$

Answer: C

- Watch Video Solution

16. Which compound amongst the following gas the highest oxidation
$\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{MnO}_{2}, \mathrm{MnO}_{2}$ and $\mathrm{Mn}_{2} \mathrm{O}_{3}$
A. KMnO_{4}
B. $\mathrm{K}_{2} \mathrm{MnO}_{4}$
C. MnO_{2}
D. $\mathrm{Mn}_{2} \mathrm{O}_{3}$

Answer: A

- Watch Video Solution

17. In which of the following compounds oxidation state of chlorine has two different values?
A. CaCl_{2}
B. NaCl
C. CaOCl_{2}
D. CCl_{4}

Answer: C

- View Text Solution

18. The oxidation number of nitrogen in $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)^{+}$is
A. -2
B. +2
C. +3
D. -3

Answer: A

Watch Video Solution
19. Mark the correct statement from the following :
A. Copper metal can be oxidised by Zn^{2+} ions.
B. Oxidation number of phosphorus in P_{4} is 4
C. An element in the highest oxidation state acts only as a reducing agent.
D. The element which shows highest oxidation number of +8 is Os in

$$
\mathrm{OsO}_{4}
$$

Answer: D

- View Text Solution

20. Which compound among the following has lowest oxidation number of chlorine?
A. Copper metal can be oxidised by Zn^{2+} ions.
B. HClO_{3}
C. HCl
D. HOCl

Answer: C

- Watch Video Solution

21. Which of the following oxidation numbers is not correctly matched ?
A. HClO_{4}
B. N in $\left[N i(C N)_{6}\right]^{4-}=+2$
C. P in $M g_{2} P_{2} O_{7}=+6$
D. Cr in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=+6$

Answer: C

Watch Video Solution

22. Examples of few compounds in a particular oxidation state are given.

Mark the example which is not correct.
A. Pin $\mathrm{NaH}_{2} \mathrm{PO}_{4}=+5$
B. Chlorine in +7 oxidation state -HClO
C. Chromium in +6 oxidation state $-\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
D. Carbon in O oxidation state $-\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

Answer: B

- Watch Video Solution

23. The oxidation numbers of the sulphur atoms in pcroxymonosulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{5}\right)$ and peroxydisulphuric acid $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right)$ are respectively.
A. +4
B. +2
C. +6
D. -2

Answer: C

D Watch Video Solution

24. Which is not true about the oxidation state of the following elements
?
A. Sulphur +6 to -2
B. Carbon +4 to -4
C. Chlorine +7 to -1
D. Nitrogen +3 to -1

Answer: D

D View Text Solution

25. O.N of Fe in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
A. +2
B. +3
C. +4
D. +6

Answer: A

- Watch Video Solution

26. Arrange the following in increasing order of oxidation state of Ni . $K_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right], K_{2}\left[\mathrm{NiF}_{6}\right], \mathrm{Ni}(\mathrm{CO})_{4}$
A. $\mathrm{Ni}(\mathrm{CO})_{4}, K_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right], K_{2}\left[\mathrm{NiF}_{6}\right]$
B. $K_{2}\left[N i(C N)_{4}\right], N i(C O)_{4}, K_{2}\left[N i F_{6}\right]$
C. $N i(C O)_{4}, K_{2}\left[N i F_{6}\right], K_{2}\left[N i(C N)_{4}\right]$
D. $K_{2}\left[\mathrm{NiF}_{6}\right], K_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right], \mathrm{Ni}(\mathrm{CO})_{4}$
27. The correct sequence of the oxidation state of underlined elements is
$N a_{2}\left[\underline{F e}(C N)_{5} N O\right], K_{2} \underline{T a} F_{7}, M g_{2} \underline{P}_{2} O_{7}, N a_{2} \underline{S}_{4} O_{6}, \underline{N}_{3} H$
A. $+3,+5,+5,+2.5,-\frac{1}{3}$
B. $+5,+3,+5,+3,+\frac{1}{3}$
C. $+3,+3,+5,+5,-\frac{1}{3}$
D. $+5,+5,+3,+2.5,+\frac{1}{3}$

Answer: A

- View Text Solution

28. What are the oxidation states of phosphorus in the following compounds?
$\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{PH}_{3}, \mathrm{HPO}_{3}$
A. $+1,+3,+3,+3,+5$
B. $+3,+3,+5,+5,+5$
C. $+1,+2,+3,+5,+5$
D. $+1,+5,+5,-3,+5$

Answer: D

- Watch Video Solution

29. In which of the following compounds carbon is in highest oxidation state?
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. CCl_{4}
C. CHCl_{3}
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
30. The oxidising state of molybdenum in its oxo complex species $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ is
A. +2
B. +3
C. +4
D. +5

Answer: B

- Watch Video Solution

31. Oxidation number of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. +3
B. +2
C. +1
D. -1

Answer: C

- Watch Video Solution

32. Which of the following can act as oxidising as well as reducing agent?
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. SO_{3}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. HNO_{3}

Answer: A

- Watch Video Solution

33. When a piece of sodium metal is dropped in water, hydrogen gas evolved because
A. sodium is reduced and acts as an oxidising agent
B. water is oxidised and act as a reducing agent
C. sodium loses electrons and is oxidised while water is reduced
D. water loses electrons and is oxidised to hydrogen.

Answer: C

- Watch Video Solution

34. In the reaction,
$I_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$.

Equivalent wieght of iodine will be equal to
A. I_{2} is reducing agent.
B. I_{2} is oxidising agent and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ is reducing agent
C. $S_{2} O_{3}^{2-}$ is oxidising agent.
D. I_{2} is reducing agent and $S_{2} O_{3}^{2-}$ is oxidising agent.

Answer: B

- Watch Video Solution

35. In the reaction : $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}:-$
A. Chlorine is oxidised
B. Chlorine is reduced.
C. Chlorine is oxidised as well as reduced.
D. Chlorine is neither oxidised nor reduced.

Answer: C

36.

$$
\mathrm{HCHO}+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+3 \mathrm{OH}^{-} \rightarrow 2 \mathrm{Ag}+\mathrm{HCOO}^{-}+4 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{C}
$$

Which of the following statements regarding oxidation and reduction is correct?
A. HCHO is oxidised to HCOO^{-}and $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is reduced to Ag .
B. HCHO is reduced to $d d \mathrm{HCOO}^{-}$and $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is oxidised to Ag.
C. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is reduced to Ag while OH^{-}is oxidised to HCOO^{-}
D. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is oxidised to NH_{3} while HCHO is reduced to $\mathrm{H}_{2} \mathrm{O}$.

Answer: A

- Watch Video Solution

37. Identify the compounds which are reduced and oxidised in the following reaction:
$3 \mathrm{~N}_{2} \mathrm{H}_{4}+2 \mathrm{BrO}_{3}^{-} \rightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Br}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
A. $\mathrm{N}_{2} \mathrm{H}_{4}$ is oxidised and BrO_{3}^{-}is reduced.
B. BrO_{3}^{-}is oxidised and $\mathrm{N}_{2} \mathrm{H}_{3}$ is reduced.
C. BrO_{3}^{-}is both reduced and oxidised.
D. This is not a redox reaction.

Answer: A

- Watch Video Solution

38. Identify the oxidant and reductant in the following redox reaction:
$2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{CI}_{2} \rightarrow 2 \mathrm{KCI}+2 \mathrm{KMnO}_{4}$
A. Oxidation of potassium manganate is taking place.
B. Reduction of potassium manganate is taking place.
C. Oxidation of $C l_{2}$ is taking place.
D. $C l_{2}$ acts as reducing agent in the reaction.

Answer: A

- Watch Video Solution

39. Indicate whether the following conversions represent an oxidation, a reduction or none (neither oxidation nor reduction).
(i) HClO_{3} to HClO_{4}
(ii) NH_{4}^{+}to NH_{3}
(iii) NO_{2} to $\mathrm{N}_{2} \mathrm{O}_{4} \quad$ (iv) HSO_{3}^{-}to SO_{4}^{2-}
(v) $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathrm{H}_{2} \mathrm{O}$
(i)
(ii)
(iii) (iv) (v)

Oxidation Reduction None None Oxidation
(i)
(ii) (iii)
(iv)
(v)
B.

Oxidation None None Oxidation Reduction
(i)
(ii)
(iii)
(iv) (v)
C.

Reduction Oxidation Reduction None Reduction
(i)
(ii)
(iii)
(iv)
(v)
D.

Oxidation Reduction None Reduction Reduction

Answer: B

(D) Watch Video Solution

40. In which of the following reactions, the underlined substance has been reduced?
A. $\underline{C u}+\mathrm{CuO} \rightarrow \mathrm{CO}_{2}+\mathrm{Cu}$
B. $\underline{\mathrm{CuO}}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
C. $\underline{4 H}_{2} \underline{O}+3 F \rightarrow 4 H_{2}+\mathrm{Fe}_{3} \mathrm{O}_{4}$
D. $\underline{C}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}_{2}$

Answer: C

- Watch Video Solution

41. A compound contains atoms A, B and C. the oxidation number of A is +2 , of B is +5 and of C is -2 . The possible formula of the compound is

[^0]B. $Y_{2}\left(X Z_{3}\right)_{2}$
C. $X_{3}\left(Y Z_{4}\right)_{2}$
D. $X_{3}\left(Y_{4} Z\right)_{2}$

Answer: C

- Watch Video Solution

42. Consider the following reactions,
(I) $2 \mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}$
(II) $\mathrm{SnCl}_{2}+2 \mathrm{FeCl}_{3} \rightarrow \mathrm{SnCl}_{4}+2 \mathrm{FeCl}_{2}$
A. SnCl_{2} is oxidised and FeCl_{3} acts as oxidising agent.
B. FeCl_{3} is oxidised and acts as oxidising agent.
C. SnCl_{2} is reduced and acts as oxidising agent.
D. FeCl_{3} is oxidised and SnCl_{2} acts as a oxidising agent.
43. Which of the following statements is correct regarding redox reactions?
A. An increase in oxidation number of an element is called reduction
B. A decrease in oxidation number of an element is called oxidation.
C. A reagent which lowers the oxidation number of an element in a given substance is reductant.
D. A reagent which increases the oxidation number of an element in a given substance is reductant .

Answer: C

- Watch Video Solution

44. In the reacion ,
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
A. Bromine is reduced and carbonate ion is oxidised.
B. Bromine undergoes disproportionation.
C. Bromine is reduced and water is oxidised.
D. Only water is oxidised to carbonic acid.

Answer: B

- Watch Video Solution

45. Given below is a redox reaction. Which of the following types the reaction belongs to ?
$\mathrm{CuSO}_{4(a q)}+Z n_{(s)} \rightarrow C u_{(s)}+\mathrm{ZnSO}_{4(a q)}$
A. Combination reaction
B. Decomposition reaction
C. Metal displacement reaction
D. Non-metal displacement reaction

Answer: C

- Watch Video Solution

46. Identify the oxidant the reductant in the following reaction.
$C l_{2}(g)+2 B r^{-}(a q) \rightarrow 2 \mathrm{Cl}^{-}(a q)+B r_{2}(a q)$
A. Decomposition reaction
B. Metal displacement reaction
C. Non-metal displacement reaction
D. Disproportionation reaction

Answer: C

- Watch Video Solution

47. Which of the following is a disproportionation reaction?
A. $\mathrm{Cl}_{2(g)}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{ClO}_{(a q)}^{-}+\mathrm{Cl}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $C l_{2(g)}+2 I_{(a q)}^{-} \rightarrow 2 C l_{(a q)}^{-}+I_{2(s)}$
C. $2 \mathrm{Fe}_{(s)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \xrightarrow{\Delta} \mathrm{Fe}_{2} \mathrm{O}_{3(s)}+3 \mathrm{H}_{2(g)}$
D. $2 \mathrm{H}_{2} \mathrm{O}_{(l)}+2 \mathrm{~F}_{2(g)} \rightarrow 4 H F_{(a q)}+O_{2(g)}$

Answer: A

- Watch Video Solution

48. Match the column I with column II with the type of reaction and mark the appropriate choice.

Column I

 Column II(A) $3 \mathrm{Mg}_{(s)}+\mathrm{N}_{2(g)} \xrightarrow{\Delta}$ (i) Displacement $\mathrm{Mg}_{3} \mathrm{~N}_{2(s)}$
(B) $\mathrm{NaH}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow$ (ii) Decomposition

$$
\mathrm{NaOH}_{(a q)}+\mathrm{H}_{2(g)}
$$

(C) $3 \mathrm{ClO}_{(a q)}^{-} \rightarrow 2 \mathrm{Cl}_{(a q)}^{-}+$(iii) Combination

$$
\mathrm{ClO}_{3(a q)}^{-}
$$

(D) $2 \mathrm{KClO}_{3(s)} \rightarrow 2 \mathrm{KCl}_{(s)}$ (iv) Disproportionation

$$
+3 \mathrm{O}_{2(g)}
$$

A. (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv)
B. (A) \rightarrow (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i)
C. (A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv)
D. (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (ii)

Answer: D

- Watch Video Solution

49. Which of the following is not an example of disproportionation reaction?
A. $4 \mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{ClO}_{4}^{-}$
B. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
C. $2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$
50. White phosphorus reacts with caustic soda to form PH_{3} and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$. This reaction is an example of
A. oxidation
B. reduction
C. disproportionation
D. displacement

Answer: C

- Watch Video Solution

51. What is the oxidation number of carbon in $C_{3} O_{2}$ (carbon suboxide) ?
A. $+4 / 3$
B. $+10 / 4$
C. +2
D. $+2 / 3$

Answer: A

Watch Video Solution

52. The oxidation number of Cr in $\mathrm{CrO}(5)$ which has the following structure is

A. +4
B. +5
C. +6
D. +3

Answer: C

- Watch Video Solution

53. In the conversion of Br_{2} to BrO_{3}^{-}, the oxidation state of Br changes from.
A. +1 to +5
B. 0 to -3
C. +2 to +5
D. 0 to +5

Answer: D

54. Permanganate (VII) ion, MnO_{4}^{-}oxidises I^{-}ion to I_{2} and gives manganese (IV) oxide MnO_{2} in basic medium. The skeletal ionic equation is given as
$p \mathrm{MnO}_{4(a q)}^{-}+q I_{(a q)}^{-}+x \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow r \mathrm{MnO}_{2(s)}+s \mathrm{I}_{2(s)}+y \mathrm{OH}_{(a q)}^{-}$ The values of p, q, r and s are
A. $p q r s$
A. $\begin{array}{llll}1 & 2 & 8\end{array}$
B. $p q r s$
B. $2 \begin{array}{lll}6 & 2\end{array}$
C. $\begin{array}{llll}p & q & r & s \\ 2 & 4 & 2 & 8\end{array}$
D. $\begin{array}{rrrr}p & q & r & s \\ 1 & 4 & 8 & 2\end{array}$

Answer: B

- View Text Solution

55. Choose correct statements (s) regarding the following reactions.
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+3 \mathrm{SO}_{3}^{2-}(a q)+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{H}_{2} \mathrm{O}$
A.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+3 \mathrm{SO}_{2(g)}+2 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{SO}_{4(a q)}^{2-}
$$

B.

$$
2 \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+3 \mathrm{SO}_{2(g)}+4 \mathrm{H}_{(a q)}^{+} \rightarrow 4 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{SO}_{4(a q)}^{2-}+2 \mathrm{H}_{2} \mathrm{O}_{(l}
$$

C.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+3 \mathrm{SO}_{2(g)}+14 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{SO}_{4(a q)}^{2-}+7 \mathrm{H}_{2} \mathrm{O}_{(l}
$$

D.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+6 \mathrm{SO}_{2(g)}+7 \mathrm{H}_{(a q)}^{+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+6 \mathrm{SO}_{4(a q)}^{2-}+7 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

Answer: A

- Watch Video Solution

56. The Mn^{3+} ion is unstable in solution and undergoes disproportionation reaction to give $\mathrm{Mn}^{+2}, \mathrm{MnO}_{2}$, and H^{\oplus} ion. Write a balanced ionic equation for the reaction.

$$
\text { A. } 3 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+\mathrm{Mn}^{2+}+8 \mathrm{H}^{+}
$$

B. $\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{H}^{+}$
C. $\mathrm{Mn}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{H}^{+}$
D. $2 \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+\mathrm{Mn}^{2+}+4 \mathrm{H}^{+}$

Answer: D

- Watch Video Solution

57. The number of moles of KMnO_{4} reduced by 1 mol of $K I$ in alkaline medium is
A. $1 / 5$
B. 2
C. $3 / 2$
D. 4

Answer: B

58. Balance the following equation by oxidation number method:
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2}$
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
B.
$2 \mathrm{~K}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+7 \mathrm{SO}_{4}^{2-}+6 \mathrm{Fe}^{2+} \rightarrow 3 \mathrm{Fe}^{3+}+\mathrm{SO}_{4}^{2-}+\mathrm{Cr}^{3+}+1$
C. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{~K}^{+}+7 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+6 \mathrm{Cr}^{3+}+\mathrm{K}^{+}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+7 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 3 \mathrm{Fe}^{2+}+2 \mathrm{Cr}^{3+}+2 \mathrm{~K}^{+}+7 \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

59. Which will be the value of x, y and z in the following equaton.
$x \mathrm{I}_{2}+y \mathrm{OH}^{-} \rightarrow \mathrm{IO}_{3}^{-}+z \mathrm{I}+3 \mathrm{H}_{2} \mathrm{O}$
A. $\begin{array}{lll}x & y & z \\ 6 & 3 & 5\end{array}$
B. $\begin{array}{lll}x & y & z \\ 3 & 2 & 3\end{array}$
C. $\begin{array}{lll}x & y & z \\ 3 & 6 & 5\end{array}$
D. $\begin{array}{lll}x & y & z \\ 3 & 3 & 3\end{array}$

Answer: C

D Watch Video Solution

60. The number of electrons involved in the conversion of MnO_{4}^{-}to MnO_{2} is
A. 3
B. 4
C. 1
D. 2

Answer: A

61. The values of coefficients to balance the following reaction are $\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{ClO}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
A. $\begin{array}{lll} \\ \mathrm{Cr}(\mathrm{OH})_{3} & \mathrm{ClO}^{-} & \mathrm{CrO}_{4}^{2-} \\ \mathrm{Cl}^{-}\end{array}$
B. $\mathrm{Cr}(\mathrm{OH})_{3} \quad \mathrm{ClO}^{-} \quad \mathrm{CrO}_{4}^{2-} \quad \mathrm{Cl}^{-}$
C. $\begin{array}{cccl}2 & 4 & 3 & 2 \\ \mathrm{Cr}(\mathrm{OH})_{3} & \mathrm{ClO}^{-} & \mathrm{CrO}_{4}^{2-} & \mathrm{Cl}^{-} \\ 2 & 4 & 4 & 2 \\ \text { D. } \begin{array}{crl}\mathrm{Cr}(\mathrm{OH})_{3} & \mathrm{ClO}^{-} & \mathrm{CrO}_{4}^{2-}\end{array} \mathrm{Cl}^{-}\end{array}$
D. 2

3
2
3

Answer: D

- View Text Solution

62. The stoichiometric constants for the reaction $p \mathrm{Cu}+q \mathrm{HNO}_{3} \rightarrow r \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+s \mathrm{NO}+t \mathrm{H}_{2} \mathrm{O} \quad \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ and t respectively are
A. $3,3,3,2,3$
B. 3, 2, 3, 2, 4
C. $3,8,3,2,4$
D. $2,3,3,3,2$

Answer: C

- Watch Video Solution

63. What is the correct representation of reaction occurring when HCl is heated with MnO_{2} ?
A. $\mathrm{MnO}_{4}^{-}+5 \mathrm{Cl}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Cl}^{-}+5 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{MnO}_{2}+2 \mathrm{Cl}^{-}+4 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. $2 \mathrm{MnO}_{2}+4 \mathrm{Cl}^{-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{4}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$

Answer: B

64. When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of $M n$ changes from
A. +2 to +7
B. +4 to +7
C. +7 to +2
D. +6 to +2

Answer: C

- Watch Video Solution

65. When a mananous salt is fused with a mixture of KNO_{3} and and solid NaOH , the oxidation number of Mn change from +2 to:
A. +4
B. +3
C. +6
D. +7

Answer: C

- Watch Video Solution

66. For decolourisation of 1 mol of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

67. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions is
A. $1 / 3$
B. $1 / 6$
C. $2 / 3$
D. $3 / 4$

Answer: A

- Watch Video Solution

68. Which of the following colour changes shown during redox titrations is not correct?
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ oxidises the indicator diphenylamine to produce blue colour showing end point.
B. lodine formed by oxidation of I^{-}ions gives blue colour with starch showing end point.
C. KMnO_{4} in the form of MnO_{4}^{-}ions gives pink colour showing end point.
D. Thiosulphate ions $\left(S_{2} O_{3}^{2-}\right)$ give blue colour showing end point.

Answer: D

- View Text Solution

69. Which of the following acts as a self-indicator ?
A. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. KMnO_{4}
C. Oxalic acid
D. lodine

Answer: B

70. Which of the following are the common oxidising agents used in redox titrations ?
A. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{KMnO}_{4}$, lodine
B. $\mathrm{FeSO}_{4}, \mathrm{KMnO}_{4}$, Sodium thiosulphate
C. Oxalic acid, $\mathrm{KMnO}_{4}, \mathrm{CuSO}_{4}$
D. Mohr's salt, KI, Sodium sulphate

Answer: A

- View Text Solution

Mcqs Oxidation Number

1. Match the column I with column II and mark the appropriate choice.

Column I (Compound) (A) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{OH})_{6}\right]$		Column II (Oxidation state of Fe	
(B)	$\mathrm{K}_{2}\left[\mathrm{FeO}_{4}\right]$	(i)	$+8 / 3$
(C)	$\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	(iii)	+2
(D)	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	(iv)	+6

A. (A) \rightarrow
(iii), (B) \rightarrow
(i), (C) \rightarrow
(ii), (D) \rightarrow (iv)
B. (A) \rightarrow
(iii), (B) \rightarrow (iv), (C) \rightarrow
(ii), (D) \rightarrow
C. (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv)
D. (A) \rightarrow (iv), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iii)

Answer: B

- View Text Solution

1. Given below is the set up for Daniell cell. Label p, q, r, s, t in the given figure.

| p | q | r |
| :--- | :--- | :--- | :--- | :--- |

A. Anode Cathode Salt Electron Current bridge flow flow
p
q
r
S
t

B. Cathode	Anode	Salt	Current	Electron
		bridge	flow	flow

C. Anode	Cathode	Salt	Current	Electron
		bridge	flow	flow
p	q	r	s	t

D. Cathode Anode Salt Ions Electron bridge flow flow

Answer: A

Redox Reactions And Electrode Processes

1. Given below are few statements regarding electrode potentials. Mark the correct statements.
A. (i) and (ii)
B. (i) and (iii)
C. (ii) and (iii)
D. (i), (ii) and (iii)

Answer: D

- View Text Solution

2. What wil be the products of electrolysis of an aqueous solution of AgNO_{3} with silver electrodes ?
A. Ag from Ag anode dissolves while $A g^{+}$from solution gets deposited on cathode.
B. Ag is liberated at cathode and O_{2} is liberated at anode.
C. Ag at cathode and nitric acid at anode is liberated.
D. No reaction takes place.

Answer: A

- View Text Solution

3. What will be the products of electrolysis of AgNO_{3} solution in water with platinum electrodes ?
A. Ag is liberated at cathode and Ag is deposited in anode.
B. Ag is liberated at cathode and O_{2} is liberated at anode.
C. Ag is liberated at anode and water is liberated at cathode.
D. Ag is liberated at cathode and silver oxide is liberated at anode.

Answer: B

D View Text Solution

4. In an oxidation process for a cell,
$M_{1} \rightarrow M_{1}^{n+}+n e^{-}$,
the other metal $\left(M_{2}\right)$ being univalent showing reduction takes up electrons to complete redox reaction.
A. $(n-1)$
B. 1
C. n
D. 2

Answer: C

5. Which of the following reactions takes place at anode ?
A. Reduction
B. Oxidation
C. Decomposition
D. Dissolution

Answer: B

- Watch Video Solution

6. Which of the following will act as cathode when connected to standard hydrogen electrode which has E° value given as zero?
(i) $Z n^{2+} / Z n, E^{\circ}=-0.76 \mathrm{~V}$
(ii) $\mathrm{Cu}^{2+} / \mathrm{Cu}, E^{\circ}=+0.34 \mathrm{~V}$
(iii) $A l^{3+} / A l, E^{\circ}=-1.66 V$
(iv) $\mathrm{Hg}^{2+} / \mathrm{Hg}, E^{\circ}=+0.885 \mathrm{~V}$
A. (i) and (ii)
B. (ii) and (iv)
C. (i) and (iii)
D. (i), (ii), (iii) and (iv)

Answer: B

- Watch Video Solution

7. Which of the following reaction does not take place?
A. $A g^{+} \rightarrow A g-e^{-}$
B. $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
C. $C u^{2+}+2 e^{-} \rightarrow C u$
D. $A l^{3+} \rightarrow A l-3 e^{-}$

Answer: B

8. निम्नलिखित संभव अभिक्रियाओं की सहायता से $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Cu}$ और Ag को उनके धत्ते हुए इलेक्ट्रोड विभव के क्रम में लिखिए।
$\mathrm{Cu}+2 \mathrm{Ag}^{+} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ah}$
$M g+Z n^{2+} \rightarrow M g^{2+}+Z n$
$Z n+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
A. $M g>Z n>C u>A g$
B. $M g<Z n<C u<A g$
C. $Z n>C u>A g>M g$
D. $M g>C u>Z n>A g$

Answer: B

- Watch Video Solution

9. Which of the following is not a correct statement about electrochemical series of reduction potentials ?
A. The standard electrode potential of hydrogen is 0.00 volts.
B. Active non-metals have positive reduction potentials.
C. Active metals have negative reduction potentials.
D. Metals which have positive reduction potentials are good reducing agent.

Answer: D

- View Text Solution

10. If a spoon of copper metal is placed in a solution of FeSO_{4}, what will be the correct observation ?

A. Copper is dissolved in FeSO_{4} to give brown deposit.
B. No reaction takes place.
C. Iron is deposited on copper spoon.
D. Both copper and iron are precipitated.

Answer: B

- Watch Video Solution

11. The solution in a beaker turns blue if
A. Cu electrode is placed in ZnSO_{4} solution
B. Cu electrode is placed in AgNO_{3} solution
C. Cu electrode is placed in $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution
D. Cu electrode is placed in FeSO_{4} solution

Answer: B

12. The standard electrode potential a $\mathrm{Ag}^{+} / \mathrm{Ag}$ is +0.80 V and of $C u^{2+} / C u$ is +0.34 V . These electrodes are connected through a salt bridge and if:
A. Ag can oxidise Zn and Cu .
B. Ag can reduce Zn^{2+} and Cu^{2+}
C. Zn can reduce Ag^{+}and Cu^{2+}
D. Cu can reduce $Z n^{2+}$ and $A g^{+}$.

Answer: C

- Watch Video Solution

13. The E° values of redox complex of halogens are given. Based on these values mark the correct statement.

$$
\begin{aligned}
& E_{I_{2} / C I^{-}}^{\circ}=+0.54 \mathrm{~V}, E_{B r_{2} / B r^{-}}^{\circ}=+1.08 \mathrm{~V}, \\
& E_{C l_{2} / C l^{-}}^{\circ}=+1.36 \mathrm{~V},
\end{aligned}
$$

A. Chlorine can displace bromine and iodine from their salt solutions.
B. Chlorine can only displace iodine from its salt solution.
C. Bromine can displace chlorine from its salt solution.
D. lodine can displace chlorine and bromine from their salt solutions.

Answer: A

- Watch Video Solution

14. Arrange the following metals in the order in whiCHM they displace eaCHM other from the solution of their salts. $A l, C u, F e, M g$, and $Z n$.
A. $\mathrm{Cu}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Al}, \mathrm{Mg}$
B. $\mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Al}, \mathrm{Mg}$
C. $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Al}$
D. $\mathrm{Mg}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}$

Answer: D

15. Arrange the following metals in increasing order of their reducing power.
[
Given
$E_{K^{+} / K}^{\circ}=-2.93 V, E_{A g^{+} / A g}^{\circ}=+0.80 V, E_{A l^{3} / A l}^{\circ}=-1.66 V, E_{A u^{3+} / A u}^{\circ}$
]
A. $L i<K<A l<A g<A u$
B. $A u<A g<A l<K<L i$
C. $K<A l<A u<A g<L i$
D. $A l<A g<A u<L i<K$

Answer: B

- Watch Video Solution

16. A metal X displaces nickel from nickel sulphate solution but does not displace manganese from manganese sulphate solution. What is the correct order of their reducing powers ?
A. $N i>M n>X$
B. $X>M n>N i$
C. $M n>X>N i$
D. $M n>N i>X$

Answer: C

- Watch Video Solution

17.

Given
$E_{A g^{+} / A g}^{\circ}=+0.80 \mathrm{~V}, E_{C u^{2+} / \mathrm{Cu}}^{\circ}=+0.34 V, E_{F_{e^{3+}}^{\circ} / F e^{2+}}^{\circ}=+0.76 \mathrm{~V}, E_{C e^{4}}^{\circ}$
Which of the following statements is not correct ?
A. Fe^{3+} does not oxidise Ce^{3+}.
B. Cu reduces Ag^{+}to Ag .
C. Ag will reduce Cu^{2+} to Cu .
D. Fe^{3+} reduces Cu^{2+} to Cu .

Answer: C

- Watch Video Solution

18. निम्नलिखित आयनो को इलेक्ट्रॉन ग्रहण करने की बढ़ती क्षमता के क्रम में लिखो । $\mathrm{H}^{+}, \mathrm{Mg}^{2+}, \mathrm{K}^{+}, \mathrm{Ag}^{+}, \mathrm{Zn}^{2+}$ तथा Cu^{2+}
A. $\mathrm{Ag}^{+}>\mathrm{H}^{+}>\mathrm{Zn}^{2+}>\mathrm{Mg}^{2+}>\mathrm{K}^{+}$
B. $\mathrm{H}^{+}>\mathrm{Zn}^{2+}>\mathrm{Mg}^{2+}>\mathrm{K}^{+}>\mathrm{Ag}^{+}$
C. $\mathrm{K}^{+}>\mathrm{Mg}^{2+}>\mathrm{Zn}^{2+}>\mathrm{H}^{+}>\mathrm{Ag}^{+}$
D. $\mathrm{Mg}^{2+}>\mathrm{Zn}^{2+}>\mathrm{K}^{+}>\mathrm{H}^{+}$

Answer: A

19. What will be the order of decreasing reducing nature for the given metals ?
A. $Z n>N a>F e>M g>C u>A g$
B. $\mathrm{Cu}>\mathrm{Fe}>\mathrm{Mg}>\mathrm{Zn}>\mathrm{Na}>\mathrm{Ag}$
C. $\mathrm{Ag}>\mathrm{Cu}>\mathrm{Fe}>\mathrm{Zn}>\mathrm{Mg}>\mathrm{Na}$
D. $\mathrm{Na}>\mathrm{Mg}>\mathrm{Zn}>\mathrm{Fe}>\mathrm{Cu}>\mathrm{Ag}$

Answer: D

- Watch Video Solution

20. Which of the following is the strongest oxidizing agent ?
A. F_{2}
B. $C l_{2}$
C. $B r_{2}$
D. I_{2}

Answer: A

- Watch Video Solution

21. Fluorine is the best oxidising agent because it has
A. it is most electronegative .
B. it has highest reduction potential.
C. it has highest oxidation potential.
D. it has smallest size.

Answer: B

- Watch Video Solution

22. Which of the following halides is most acidic ?
A. F^{-}
B. Br^{-}
C. I^{-}
D. Cl^{-}

Answer: C

- Watch Video Solution

Higher Order Thinking Skills

1. The oxidation sates of metal in the compounds $\mathrm{Fe}_{0.94} \mathrm{O}$ and
$\left[\mathrm{Cr}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{CO})_{3}\right]$ respectively are
A. $\frac{200}{94}, 0$
B. $0, \frac{94}{200}$
C. 2,1
D. $1, \frac{200}{94}$

D Watch Video Solution

2. Consider the following reaction,

$$
\begin{aligned}
& \mathrm{CHO} \mathrm{COO}^{-} \\
& \left|+\mathrm{OH}^{-} \rightarrow\right| \\
& \mathrm{CHO} \quad \mathrm{CH}_{2} \mathrm{OH} \\
& \text { Select the incorrect statement. }
\end{aligned}
$$

A. It is not a disproportionation reaction.
B. It is intramolecular redox reaction.
C. OH^{-}is a reducing as well as oxidising agent. CHO
D. \quad is a reducing as well as oxidising agent. CHO

Answer: C

3. Which of the following is a redox reaction ?
A. Reaction of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH
B. In atmosphere, formation of O_{3} from O_{2} by lightening
C. Formation of oxides of nitrogen from nitrogen and oxygen by lightening
D. Evaporation of $\mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

4. Why following two reaction proceed differently?
$\mathrm{Pb}_{3} \mathrm{O}_{4}+8 \mathrm{HCl} \rightarrow 3 \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ and
$\mathrm{Pb}_{3} \mathrm{O}_{4}+4 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A. three numbers of Pb^{2+} ions get oxidised to Pb^{4+} state
B. one number Pb^{4+} ion gets reduced to Pb^{2+} and two numbers of
$P b^{2+}$ ions remain unchanged in their oxidation state
C. one number $P b^{2+}$ ion gets oxidised to Pb^{4+} and two numbers of Pb^{4+} ions remain unchanged in their oxidation states
D. three numbers of Pb^{4+} ions get reduced to Pb^{2+} state.

Answer: B

- Watch Video Solution

5. which of the following statements is not correct about the reaction given below?

$$
\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \xrightarrow{\text { Oxidation }} \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{\ominus}
$$

A. Fe is oxidised from Fe^{2+} to Fe^{3+}.
B. Carbon is oxidised from C^{2+} to C^{4+}.
C. N is oxidised from N^{3-} to N^{5+}.
D. Carbon is not oxidised.

Answer: D

- Watch Video Solution

6. One mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A ? (There is no change in the oxidation state of hydrogen.)
A. -1
B. -3
C. +3
D. +5

Answer: C

7. Using the following Latimer diagram for bromine,
$\mathrm{pH}=0, \mathrm{BrO}_{4}^{-} \xrightarrow{1.82 \mathrm{~V}} \mathrm{BrO}_{3}^{-} \xrightarrow{1.50 \mathrm{~V}} \mathrm{HBrO} \xrightarrow{1.595 \mathrm{~V}} \mathrm{Br}_{2} \xrightarrow{1.06552 \mathrm{~V}} \mathrm{Br}^{-}$ the species undergoing disproportionation is
A. BrO_{4}^{-}
B. BrO_{3}^{-}
C. HBrO
D. $B r_{2}$

Answer: C

- View Text Solution

8. For the reaction : $\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}$ The correct statement(s) in the balanced equation is/are:
A. stoichiometric coefficient of HSO_{4}^{-}is 6
B. iodide is oxidized
C. sulphur is reduced
D. $\mathrm{H}_{2} \mathrm{O}$ is one of the products.

Answer: C

D Watch Video Solution

9. MnO_{4}^{-}ions are reduced in acidic conditions to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_{2}. The oxidation of 25 mL of a solution x containing $F e^{2+}$ ions required in acidic condition 20 mL of a solution y containing MnO_{4} ions. What value of solution y would be required to oxidize 25 mL of solution x containing Fe^{2+} ions in neutral condition?
A. 11.4 mL
B. 12.0 mL
C. 33.3 mL
D. 35.0 mL

Answer: C

- Watch Video Solution

Ncert Exemplar

1. Which of the following is not an example of redox reaction?
A. $\mathrm{CuO}+\mathrm{H}_{2} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
C. $2 K+F_{2} \rightarrow 2 K F$
D. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$

Answer: D

Watch Video Solution
2. The more positive the value of E^{θ}, the greater is the tendency of the species to get reduced. Using the standard electrode potential of redox couples given below find out which of the following is the strongest oxidizing agent.
E^{θ} values: $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77$
$I_{2(s)} / I^{-}=+0.54$,
$\mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34, \mathrm{Ag}^{+} / \mathrm{A}=0.80 \mathrm{~V}$
A. $F e^{3+}$
B. $I_{2(s)}$
C. Cu^{2+}
D. Ag

Answer: D

- Watch Video Solution

3. E^{θ} values of some redox couples are given below. On the basis of these values choose the correct option.
E^{θ} values: $B r t_{2} / B r^{-}=+1.90$
$A g^{+} / A g(s)=+0.80$
$C u^{2+} / C u(s)=+0.34, I_{2}(s) / I^{-}=+0.54$
A. Cu will reduce $B r^{-}$
B. Cu will reduce Ag
C. Cu will reduce I^{-}
D. Cu will reduce $B r_{2}$

Answer: D

- Watch Video Solution

4. Using the standard electrode potential, find out the pair between which redox reaction is not feasible. E° values :
$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=+0.77, I_{2} / I^{-}=+0.54 \mathrm{~V}$
$\mathrm{Cu}^{2+} / \mathrm{Cu}=+0.34 V, \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}$
A. $F e^{3+}$ and I^{-}
B. Ag^{+}and Cu
C. Fe^{3+} and Cu
D. Ag and Fe^{3+}

Answer: D

- Watch Video Solution

5. Thiosulphate reacts differently with iodine and bromine in the reactions given below :
$S_{2} O_{3}^{2-}+I_{2} \rightarrow S_{4} O_{6}^{2-}+2 I^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+2 \mathrm{Br}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{4}^{2-}+2 \mathrm{Br}^{-}+10 \mathrm{H}^{+}$
Which of the following statements justifies the above dual behaviour of thiosulphate?
A. Bromine is a stronger oxidant than iodine.
B. Bromine is a weaker oxidant than iodine.
C. Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions.
D. Bromine undergoes oxidation and iodine undergoes reduction in these reactions.

Answer: A

- View Text Solution

6. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following rules is not correct in this respect ?
A. The oxidation number of hydrogen is always +1 .
B. The algebraic sum of all the oxidation numbers in a compound is
C. An element in the free or the uncombined state bears oxidation number zero.
D. In all its compounds, the oxidation number of fluorine is -1 .

Answer: A

- Watch Video Solution

7. In which of the following compounds, an elements exhibits two different oxidation states?
A. $\mathrm{NH}_{2} \mathrm{OH}$
B. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. $\mathrm{N}_{2} \mathrm{H}_{4}$
D. $\mathrm{N}_{3} \mathrm{H}$

Answer: B

8. Which of the following arrangements represent increaseing oxidation number of the central atom?
A. $\mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}$
B. $\mathrm{ClO}_{3}^{-}, \mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}$
C. $\mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{MNO}_{4}^{-}, \mathrm{CrO}_{4}^{2-}$
D. $\mathrm{CrO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{CrO}_{2}^{-}, \mathrm{ClO}_{3}^{-}$

Answer: A

- Watch Video Solution

9. The largest oxidation number exhibited by an element depends on its outer eletronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number?
A. $3 d^{1} 4 s^{2}$
B. $3 d^{3} 4 s^{2}$
C. $3 d^{5} 4 s^{1}$
D. $3 d^{5} 4 s^{2}$

Answer: D

- Watch Video Solution

10. Identify the disproportionation reaction.
A. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}$
C. $2 \mathrm{~F}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{~F}^{-}+\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O}$
D. $2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

11. Which of the following elements does not show disproportionation tendency?
A. Cl
B. Br
C. F
D. I

Answer: C

- Watch Video Solution

Assertion And Reason

1. Assertion : Conversion of potassium ferrocyanide to potassium
ferricyanide is an oxidation process.
Reason : Oxidation is the addition of oxygen/electronegative element to a
substance or removal of hydrogen/electropositive element from a substance.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- View Text Solution

2. Justify that the reaction
$2 \mathrm{Cu}_{2} \mathrm{O}_{s}+\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s}) \rightarrow 6 \mathrm{Cu}(\mathrm{s})+\mathrm{SO}_{2}(g)$ a redox reaction. Identify the species oxidised / reduced. Which acts as an oxidanat and which acts as a reductant?
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

3. Assertion : HNO_{2} can act both as a reducing agent and an oxidising agent.

Reason : In HNO_{2}, oxidation state of nitrogen is +3 which can change from -3 to +5 .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- View Text Solution

4. Assertion : Decomposition of potassium chlorate is an example of redox reaction .

Reason : There is no change in the oxidation number of potassium in decomposition of potassium chlorate.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

5. Assertion : Displacement reactions of chlorine, bromine and iodine using fluorine are not generally carried out in aqueous solution.

Reason : Fluorine being highly reactive attacks water and displaces the oxygen of water.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

D View Text Solution

6. Assertion : Decomposition of hydrogen peroxide is an example of disproportionation reaction.

Reason : In a disproportionation reaction, an element in one oxidation state is simultaneously oxidised and reduced.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

7. Assertion : CO_{4}^{-}does not snow disproportionation reaction.

Reason: In ClO_{4}^{-}, chlorine is present in its highest oxidation state .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- View Text Solution

8. Assertion : All halogens undergo disproportionation reaction in alkaline medium.

Reason : All halogens exhibit variable oxidation states.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D View Text Solution

9. Assertion : The only way to get F_{2} form F^{-}is to oxidise electrolytically. Reason : The recovery of halogens from their halides requires an oxidation process.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

10. Assertion: Oxygen atom in both O_{2} and O_{3} has oxidation number zero.

Reason: In $F_{2} O$, oxidation number of O is +2 .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

- Watch Video Solution

11. Assertion : In the species, $S_{4} O_{6}^{2-}$ each of the two extreme sulphurs exhibits oxidation state of +5 and the two middle sulphurs as zero.

Reason : The average of four oxidation numbers of sulphurs of the $S_{4} O_{6}^{2-}$ is 2.5 .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- View Text Solution

12. Assertion : In titrations involving potassium permanganate no indicator is used.

Reason : MnO_{4}^{-}acts as the self-indicator.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

D View Text Solution

13. Assertion : The transfer of electrons from zinc to copper takes place through metal wire connecting the two rods.

Reason : Electricity from solution in one beaker to other flows by migration of ions through the salt bridge.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

14. Assertion : Insert electrolytes like $\mathrm{KCl}, \mathrm{KNO}_{3}$ are used in salt bridge. Reason : Salt bridge provides an electric contact between the two solutions without allowing them to mix with each other.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- View Text Solution

15. Assertion : A metal having negative reduction potential when dipped in the solution of its own ions has a tendency to pass into solution. Reason : Metals undergo reduction .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- View Text Solution

[^0]: A. $X Y Z_{2}$

