©゙doubtnut

CHEMISTRY

BOOKS - NCERT FINGERTIPS CHEMISTRY (HINGLISH)

COORDINATION COMPOUNDS

Warners Theory Of Coordination Compound

1. Copper sulphate dissolves in ammonia due to the formulation of
A. $\mathrm{Cu}_{2} \mathrm{O}$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
c. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{OH}$
D. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4}$

Answer: B

2. Consider the following isomers.
(i) $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2} \quad$ (ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] C l_{2}$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$

Which of the following observations is correct ?
A. (i) will give a part yellow and (ii) will give a white precipitate with $\mathrm{AgNO} \mathrm{O}_{3}$ solution.
B. (iii) will give a white precipitate with AgNO_{3} solution .
C. (i), (ii) and (iii) will give white precipitate with $\mathrm{AgNO} \mathrm{O}_{3}$ solution .
D. None of the above isomers will give white precipitate with $\mathrm{AgNO} \mathrm{O}_{3}$ solution.

Answer: A

- Watch Video Solution

3. The number of ions given by $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4}$ in aqueous solution will be
A. two
B. three
C. five
D. eleven .

Answer: C

- Watch Video Solution

4. A coordination compound X gives pale yellow colour with AgNO_{3} solution while its isomer Y gives white precipitate with BaCl_{2}. Two compounds are isomers of $\mathrm{CoBrSO} \mathrm{O}_{4} \cdot 5 \mathrm{NH}_{3}$. What could be the possible formula of X and Y ?

$$
\text { A. X }=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}, \mathrm{Y}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}
$$

B. $X=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}, Y=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$
C. $X=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\left(\mathrm{SO}_{4}\right)\right], Y=\left[\mathrm{CoBr}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]$
D. $X=\left[\mathrm{Co}\left(\mathrm{Br}_{5} \mathrm{NH}_{3}\right] \mathrm{SO}_{4}, Y=\left[\mathrm{CoBr}\left(\mathrm{SO}_{4}\right)\right] \mathrm{NH}_{3}\right.$

Answer: A

- Watch Video Solution

5. A solution containing 2.675 g of $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ (molar mass $=267.5 \mathrm{~g}$ mol^{-1} is passed through a cation exchanger. The chloride ions obtained in solution are treated with excess of AgNO_{3} to give 4.78 g of AgCl (molar mass $=143.5 \mathrm{~g} \mathrm{~mol}^{-1}$). The formula of the complex is (At.mass of $A g=108 u)$.
A. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}\right.$
c. $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$
D. $\left[\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$

Answer: B

- Watch Video Solution

6. When each of the following complex salts is treated with excess of AgNO_{3} solution, which will give the maximum amount of AgCl
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{6}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} l_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

Answer: A

- Watch Video Solution

7. Arrange the following complexes in the increasing order of conductivity
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
A. $(i)<(i i)<(i v)<(i i i)$
B. $(i i)<(i)<(i i i)<(i v)$
C. $(i)<(i i i)<(i i)<(i v)$
D. $(i v)<(i)<(i i)<(i i i)$

Answer: A

- Watch Video Solution

8. A coordination compound $\mathrm{CrCI}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ precipitates AgCI when treated with AgNO_{3} The molar conductance of its solution corresponds to a total of two ions Write the structural formula of the compound and name it .
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{3}\right]$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{4} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

Answer: C

- Watch Video Solution

9. According to Werner's theory of coordination compounds ,
A. primary valency is ionisable
B. secondary valency is ionisable
C. primary and secondary valencies are ionisable
D. neither primary nor secondary valency is ionisable .

Answer: A

- Watch Video Solution

10. According to Werner' s coordination theory, there are two kinds of valence primary or \qquad and secondary or \qquad The former type of valency is \qquad while the latter type is \qquad .
A. three, negative, positive, cations
B. different, negative, positive, anions
C. two , primary, secondary, anions
D. two , saturated , unsaturated , cations

Answer: C

- Watch Video Solution

11. Which of the following primary and secondary valencies are not correctly marked against the compound ?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}, p=3, s=6$
B. $K_{2}\left[P t C l_{4}\right], p=2, s=4$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right], p=2, s=4$
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}, p=4, s=4$

Answer: D

- Watch Video Solution

12. When aqueous solution of potassium fluoride is added to the blue coloured aqueous CuSO_{4} solution, a green precipitate is formed. This observation can be explained as follows .
A. On adding $\mathrm{KF}, \mathrm{H}_{2} \mathrm{O}$ being weak field ligand is replaced by F^{-} ions forming $\left[\mathrm{CuF}_{4}\right]^{2-}$ which is green in colour .
B. Potassium is coordinated to $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ ion present in CuSO_{4} and gives green colour .
C. On adding $K F, C u^{2+}$ are replaced by K^{+}forming a green complex.
D. Blue colour of CuSO_{4} and yellow colour of KI form green colour on mixing .

Answer: A

- Watch Video Solution

13. When excess of aqueous KCN solution is added to an aqueous solution of copper sulphate, the complex $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}$ is formed. On passing $H_{2} S$ gas through this solution no precipitate of CuS is formed because
A. sulphide ions cannot replace CN^{-}ions
B. $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}$ does not give Cu^{2+} ion in the solution
C. sulphide ions from $H_{2} S$ do not form complexes
D. sulphide ions cannot replace sulphate ions from copper sulphate solution.

Answer: B

- Watch Video Solution

Definition Of Some Important Terms Pertaining To Coordination Compounds

1. Ammonia acts as a very good ligand but ammonium ion does not form complexes because
A. NH_{3} is a gas while NH_{4}^{+}is in liquid form
B. $N H_{3}$ undergoes $s p^{3}$ hybridisation while $N H_{4}^{+}$undergoes $s p^{3} \mathrm{~d}$
hybridisation
C. NH_{4}^{+}ion does not have any lone pair of electrons
D. NH_{4}^{+}ion has one unpaired electron while NH_{3} has two unpaired electrons .

Answer: C

2. The denticity of the ligand $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}$ is
A. bidentate
B. tridentate
C. tetradentate
D. pentadentate.

Answer: C

- Watch Video Solution

3. Which of the following is a tridentate ligand?
A. $E D T A^{4-}$
B. $(\mathrm{COO})_{2}^{2-}$
C. dien
D. NO_{2}^{-}

Answer: C

- Watch Video Solution

4. Among the following which are ambidentate ligands?
(i) NO_{2}^{-}
(ii) NO_{3}^{-}
(iii) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(iv) $S C N^{-}$
A. (i) and (iii)
B. (i) and (iv)
C. (ii) and (iii)
D. (ii) and (iv)

Answer: A

5. Which of the following ligand gives chelate complexes ?
A. Acelate
B. Oxalate
C. Cyanide
D. Ammonia

Answer: B

- Watch Video Solution

6. Which of the following is not a neutral ligand ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. ONO
D. $C O$

Answer: C

- Watch Video Solution

7. Which of the following ligands will not show chelation ?
A. EDTA
B. DMG
C. Ethane-1, 2- diamine
D. $S C N^{-}$

Answer: D

- Watch Video Solution

8. Mark the correct labelling of different terms used in coordination compounds :

A. (i) Central atom , (ii) Ionisation sphere , (iii) Coordination number ,
(iv) Ligands
B. (i) Ligands, (ii) Coordination number, (iii) Valency, (iv lonisation sphere
C. (i) Ionisation sphere , (ii) Ligands, (iii) Coordination number , (iv)

Central atom
D. (i) Ligands, (ii) Ionisation sphere, (iii) Coordination number, (iv)

Central atom

Watch Video Solution

9. Match the complexes given in column I with the oxidation states of central metal atoms given in column II and mark the appropriate choice .

Column I (Complex)		Column II (Oxidation state of central atom)	
(A)	$\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\right]$	(i)	0
(B)	$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3}\right]^{-}$	(ii)	+1
(C)	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}_{2} \mathrm{SO}_{4}\right.$	(iii)	+3
(D)	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	(iv)	+2

A. $(A) \rightarrow(i i),(B) \rightarrow(i),(C) \rightarrow(i v),(D) \rightarrow(i i i)$
B. $(A) \rightarrow(i v),(B) \rightarrow(i i),(C) \rightarrow(i),(D) \rightarrow(i i i)$
C. $(A) \rightarrow(i i i),(B) \rightarrow(i v),(C) \rightarrow(i i),(D) \rightarrow(i)$
D. $(A) \rightarrow(i),(B) \rightarrow(i i),(C) \rightarrow(i i i),(D) \rightarrow(i v)$

Answer: C

- Watch Video Solution

10. The coordination number and the oxidation state of the element ' E ' in the complex $\left[E(e n)_{2}\left(C_{2} O_{4}\right)\right] N O_{2}$ (where (en) is ethylenediamine) are, respectively
A. 6 and 3
B. 6 and 2
C. 4 and 2
D. 4 and 3

Answer: A

- Watch Video Solution

11. The charges x and y on the following ions are
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right]^{x}$
(ii) $\left[F e(C N)_{6}\right]^{y}$
(Oxidation state of Co is +3 and Fe is +2 in their respective complexes.)

$$
\text { A. } x=+1, y=-1
$$

B. $x=-1, y=+3$
C. $x=-1, y=-4$
D. $x=-2, y=-3$

Answer: C

D Watch Video Solution

12. Identify the statement which is not correct .
A. Coordination compounds are mainly known for transition metals .
B. Coordination number and oxidation state of a metal are same
C. A ligand donates at least one electron pair to the metal atom to form a bond .
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is a heteroleptic complex .

Answer: B

13. Which of the following is not correctly matched ?
A. Coordination compound containing cationic complex ion :

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]_{2} \mathrm{SO}_{4}
$$

B. Coordination compound containing anionic complex ion :

$$
\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}
$$

C. Non-ionic coordination compound : $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
D. Coordination compound containing cationic and anionic complex

$$
\text { ion : }\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl}_{4}\right]
$$

Answer: B

- Watch Video Solution

1. Which of the following rules is not correct regarding IUPAC nomenclature of complex ions ?
A. Cation is named first and then anion .
B. In coordination sphere, the ligands are named alphabetically .
C. Positively charged ligands have suffix 'ate' .
D. More than one ligand of a particular type are indicated by using di, tri , tetra, etc.

Answer: C

- Watch Video Solution

2. The correct IUPAC name of the coordination compound $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ is
A. potassium pentacyanonitrosylferrate (II)
B. potassium pentacyanonitroferrate(III)
C. potassium nitritopentacyanoferrate(IV)
D. potassium nitritepentacyanoiron (II).

Answer: A

- Watch Video Solution

3. The correct IUPAC name of the following compound is $\left[C r\left(\mathrm{NH}_{3}\right)_{5}(N C S)\right]\left[\mathrm{ZnCl}_{4}\right]$
A. pentaammineisothiocyanatochromium(III) tetrachlorozincate(II)
B. pentammineisothiocyanatezinc chloridechromate(III)
C. pentaamineisothiocyanatochromate(II)
D. isothiocyanatopentaamminechromium(II) zinc chloride (IV).

Answer: A

- Watch Video Solution

4. Correct formula of tetraamminechloronitroplatinum (IV) sulphate can be written as
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{ONO}) \mathrm{Cl}\right] \mathrm{SO}_{4}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2} \mathrm{NO}_{2}\right]_{2} \mathrm{SO}_{4}$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right] \mathrm{SO}_{4}$
D. $\left[\mathrm{PtCl}(\mathrm{ONO}) \mathrm{NH}_{3}\left(\mathrm{SO}_{4}\right)\right]$

Answer: C

- Watch Video Solution

5. Which of the following does not depict the correct, name of the compound?
A. $K_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$: Potassium tetrahydroxozincate (II)
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right] \mathrm{Cl}$: Pentaammine carbonatochlorocobaltate(III)
C. $\mathrm{Na} a_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]:$ Sodium hexanitrocobaltate (III)
D. $K_{3}\left[\operatorname{Cr}(\mathrm{CN})_{6}\right]$: Potassium hexacyanochromate(III)

Answer: B

- Watch Video Solution

6. Hexaamminenickel(II) hexanitrocobaltate(III) can be written as
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{3}$
B. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2}$
C. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\left(\mathrm{NO}_{2}\right)_{6}\right] \mathrm{Co}$

Answer: B

- Watch Video Solution

7. Which among the following will be named as dibromidobis (ethylene diamine) chromium (III) bromide?
A. $\left[\mathrm{Cr}(e n)_{2} B r_{2}\right] B r$
B. $\left[C r(e n) B r_{4}\right]^{-}$
C. $\left[C r(e n) B r_{2}\right] B r$
D. $\left[C r(e n)_{3}\right] B r_{3}$

Answer: A

- Watch Video Solution

8. The formula of the complex diamminechloro-(ethylenediamine) nitroplatinum (IV) chloride is
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}(e n) \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$
B. $\mathrm{Pt}\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}(e n) \mathrm{Cl}_{2} \mathrm{NO}_{2}\right]$
C. $\mathrm{Pt}\left[\left(\mathrm{NH}_{3}\right)_{2}(e n) \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$
D. $\mathrm{Pt}\left[\left(\mathrm{NH}_{3}\right)_{2}(e n) \mathrm{NO}_{2} \mathrm{Cl}_{2}\right]$

Answer: A

- Watch Video Solution

9. The name of the compound $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$ will be
A. pentaamminonitrocobalt (II) chloride
B. pentamminenitrochloridecobalt(III) chloride
C. pentanitrosoamminechlorocobaltate(III).
D. pentanitrosoamminechlorocobaltate(V) .

Answer: C

- Watch Video Solution

1. How many geometrical isomers are there for
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{4}\right]^{\Theta}$
(b) $\left[A u C I_{2} B r_{2}\right]^{\Theta}$ (square planar) (c) $\left[\mathrm{CuCI}_{2} B r_{2}\right]^{2-}$ (tetrahedral).
A. Two cis and trans, no geometrical isomers .
B. Two cis and trans , two cis and trans.
C. No geometrical isomers , two cis and trans .
D. No geometrical isomers , no geometrical isomers .

Answer: B

- Watch Video Solution

2. Which of the following will not show geometrical isomerism ?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right.$

Answer: C

- Watch Video Solution

3. For the square planar complex [M(a) (b) (c) (d)] (where M = central metal and a, b, c and d are monodentate ligands), the number of possible geometrical isomers are
A. one
B. two
C. three
D. four

Answer: C

- Watch Video Solution

4. Which of the following complex species is not expected to exhibit optical isomerism ?
A. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
C. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

Answer: D

- Watch Video Solution

5. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}(e n)_{2}\right]^{2+}$ shows two geometrical isomers cis and trans.

Which of the following statement is correct ?
A. trans-isomer will show optical isomerism .
B. cis-isomer will show optical isomerism .
C. Both trans and cis-isomers will show optical isomerism .
D. Neither cis nor trans-isomer will show optical isomerism .

Answer: B

- Watch Video Solution

6. Which of the following gives the maxium number of isomers?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
B. $\left[\mathrm{Ni}(e n)\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C. $\left[N i\left(C_{2} O_{4}\right)(e n)_{2}\right]^{2-}$
D. $\left[\mathrm{Cr}(\mathrm{SCN})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$

Answer: D

- Watch Video Solution

7. Which of the following pair of compounds is a pair of enantiomers
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[C r(e n)_{3}\right]^{3+}$
c. $\left[\mathrm{Co}\left(\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right)_{2} \mathrm{ClBr}\right]$
D. trans- $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

Answer: B

- Watch Video Solution

8. Two isomers of a compound $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\left(\mathrm{MA}_{3} \mathrm{~B}_{3}\right.$ type $)$ are shown in the figures .

The isomers can be classified as
A. (i) fac-isomers (ii) mer-isomer
B. (i) optical - isomer (ii) trans-isomer
C. (i) mer-isomer (ii) fac-isomer
D. (i) trans-isomer (ii) cis-isomer.

Answer: A

- Watch Video Solution

9. Which of the following compounds exhibits linkage isomerism?
A. $\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(e n)_{3}\right]$
C. $\left[\mathrm{Co}(e n)_{2}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right] \mathrm{Br}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2}$

Answer: C

10. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl} l_{4}\right]$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$ are known as
A. ionisation isomers
B. coordination isomers
C. linkage isomers
D. polymerisation isomers.

Answer: B

- Watch Video Solution

11. Which of the following complex will give white ppt. with BaCl_{2} solution?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{SO}_{4}\right)_{2}\right] \mathrm{Br}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}\left(\mathrm{SO}_{4}\right)\right]$

Answer: B

- Watch Video Solution

12. The Compounds $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{CI}_{3},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CI}\right] \mathrm{CI}_{2} . \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$ exhibit
A. (i), (ii) and (iii) are hydrate isomers .
B. (i), (ii) and (iii) are coordination isomers
C. (i), (ii) and (iii) are ionisation isomers .
D. (i) and (ii) are stereoisomers .

Answer: A

- Watch Video Solution

13. Which of the following pairs of isomers is not correctly matched with its type of isomerism ?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{CN})_{2}\right]\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]$ - Coordination isomerism
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2} \quad$ and $\quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right] \mathrm{Cl}_{2}$-Linkage
isomerism
C. $\left[\mathrm{Co}(p y)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad$ and $\quad\left[\mathrm{Co}(p y)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}\right] \mathrm{H}_{2} \mathrm{O}$

Coordination isomerism
D. $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2} \quad$ and $\quad\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}{ }^{-} \quad$ Ionisation isomerism

Answer: C

- Watch Video Solution

14. $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ exists in different isomeric forms which show different colours like violet and green. This is due to
A. ionisation isomerism
B. coordination isomerism
C. optical isomerism
D. hydrate isomerism

Answer: D

- Watch Video Solution

15. Match the column I and with column II and mark the appropriate choice .

	Column I (Complex)	Column II (Isomerism)	
(A)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$	(i)	Geometrical isomerism
(B)	$\left[\mathrm{Co}(\text { en })_{2}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right] \mathrm{Br}$	(ii)	Optical isomerism
(C)	$\left[\mathrm{Pt}(\text { en })_{2} \mathrm{Cl}_{2}\right]$	(iii)	Coordination isomerism
(D) $\left[\mathrm{Cr}(\mathrm{CN})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	(iv)	Linkage isomerism	

A. $(A) \rightarrow(i v),(B) \rightarrow(i i),(C) \rightarrow(i i i),(D) \rightarrow(i)$
B. $(A) \rightarrow(i i),(B) \rightarrow(i i i),(C) \rightarrow(i),(D) \rightarrow(i v)$
C. $(A) \rightarrow(i i i),(B) \rightarrow(i v),(C) \rightarrow(i i),(D) \rightarrow(i)$
D. $(A) \rightarrow(i),(B) \rightarrow(i i i),(C) \rightarrow(i v),(D) \rightarrow(i i)$

Answer: C

- Watch Video Solution

16. What type of isomerism exists in the following pairs of complexes ?
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{3}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{NO}_{3}$
(ii) $\left[\mathrm{Co}(e n)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ and $\left[\mathrm{Co}(e n)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}\right] \mathrm{H}_{2} \mathrm{O}$
A. (i) Ionisation (ii) Hydrate
B. (i) Linkage (ii) Hydrate
C. (i) Ionisation (ii) Linkage
D. (i) Linkage (ii) Coordination

- Watch Video Solution

Bonding In Coordination Compounds

1. The anion $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ involves hybridization
A. $s p^{3} d^{2}$
B. $s p^{3} d^{3}$
C. $d s p^{3}$
D. $d^{2} s p^{3}$

Answer: D

2. Which of the following sets of examples and geometry of the compounds is not correct ?
A. Octahedral - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
B. Square planar - $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C. Tetrahedral - $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{ZnCl}_{4}\right]^{2-}$
D. Trigonal bipyramidal - $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+},\left[\mathrm{CuCl}_{4}\right]^{2-}$

Answer: D

- Watch Video Solution

3. Match the examples given in column I with the shapes of the compounds given in column II and mark the appropriate choice .

Column I		Column II	
(A)	$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$	(i)	$d^{2} s p^{3}$, octahedral
(B)	$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$	(ii)	$d s p^{2}$, square planar
(C)	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	(iii)	$s p$, linear
(D)	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	(iv)	$s p^{3}$, tetrahedral

A. $(A) \rightarrow(i),(B) \rightarrow(i i),(C) \rightarrow(i i i),(D) \rightarrow(i v)$
B. $(A) \rightarrow(i i i),(B) \rightarrow(i i),(C) \rightarrow(i v),(D) \rightarrow(i)$
C. $(A) \rightarrow(i v),(B) \rightarrow(i i i),(C) \rightarrow(i i),(D) \rightarrow(i)$
D. $(A) \rightarrow(i i),(B) \rightarrow(i),(C) \rightarrow(i i i),(D) \rightarrow(i v)$

Answer: B

- Watch Video Solution

4. Which of the following is correct ?
A. Valence bond theory explains the colour of the coordination compounds .
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is diamagnetic in nature
C. Ambident ligands can show linkage isomerism .
D. A bidentate ligand can have four coordination sites .

Answer: C

- Watch Video Solution

5. Mark the incorrect statement .
A. Inner orbital (low spin) complexes involve $d^{2} s p^{3}$ hybridisation.
B. Outer orbital (high spin) complexes involve $s p^{3} d^{2}$ hybridisation .
C. Tetrahedral complexes generally involve $d s p^{2}$ hybridisation .
D. Stereoisomerism involves geometrical and optical isomerism .

Answer: C

6. Which of the following facts about the complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is wrong ?
A. The complex involves $d^{2} s p^{3}$ hybridisation and is octahedral in shape.
B. The complex is paramagnetic .
C. The complex is an outer orbital complex .
D. The complex gives white precipitate with silver nitrate solution .

Answer: C

- Watch Video Solution

7. Which of the following molecules has a regular tetrahedral shape?
A. $\left[P d C l_{4}\right]^{2-}$
B. $\left[P d(C N)_{4}\right]^{2-}$
C. $\left[N i(C N)_{4}\right]^{2-}$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-}$

Answer: D

- Watch Video Solution

8. Mark the correct statements regarding the geometry of complex ions .
(i) The geometry of the complex ion depends upon the coordination number.
(ii) If coordination number is 6 , the complex is octahedral .
(iii) If coordination number is 4 , the geometry of the complex may be tetrahedral or square planar .
A. (i) , (ii) and (iii)
B. (i) and (ii) only
C. (i) and (iii) only
D. (ii) and (iii) only .

Answer: A

9. Which of the following complex ion does not have 'd'-electrons in the central metal atom-
A. $\left[\mathrm{MnO}_{4}\right]^{-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[F e(C N)_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: A

- Watch Video Solution

10. Give reason for the statement $\left[N i(C N)_{4}\right]^{2-}$ is diamagnetic while $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic in nature .
A. In $\left[\mathrm{NiCl}_{4}\right]^{2-}$ no unpaired electrons are present while in $\left[N i(C N)_{4}\right]^{2-}$ two unpaired electrons are present
B. In $\left[N i(C N)_{4}\right]^{2-}$, no unpaired electrons are present while in
$\left[\mathrm{NiCl}_{4}\right]^{2-}$ two unpaired electrons are present.
C. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ shows $d s p^{2}$ hybridisation hence it is paramagnetic .
D. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ shows $s p^{3}$ hybridisation hence it is diamagnetic .

Answer: B

- Watch Video Solution

11. The lowest value of paramagnetism is shown by
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[C r(C N)_{6}\right]^{3-}$
D. $\left[M n(C N)_{6}\right]^{3-}$

Answer: A

- Watch Video Solution

12. Explain the following:
(i) All the octahedral complexes of $N i^{2+}$ must be outer orbital complexes.
(ii) $\left[\mathrm{CoF}_{6}\right]^{3-}$ is paramgnetic but $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is diamagnetic.
A. paramagnetic and undergoes $s p^{3} d^{2}$ hybridisation
B. diamagnetic and undergoes $d^{2} s p^{3}$ hybridisation
C. paramagnetic and undergoes $s p^{3} d$ hybridisation
D. diamagnetic and undergoes $s p^{3}$ hybridisation .

Answer: A

D Watch Video Solution

13. Deduce the structures of $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ considering the hybridisation of the metal ion. Calculate the magnetic moment (spin only) of the species.
A. 2.82 B.M.
B. 3.25 B.M.
C. 1.23 B.M.
D. 5.64 B.M.

Answer: A

- Watch Video Solution

14. Which of the following has largest paramagnetism ?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

15. Using valence bond theory, the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ can be described as
A. $s p^{3} d^{2}$, outer orbital complex , paramagnetic
B. $d s p^{2}$, inner orbital complex, diamagnetic
C. $d^{2} s p^{3}$, inner orbital complex , paramagnetic
D. $d^{2} s p^{3}$, outer orbital complex , diamagnetic .

Answer: C

- Watch Video Solution

16. Which of the following descriptions about $\left[\mathrm{FeCl}_{6}\right]^{4-}$ is correct about the complex ion?
A. $s p^{3} d$, inner orbital complex, diamagnetic
B. $s p^{3} d^{2}$, outer orbital complex , paramagnetic
C. $d^{2} s p^{3}$, inner orbital complex , paramagnetic
D. $d^{2} s p^{3}$, outer orbital complex , diamagnetic .

Answer: B

- Watch Video Solution

17. When excess of ammonia is added to CuSO_{4} solution, the deep blue coloured complex is formed. Complex is
A. tetrahedral and paramagnetic
B. tetrahedral and diamagnetic
C. square planar and diamagnetic
D. square planar and paramagnetic .

Answer: D

- Watch Video Solution

18. Pick out the correct statement with respect to $\left[M n(C N)_{6}\right]^{3-}$:
A. $d^{2} s p^{3}$, inner orbital complex , paramagnetic , 2.87 B.M.
B. $d^{2} s p^{3}$, inner orbital complex, diamagnetic, zero magnetic moment
C. $d^{2} s p^{3}$, outer orbital complex , paramagnetic , 3.87 B.M.
D. $d s p^{2}$, outer orbital complex, diamagnetic , zero magnetic moment

Answer: A

19. Among the following the compound that is both paramagnetic and coloured is
A. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\right]$
C. $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{TiCl}_{6}\right]$
D. $K_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$

Answer: B

- Watch Video Solution

20. The spin only magnetic moment value of $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. 2.84 B.M
B. 4.90 B.M.
C. 5.92 B.M
D. 0 B.M.

Answer: D

- Watch Video Solution

21. Which of the following complexes will show maximum paramagnetism
?
A. $3 d^{4}$
B. $3 d^{5}$
C. $3 d^{6}$
D. $3 d^{7}$

Answer: B

22. Match the column I with column II and mark the appropriate choice .

Column I		Column II	
(A)	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	(i)	Zero
(B)	$\left[\mathrm{CoF}_{6}\right]^{3-}$	(ii)	5.92 B.M.
(C)	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(iii)	4.89 B.M.
(D)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	(iv)	1.732 B.M.

A. $(A) \rightarrow(i i),(B) \rightarrow(i i i),(C) \rightarrow(i v),(D) \rightarrow(i)$
B. $(A) \rightarrow(i i i),(B) \rightarrow(i i),(C) \rightarrow(i),(D) \rightarrow(i v)$
C. $(A) \rightarrow(i),(B) \rightarrow(i i i),(C) \rightarrow(i v),(D) \rightarrow(i i)$
D. $(A) \rightarrow(i v),(B) \rightarrow(i i i),(C) \rightarrow(i i),(D) \rightarrow(i)$

Answer: D

- Watch Video Solution

23. Electronic configuration of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ on the basis of crystal field splitting theory is
A. $t_{2 g}^{4} e_{g}^{5}$
B. $t_{2 g}^{6} e_{g}^{3}$
C. $t_{2 g}^{9} e_{g}^{0}$
D. $t_{2}^{5} e_{g}^{4}$

Answer: B

- Watch Video Solution

24. Which of the following energy level diagram for $\left[\mathrm{FeF}_{6}\right]^{3-}$ is correct on the basis of crystal field theory ?
A.

B.

C.

D.
(d) $\frac{1 \uparrow|1| 1 \mid \uparrow}{3 s^{3}}$

Answer: C

D Watch Video Solution

25. In $\left[\mathrm{NiCl}_{4}\right]^{2-}$,the number of unparied electron is
(a)

A.
B.

C.

D.

Answer: B

26. Which of the following shell from an octahedral complex
A. d^{4} (low spin)
B. d^{8} (high spin)
C. d^{6} (low spin)
D. None of these .

Answer: C

- Watch Video Solution

27. The value of 'spin only' magnetic moment for one of the following configuration is $2.84 B$. M. The correct one is:
A. d^{4} (in strong ligand field)
B. d^{4} (in weak ligand field)
C. d^{3} (in weak as well as in strong fields)
D. d^{5} (in strong ligand field)

Answer: A

- Watch Video Solution

28. Which of the following statements is/are correct ?
(i) In octahedral complexes, $t_{2 g}$ orbitals possess low energy as compared to e_{g} orbitals .
(ii) In tetrahedral complexes , t_{2} orbitals possess high energy as compared to e orbitals .
(iii) In octahedral complexes,e_{g} orbitals possess low energy as compared to $t_{2 g}$ orbitals.
A. (ii) only
B. (iii) only
C. (i) and (ii)
D. (i) and (iii)

Answer: C

- Watch Video Solution

29. $\left[\mathrm{FeF}_{6}\right]^{3-}$ is paramagnetic due to presence of unpaired electrons in the complex. The five electrons remain unpaired because
A. fluorine is the most electronegative element
B. F^{-}is a weak field ligand hence does not cause pairing of electrons
C. F^{-}is a strong field ligand hence does not cause pairing of electron
D. pairing does not take place in iron complexes .

Answer: B

- Watch Video Solution

30. $\left[\mathrm{Co}\left(\mathrm{Cr}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ is a
A. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is strong field ligand hence causes pairing of electrons
B. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is a bidentate ligand hence causes pairing of electrons
C. Co^{3+} is a strong central atom hence in all complexes of Co^{3+} electrons are paired
D. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is a strong field ligand hence causes splitting of d -orbitals .

Answer: C

- Watch Video Solution

31. What are the correct oxidation state , coordination number , configuration , magnetic character and magnetic moment of $K_{4}\left[M n(C N)_{6}\right] ?$
A.

$$
\begin{array}{lllll}
O . S . & C . N & \text { Configuration } & \text { Magnetic Character } & \text { Magnetic Mome } \\
+6 & 6 & t_{2 g}^{5} & \text { Diamagnetic } & 0
\end{array}
$$

B.
O. S. C.N Configuration Magnetic Character Magnetic Mome $\begin{array}{ccccc}+4 & 6 & t_{2 g}^{4} e_{g}^{1} & \text { Paramagnetic } & \text { 1.732B. M }\end{array}$
C.

$O . S$.	$C . N$	Configuration	Magnetic Character	Magnetic Mome:
+2	6	$t_{2 g}^{5}$	Paramagnetic	$1.732 B . M$

D.

O.S.	C. N	Configuration	Magnetic Character	Magnetic Mome
+4	6	$t_{2 g}^{3} e_{g}^{2}$	Diamagnetic	0

Answer: C

- Watch Video Solution

32. Which of the following statements is correct about $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complex ?
A. Electronic configuration $=3 d^{7} \rightarrow t_{2 g}^{5} e_{g}^{2}$, no. of unpaired electrons $=3, \mu=3.87 B . M$
B. Electronic configuration $=3 d^{6} \rightarrow t_{2 g}^{4} e_{g}^{2}$.
no. of unpaired electrons $=2, \mu=2.87 B . M$
C. Electronic configuration $=3 d^{7} \rightarrow t_{2 g}^{6} e_{g}^{1}$.
no. of unpaired electrons $=1, \mu=2.87 B . M$
D. Electronic configuration $=3 d^{7} \rightarrow t_{2 g}^{3} e_{g}^{4}$.
no. of unpaired electrons $=3, \mu=3.87 B . M$

Answer: A

- Watch Video Solution

33. The increasing order of the crystal field splitting power of some common ligands is
A. $\mathrm{NH}_{3}<\mathrm{Cl}^{-}<\mathrm{CN}^{-}<\mathrm{F}^{-}<\mathrm{CO}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{NH}_{3}<\mathrm{CN}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}$
c. $\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CN}^{-}<\mathrm{CO}$
D. $\mathrm{CO}<\mathrm{CN}^{-}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{F}^{-}<\mathrm{Cl}^{-}$

Answer: C

- Watch Video Solution

34. What is crystal field splitting energy? How does the magnitude of \triangle_{0} decide the actual configuration of d orbitals in a coordination entity?
A. if $\Delta_{0}<P$, the configuration is $t_{2 g}^{3} e_{g}^{1}=$ weak field ligand and high spin complex
B. If $\Delta_{0}>P$, the configuration is $t_{2 g}^{3} e_{g}^{1}=$ strong field ligand and low spin complex
C. if $\Delta_{0}>P$, the configuration is $t_{2 g}^{4} e_{g}^{0}=$ strong field ligand and high spin complex
D. if $\Delta_{0}=P$, the configuration is $t_{2 g}^{4} e_{g}^{0}=$ strong field ligand and high spin complex .

Answer: A

- Watch Video Solution

35. Why are low spin tetrahedral complexes not formed?
A. for tetrahedral complexes , the CFSE is lower than pairing energy
B. for tetrahedral complexes, the CFSE is higher than pairing energy
C. electrons do not go to e_{g} in case of tetrahedral complexes
D. tetrahedral complexes are formed by weak field ligands only .

Answer: A

- Watch Video Solution

36. A substance appears coloured because
A. it absorbs light at specific wavelength in the visible part and reflects rest of the wavelengths
B. ligands absorb different wavelengths of light which give colour to the complex
C.it absorbs white light and shows different colours at different wavelength
D. it is diamagnetic in nature .

Answer: A

- Watch Video Solution

37. Match the complex ions given in column I with their colour given in column II and mark the appropriate choice .

Column I (Complex ion)		Column II (Colour)	
(A)	$\left.[\mathrm{CoF}]_{6}\right]^{3-}$	(i)	Blue-green
(B)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$	(ii)	Pale yellow
(C)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	(iii)	Green
(D)	$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	(iv)	Yellow-orange

A. $(A) \rightarrow(i i i),(B) \rightarrow(i v),(C) \rightarrow(i),(D) \rightarrow(i i)$
B. $(A) \rightarrow(i i i),(B) \rightarrow(i v),(C) \rightarrow(i i),(D) \rightarrow(i)$
C. $(A) \rightarrow(i),(B) \rightarrow(i i i),(C) \rightarrow(i v),(D) \rightarrow(i i)$
D. $(A) \rightarrow(i v),(B) \rightarrow(i),(C) \rightarrow(i i i),(D) \rightarrow(i i)$

Answer: B

- Watch Video Solution

38. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue in colour while CuSO_{4} is colourless. Why ?
A. presence of strong field ligand in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. absence of water (ligand), $d-d$ transitions are not possible in CuSO_{4}
C. anhydrous CuSO_{4} undergoes d-d transitions due to crystal field splitting
D. colour is lost due to loss of unpaired electrons .

Answer: A

- Watch Video Solution

39. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ are of different colours in dilute solutions why?
A. CN^{-}is a strong field ligand and $\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand hence magnitude of CFSE is different
B. both CN^{-}and $\mathrm{H}_{2} \mathrm{O}$ absorb same wavelength of energy
C. complexes of weak field ligands are generally colourless
D. the sizes of CN^{-}and $\mathrm{H}_{2} \mathrm{O}$ are different hence their colours are also different.

Answer: B

- Watch Video Solution

40. Explain why hexacayano complexe of metals in their +2 oxidation state are usually yellow, but the corresponding hexa aqua compounds are often blue or green .
A. hexacyano complexes absorb orange or red light thus appear yellow while hexaaqua complexes absorb indigo thus appear yellow
B. hexacyano complexes absorb indigo thus appearing yellow while hexaaqua complexes absorb orange or red light thus appear blue or green
C. hexacyano complexes absorb yellow light while hexaaqua
D. $C N^{-}$ions are yellow in colour while aqua ions are blue or green in colour .

Answer: D

- Watch Video Solution

Bonding In Metal Carbonyls

1. The number of bridging CO ligand(s) and Co-Co bond(s) in $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, respectively
A. 0,2
B. 6,1
C. 5,2
D. 6,2
2. $\mathrm{Ni}(\mathrm{CO})_{4}$ is
A. tetrahedral
B. square planar
C. linear
D. octahedral .

Answer: C

3. The oxidation state of chromium in $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. covalent bonding
B. coordinate bonding
C. synergic bonding
D. ionic bonding

Answer: D

- Watch Video Solution

4. The correct structure of $\mathrm{Fe}(\mathrm{CO})_{5}$ is ?
A. octahedral
B. tetrahedral
C. square pyramidal
D. trigonal bipyramidal .

Answer: D

- Watch Video Solution

5. Select the true statement from the following for metal carbonyls ?
A. π back bonding strengthens $M-C$ bond order as well as CO bond order.
B. π back bonding weakens $\mathrm{M}-\mathrm{C}$ bond order as well as CO bond order
C. π back bonding weakens $M-C$ bond order but strengthens CO bond order
D. π back bonding strengthens $M-C$ bond order and weakens CO bond order .

Answer: D

- View Text Solution

Application Of Coordination Compounds

1. Mark the incorrect match .
A. Insulin - Zinc
B. Haemoglobin - Iron
C. Vitamin B_{12} - Cobalt
D. Chlorophyll - Chromium

Answer: A

- Watch Video Solution

2. Which of the following statements is incorrect regarding the importance of coordination compounds in biological systems?
A. Vitamin B_{12} used to prevent anaemia is a complex compound of zinc.
B. Haemoglobin is the red pigment of blood and contains iron.
C. Chlorophyll is the green pigments of plants and contains magnesium .
D. All are correct .

Answer: A

- Watch Video Solution

Higher Order Thinking Skills

1. If excess of AgNO_{3} solution is added to 100 mL of a 0.024 M solution of dichlorobis (ethylenediamine) cobalt (III) chloride . How many mole of AgCl be precipitated ?
A. 0.0012
B. 0.0016
C. 0.0024
D. 0.0048

Answer: C

2. 0.02 mole of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{Cl}_{2}$ and 0.02 mole of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ are present in 200 cc of a solution X . The number of moles of the precipitates Y and Z that are formed when the solution X is treated with excess silver nitrate and excess barium chloride are respectively
A. $0.02,0.02$
B. $0.01,0.02$
C. $0.02,0.04$
D. $0.04,0.02$

Answer: D

- View Text Solution

3. Both geometrical and optical isomerism are shown by
A. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}-(5) \mathrm{Cl}\right]^{2+}\right.$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
D. $\left[\mathrm{Cr}(\mathrm{ox})_{3}\right]^{3-}$

Answer: A

- Watch Video Solution

4. Three arrangement are shown for the complex , $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{2}\right]^{+}$. Which one is the wrong statement ?
(I)

(II)

(III)

A. I and II are geometrical isomers
B. II and III are optical isomers
C. I and III are optical isomers
D. II and III are geometrical isomers .

Answer: B

- Watch Video Solution

5. Among complexes
$(\mathrm{K}-\mathrm{P}): \mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]-\mathrm{K},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}-L, \mathrm{Na}_{3}\left[\mathrm{Co}(\text { oxalate })_{3}\right]$ the diamagnetic complexes are
A. K, L, M, N
B. K, M, O, P
C. L, M, O, P
D. L, M, N, O

Answer: A

6. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (at no. of $\mathrm{Cr}=24$) has a magnetic moment of $3.83 B$. M. The correct distribution of $3 d$ electrons the chromium of the complex.
A. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z x}^{1}$
B. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z^{2}}^{1}$
C. $3 d_{\left(x^{2}-y^{2}\right)}^{1}, 3 d_{z^{2}}^{1}, 3 d_{x z}^{1}$
D. $3 d_{x y}^{1}, 3 d_{\left(x^{2}-y^{2}\right)}^{1}, 3 d_{y z}^{1}$

Answer: A

- Watch Video Solution

7. Which one of the following has largest number of isomers?
A. $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
C. $\left[\operatorname{Ir}\left(P R_{3}\right)_{2} H(C O)\right]^{2+}$
D. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

Answer: D

- Watch Video Solution

8. Match each coordination compound in List-I with an appropriate pair of characteristics from List - II and select the correct answer using the code given below the lists .
[en $=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, At Nos: $\mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27, \mathrm{Pt}=78$]

List- I
(P$)\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

List- II

1. Paramagnetic and exhibits ionisation is
(Q) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2} \quad$ 2. Diamagnetic and exhibits cis- trans iso
(R)[Pt(en) $\left.\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right] \mathrm{NO}_{3}$
(S) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right] \mathrm{NO}_{3}$
D.
$P \quad Q \quad R \quad S$
$\begin{array}{llll}1 & 3 & 4\end{array}$

Answer: B

- Watch Video Solution

9. Which of the following energy diagrams shows the electron distribution according to the crystal field model of the 3d-electrons in $\left[\mathrm{CoCl}_{4}\right]^{2-}$?
(a) $\frac{1}{1}-e_{g}$
A.
(b) $\mathbb{1} \mathbb{1} \uparrow t_{2}$
$\uparrow \uparrow e$
B.
c.
(c) $\begin{aligned} & \uparrow \uparrow e_{g} \\ & \mathbb{1} \mathbb{1} \uparrow t_{2 g}\end{aligned}$
(d) $\uparrow \uparrow \uparrow t_{2}$ $1111 e$
D.

Answer: D

D Watch Video Solution

Ncert Exemplar

1. Which of the following complexes formed by Cu^{2+} ions is most stable ?
A. $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}, \log \mathrm{K}=11.6$
B. $\mathrm{Cu}^{2+}+4 C N^{-} \Leftrightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}, \log \mathrm{K}=27.3$
C. $\mathrm{Cu}^{2+}+2 e n \Leftrightarrow\left[\mathrm{Cu}(e n)_{2}\right]^{2+}, \log K=15.4$
D. $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}, \log \mathrm{K}=8.9$

Answer: B

- Watch Video Solution

2. The colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light of the visible region, for the complexes, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}-(6)\right]^{3+} \cdot\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+} \cdot\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right.$
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer:

- Watch Video Solution

3. When $0.1 \mathrm{~mol} \mathrm{CoCl} 3\left(\mathrm{NH}_{3}\right)_{5}$ is treated with excess of $\mathrm{AgNO}_{3}, 0.2$ mole of AgCl are obtained. The conductivity of solution will correspond to

[^0]B. 1: 2 electrolyte
C. 1:1 electrolyte
D. 3:1 electrolyte

Answer: B

- Watch Video Solution

4. When $1 \mathrm{~mol} \mathrm{CrCl} 3.6 \mathrm{H}_{2} \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_{3}, 3 \mathrm{~mol}$ of AgCl are obtained. The formula of the coplex is
A. $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6} \mathrm{Cl}_{3}\right.$

Answer: D

5. The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is
A. diamminedichloridoplatinum (II)
B. diamminedichloridoplatinum (IV)
C. diamminedichloridoplatinum(0)
D. dichloriododiammineplatinum (IV)

Answer: A

- Watch Video Solution

6. The stabilization of coordination compound due to chelation is called the chelate effect. Which of the following is the most stable complex species?
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[F e(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

7. Indicate the complex ion which shows geometrical isomerism.
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{5}(\mathrm{NC})\right]^{3-}$

Answer: A

- Watch Video Solution

8. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be
A. $18,000 \mathrm{~cm}^{-1}$
B. $16,000 \mathrm{~cm}^{-1}$
C. $8,000 \mathrm{~cm}^{-1}$
D. $20,000 \mathrm{~cm}^{-1}$

Answer: C

- Watch Video Solution

9. Due to the presence of ambidenate ligands coordination compounds show isomerism. Palladium complexes of the type $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}(\mathrm{SCN})_{2}\right]$ $\&\left[\operatorname{Pd}\left(C_{6} H_{5}\right)_{2}(N C S)_{2}\right]$ are
A. linkage isomers
B. coordination isomers
C. ionisation isomers
D. geometrical isomers

Answer: A

- Watch Video Solution

10. The two compounds $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}$ represent:
A. linkage isomersim
B. ionisation isomerism
C. coordination isomerism
D. no isomerism .

Answer: D

- Watch Video Solution

11. A chelating agent has two or more than two donor atoms to bind to a single metal ion. Which of the following is not a chelating agent?
A. Thiosulphato
B. Oxalato
C. Glycinato
D. Ethane-1, 2-diamine

Answer: A

- Watch Video Solution

12. Which of the following species is not expected to be a ligand?
A. $N O$
B. NH_{4}^{+}
C. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
D. $C O$

D Watch Video Solution

13. What kind of isomerism exists between $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (violet) and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] . \mathrm{H}_{2} \mathrm{O}$ (greyish-green)?
A. Linkage isomerism
B. Solvate isomerism
C. Ionisation isomerism
D. Coordination isomerism

Answer: B

- Watch Video Solution

14. IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ is
A. platinum diaminechloronitrite
B. chloronitrito-N-ammineplatinum (II)
C. diamminechloridonitrito-N-platinum (II)
D. diamminechloronitrito-N-platinate (II)

Answer: C

D Watch Video Solution

Assertion And Reason

1. Assertion : Aqueous solution of the compound $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ when treated with excess of $\mathrm{AgNO}_{3}, 1$ mole of AgCl is precipitated.

Reason : The compound $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ has six primary valencies and one secondary valency .
A. If both Assertion and reason are true and reason is the correct
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: C

D Watch Video Solution

2. Assertion : The complex $K_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ when present in aqueous solution, will give test for $K^{+}, C r^{3+}$ and oxalate ions.

Reason : The complex $K_{3}\left[\operatorname{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ will dissociate completely in solution.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: D

- Watch Video Solution

3. Assertion : $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}$ and EDTA are examples of polydentate ligands.

Reason : Ligands which can ligate through two different atoms is called polydentate ligand.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: C

D Watch Video Solution

4. Assertion : Coordination number of Fe and Co in $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ and $\left[C o(e n)_{3}\right]^{3+}$ respectively is 6.

Reason : $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and en (ethane-1, 2 - diamine) are didentate ligands.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: A

D Watch Video Solution

5. Assertion : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ gives white precipitate with barium chloride.

Reason : The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ dissociates in the solution to give Br^{-}and SO_{4}^{2-}.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: C

- Watch Video Solution

6. Assertion : Tetrahedral complexes having two different types of unidentate ligands coordinated with central metal ion will show geometrical isomerism .

Reason : Geometrical isomerism arises in homoleptic complexes due to different possible geometric arrangement of the ligands .
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: D

- Watch Video Solution

7. Assertion : In a coordination entity $\left[\mathrm{PtCl}_{2}(e n)_{2}\right]^{2+}$ only the cis-isomer shows optical activity .

Reason : Optical isomerism is common in octahedral complexes involving didentate ligands.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: B

- Watch Video Solution

8. Assertion : Inner orbital complexes are low spin complexes .

Reason : In low spin complexes , inner d-orbital (3d) is used in hybridisation.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: A

- Watch Video Solution

9. Assertion : $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is $s p^{3} d^{2}$ hybridised and paramagnetic complex ion .

Reason : $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ has four unpaired electrons as $\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: A

- Watch Video Solution

10. Assertion : In tetrahedral complexes low spin configuration are rarely observed.

Reason : $\Delta_{t}=\left(\frac{4}{9}\right) \Delta_{0}$
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: A

- Watch Video Solution

11. Assertion : $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ on heating becomes colourless .

Reason : Water is removed on heating $\left[\mathrm{Ti}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct
explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: A

- Watch Video Solution

12. Assertion : According to crystal field theory, during complex formation , the d-orbitals split and form two sets of orbitals $t_{2 g}$ and e_{g}. Reason : Splitting of d-orbitals occurs only in case of strong field ligands.
A. If both Assertion and reason are true and reason is the correct
explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: C

- Watch Video Solution

13. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is strongly paramagnetic whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is weakly paramagnetic. Explain.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: A

14. Assertion : $K_{2}[N i(E D T A)]$ is more stable than $K_{3}\left[A l\left(C_{2} O_{4}\right)_{3}\right]$. Reason : Ni is a transition element while Al is a non-transition element.
A. If both Assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: B

- Watch Video Solution

15. Assertion : Geometrical isomerism is also called cis-trans isomerism .

Reason : Tetrahedral complexes show geometrical isomerism .
A. If both Assertion and reason are true and reason is the correct
explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false
D. if both assertion and reason are false

Answer: C

- Watch Video Solution

[^0]: A. 1:3 electrolyte

