©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NCERT FINGERTIPS PHYSICS

(HINGLISH)

ALTERNATING CURRENT

Ac Voltage Applied To A Resistor

1. Alternating voltage (V) is represented by the
equation
whrere V_{m} is the peak voltage
A. $V_{t}=V_{m} e^{\omega t}$
B. $V_{t}=V_{m} \sin \omega t$
C. $V(t)=V_{m} \cot \omega t$
D. $V(t)=V_{m} \tan t \omega t$

Answer: B
2. A 100Ω resistor is connected to a $220 \mathrm{~V}, 50$

Hz ac supply.
(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a
full cycle?
A. $1.56 A$
B. 1.56 m A
C. $2.2 A$
D. $2.2 m A$

Answer: C

D Watch Video Solution

3. The peak voltage of an ac supply is 440 V ,
then its rms voltage is
A. 31.11 V
B. $311.1 V$
C. 41.11 V
D. 411.1 V

Answer: B

D Watch Video Solution

4. In the question number 3 , the net power consumed over a full cycle is
A. 586 W
B. 242 W
C. $48.4 W$
D. 484 W

Answer: D

D View Text Solution

5. The rms value of current in an ac circuit is 25

A, then peak current is
A. $35.36 m A$
B. $35.36 A$
C. $3.536 A$
D. $49.38 A$

Answer: B

D Watch Video Solution

6. A alternating voltage given by
$V=140 \sin 314 t$ is connected across a pure
resistor of 50 ohm. Find the rms current through the resistor.
A. $1.98 A$
B. $5.63 A$
C. $3.536 A$

D. $49.39 A$

Answer: A

D Watch Video Solution

7. If $V=100 \sin (100 t) V$ and $I=100 \sin$
$\left(100 t+\frac{\pi}{3}\right) \mathrm{mA}$ are the instantaneous values of voltage and current, then the rms values of voltage and current are respectively

$$
\text { А. } 70.7 \mathrm{~V}, 70.7 \mathrm{~mA}
$$

B. $70.7 \mathrm{~V}, 70.7 \mathrm{~A}$
C. $141.4 V, 141.4 m A$
D. $100 \mathrm{~V}, 100 \mathrm{~mA}$

Answer: A

D Watch Video Solution

8. The voltage over a cycle varies as
$V=V_{0} \sin \omega t$ for $0 \leq t \leq \frac{\pi}{\omega}$
$=-V_{0} \sin \omega t$ for $\frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}$
The average value of the voltage one cycle is
A. $\frac{V_{0}}{\sqrt{2}}$
B. $\frac{V_{0}}{2}$
C. zero
D. $\frac{2 V_{0}}{\pi}$

Answer: D

- Watch Video Solution

9. The rms value of potential difference V shown in the figure is

Answer: C
10. The relation between an ac voltage source
and time in SI units is
$V=120 \sin (100 \pi t) \cos (100 \pi t) V$. The value of peak voltage and frequency will be respectively
A. 120 V and 100 Hz
B. $\frac{120}{\sqrt{2}} V$ and 100 Hz
C. 60 and 200 Hz
D. 60 V and 100 Hz

Answer: D
11. A light bulb is rated at 100 W for a 220 V ac supply. The resistance of the bulb is
A. 284Ω
B. 384Ω
C. 484Ω
D. 584Ω

Answer: C
12. In the question number 11, the peak voltage of the source is
A. 305 V
B. 310 V
C. 311 V
D. 315 V

Answer: C

- View Text Solution

13. An ac source is of $\frac{200}{\sqrt{2}} V, 50 \mathrm{~Hz}$. The value
of voltage after $\frac{1}{600} s$ from the start is
A. 200 V
B. $\frac{200}{\sqrt{2}} V$
C. 100 V
D. 50 V

Answer: C
14. The line the draws power supply to your house from street has
A. $220 \sqrt{2} V$ average voltage.
B. 220 V average voltage.
C. Voltage and current out of phase by $\pi / 2$
D. Voltage and current possibly differing in
phase ϕ such that $|\phi|<\frac{\pi}{2}$.

Answer: D
15. An ac source of voltage $V=V_{m} \sin \omega t$ is connected across the resistance R as shown in
figure. The phase relation between current and voltage for this circuit is

A. both are in phase
B. both are out of phase by 90°
C. both are out of phase by 120°
D. both are out of phase by 180°

Answer: A

- Watch Video Solution

16. The phase relationship between current and voltage in a pure resistive circuit is best represented by
A.
(a)

B.

C.

D.
(d)

Answer: C
(Watch Video Solution
17. In an circuit, V and I are given by
$V=150 \sin (150 t) V$
and
$I=150 \sin \left(150 t+\frac{\pi}{3}\right) A$.
The power
dissipated in the circuit is
A. 106 W
B. 150 W
C. 5625 W
D. zero

Answer: C

Ac Voltage Applied To A Inductor

1. In the case of an inductor
A. Voltage lags the current by $\frac{\pi}{2}$
B. Voltage leads the current by $\frac{\pi}{2}$
C. Voltage leads the current by $\frac{\pi}{3}$
D. Voltage leads the current by $\frac{\pi}{4}$

Answer: B

2. An ideal inductor is in turn put across 220 V ,

50 Hz and $220 \mathrm{~V}, 100 \mathrm{~Hz}$ supplies. The current
flowing through it in the two cases will be
A. equal
B. different
C. zero
D. infinite
3. An inductor of 30 mH is connected to a 220
$\mathrm{V}, 100 \mathrm{~Hz}$ ac source. The inductive reactance is
A. 10.58Ω
B. 12.64Ω
C. 18.85Ω
D. 22.67Ω

Answer: C
4. Which of the following graphs represent the correct variation of inductive reactance X_{L} with frequency $v ?$

Answer: B

D Watch Video Solution

5. A 44 mH inductor is connected to $220 \mathrm{~V}, 50$

Hz ac supply. The rms value of the current in
the circuit is
A. $12.8 A$
B. $13.6 A$
C. $15.9 A$
D. 19.5 A

Answer: C

D Watch Video Solution

Ac Voltage Applied To A Capacitor

1. In a pure capacitive circuit if the frequency
of ac source is doubled, then its capacitive
reactance will be
A. remains same
B. doubled
C. halved
D. zero

Answer: C

- Watch Video Solution

2. Identify the graph which correctly reperesents the variation of capacitive reactance X_{C} with frequency

c.

Answer: C

D Watch Video Solution

3. A $5 \mu F$ capacitor is connected to a $200 \mathrm{~V}, 100$ Hz ac source. The capacitive reactance is
A. 212Ω
B. 312Ω
C. 318Ω
D. 412Ω

Answer: C

D Watch Video Solution

4. If a capacitor of $8 \mu F$ is connected to a 220
$\mathrm{V}, 100 \mathrm{~Hz}$ ac source and the current passing
through it is 65 mA , then the rms voltage across it is
A. $129.4 V$
B. 12.94 V
C. 1.294 V
D. 15 V

Answer: B
5. Phase difference between voltage and current in a capacitor in an ac circuit is
A. π
B. $\pi / 2$
C. 0
D. $\pi / 3$

Answer: B
(Watch Video Solution
6. In an alternating current circuit consisting
of elements in series, the current increases on
increasing the frequency of supply. Which of
the following elements are likely to constitute the circuit?
A. Only resistor
B. Resistor and inductor
C. Resistor and capacitor
D. Only inductor

Answer: C

D Watch Video Solution

7. A $30 \mu F$ capacitor is connected to a $150 \mathrm{~V}, 60$

Hz ac supply. The rms value of current in the circuit is
A. $17 A$
B. 1.7A
C. $1.7 m A$
D. $2.7 A$

Answer: B

D Watch Video Solution

8. A $60 \mu F$ capacitor is connected to a $110 \mathrm{~V}, 60$

Hz a.c. supply Determine the r.m.s value of current in the circuit.
A. $1.49 A$
B. 14.9 A
C. $2.49 A$
D. $24.9 A$

D Watch Video Solution

9. In the question number 30 , the net power absorbed by the circuit in one complete cycle is
A. 5 W
B. 10 W
C. 15 W
D. zero

Answer: D

D View Text Solution

10. In which of following circuits the maximum power dissipation is observed?
A. Pure capacitive circuit
B. Pure inductive circuit
C. Pure resistive circuit
D. None of these

D Watch Video Solution

11. When an AC voltage of 220 V is applied to
the capacitor C
A. the maximum voltage between plates is

220 V.
B. the current is in phase with the applied
voltage.
C. the charge on the plate is not in phase with the applied voltage.
D. power delivered to the capacitor per cycle is zero.

Answer: D

D Watch Video Solution

12. An alternating voltage (in volts) given by
$V=200 \sqrt{2} \sin (100 t)$ is connected to $1 \mu F$
capacitor through an ideal ac ammeter in
series. The reading of the ammeter and the average power consumed in the circuit shall be
A. $20 \mathrm{~mA}, 0$
B. $20 \mathrm{~mA}, 4 \mathrm{~W}$
C. $20 \sqrt{2} m A, 8 W$
D. $20 \sqrt{2} m A, 4 \sqrt{2} W$

Answer: A

- Watch Video Solution

Ac Voltage Applied To A Series Lcr Circuit

1. In the circuit shown in figure, what will be the reading of the voltmeter?

A. 300 V
B. 900 V
C. 200 V
D. 400 V

Answer: C

- Watch Video Solution

2. In the series LCR circuit shown the impedance is

A. 200Ω
B. 100Ω
C. 300Ω
D. 500Ω

Answer: D

D Watch Video Solution

3. A circuit containing a 20Ω resistor and
$0.1 \mu F$ capacitor in series is connected to 320
V ac supply of angular frequency
$100 \mathrm{rad} s^{-1}$. The impedance of the circuit is
A. $10^{5} \Omega$
B. $10^{4} \Omega$
C. $10^{6} \Omega$
D. $10^{10} \Omega$

Answer: A

D Watch Video Solution
4. A $0.2 k \Omega$ resistor and $15 \mu F$ capacitor are connected in series to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac source.

The impedance of the circuit is
A. 250Ω
B. 268Ω
C. 29.15Ω
D. 291.5Ω

Answer: D

D Watch Video Solution

5. As the frequency of an ac circuit increases,
the current first increases and then decreases.

What combination of circuit elements is most
likely to comprise the circuit ?
A. Resistor and inductor
B. Resistor and capacitor
C. Resistor, inductor and capacitor
D. None of these

Answer: C

D Watch Video Solution

6. A circuit consists of a resistance 10 ohm and
a capacitance of $0.1 \mu F$ If an alternating e.m.f.
of 100 V .50 Hz is applied, calculate the current in the circuit.
A. $3.14 m A$
B. $6.28 m A$
C. $1.51 \mathrm{~m} A$
D. $7.36 m \mathrm{~A}$

Answer: A
7. 200 V ac source is fed to series LCR circuit having $X_{L}=50 \Omega, X_{C}=50 \Omega$ and $R=25 \Omega$. Potential drop across the inductor is
A. 100 V
B. 200 V
C. 400 V
D. 10 V

Answer: C
8. A $100 \mu F$ capacitor in series with a 40Ω resistor is connected to a $100 \mathrm{~V}, 60 \mathrm{~Hz}$ supply.

The maximum current in the circuit is
A. $2.65 A$
B. $2.75 A$
C. $2.85 A$
D. $2.95 A$

- Watch Video Solution

9. In the question number 42, the time lag between the current maximum and the voltage maximum is
A. 15.5 ms
B. 155 ms
C. 1.55 ms
D. 1.55 s
10. In series LCR circuit, the phase angle between supply voltage and current is
A. $\tan \phi=\frac{X_{L}-X_{C}}{R}$
B. $\tan \phi=\frac{R}{X_{L}-X_{C}}$
C. $\tan \phi=\frac{R}{X_{L}+X_{C}}$
D. $\tan \phi=\frac{X_{L}+X_{C}}{R}$

Answer: A
11. In the question number 44 , the phase difference between the voltage across the source and current is
A. 80.2°
B. 31°
C. 50.2°
D. 38.2°
12. A sinusoidal voltage of peak value 293 V and frequency 50 Hz is applie to a series LCR circuit in which $R=6 \Omega, L=25 \mathrm{mH}$ and $C=750 \mu F$. The impedance of the circuit is
A. 7.0Ω
B. 8.9Ω
C. 9.9Ω
D. 10.0Ω

Answer: A

D Watch Video Solution

13. A pure resistive circuit element X when connected to an ac supply of peak voltage 200

V gives a peak current of 5 A which is in phase with the voltage. A second circuit element Y , when connected to the same ac supply also gives the same value of peak current but the current lags behind by 90°. If the series combination of X and Y is connected to the
same supply, what will be the rms value of

current?

$$
\begin{aligned}
& \text { A. } \frac{10}{\sqrt{2}} A \\
& \text { B. } \frac{5}{\sqrt{2}} A \\
& \text { C. } \frac{5}{2} A \\
& \text { D. } 5 \mathrm{~A}
\end{aligned}
$$

Answer: C
(Watch Video Solution
14. An LCR series ac circuit is at resonance with

10 V each across L, C and R . If the resistance is
halved, the respective voltage across L, C and R are
A. $10 \mathrm{~V}, 10 \mathrm{~V}$ and 5 V
B. $10 \mathrm{~V}, 10 \mathrm{~V}$ and 10 V
C. $20 \mathrm{~V}, 20 \mathrm{~V}$ and 5 V
D. $20 \mathrm{~V}, 20 \mathrm{~V}$ and 10 V

Answer: D
15. In a series LCR circuit the voltage across an
inductor, capacitor and resistor are $20 \mathrm{~V}, 20 \mathrm{~V}$ and 40 V respectively. The phase difference between the applied voltage and the current in the circuit is
A. 30°
B. 45°
C. 60°
D. 0°

Answer: D

D Watch Video Solution

16. When an ac source of emfe $=E_{0} \sin (100 t)$
is connected across a circuit, the phase difference between emf e and currnet I in the circuit is observed to be $(\pi) /(4)$ as shown in fig. If the circuit consists possibly only of R-C or R-C of L-R series, find the relationship find
the relationship between the two elements.

A. $R=1 k \Omega, C=10 \mu F$
B. $R=1 k \Omega, C=1 \mu F$
C. $R=1 k \Omega, L=10 \mathrm{mH}$
D. $R=10 k \Omega, L=10 \mathrm{mH}$

Answer: A

- Watch Video Solution

17. In a circuit L, C and R are connected in
series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :
A. $\frac{1}{\pi v(2 \pi v L-R)}$
B. $\frac{1}{2 \pi v(2 \pi v L-R)}$
C. $\frac{1}{\pi v(2 \pi v L+R)}$
D. $\frac{1}{2 \pi v(2 \pi v L+R)}$

Answer: D

- Watch Video Solution

18. At resonance frequency the impedance in series LCR circuit is
A. maximum
B. minimum
C. zero
D. infinity

Answer: B

D Watch Video Solution

19. An LCR series circuit is under resonance. If
I_{m} is current amplitude, V_{m} is voltage amplitude, R is the resistance, Z is the impedance, X_{L} is the inductive reactance and
X_{C} is the capacitive reactance, then

$$
\begin{aligned}
& \text { A. } I_{m}=\frac{Z}{V_{m}} \\
& \text { B. } I_{m}=\frac{V_{m}}{X_{L}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } I_{m}=\frac{V_{m}}{X_{C}} \\
& \text { D. } I_{m}=\frac{V_{m}}{R}
\end{aligned}
$$

Answer: D

D Watch Video Solution

20. At resonant frequency the current amplitude in series LCR circuit is
A. maximum

B. minimum

C. zero

D. infinity

Answer: A

D Watch Video Solution

21. The resonant frequency of a series LCR

$$
\text { circuit } \quad \text { with } \quad L=2.0 H, C=32 \mu F \quad \text { and }
$$

$R=10 \Omega$ is
A. 20 Hz
B. 30 Hz
C. 40 Hz
D. 50 Hz

Answer: A

D Watch Video Solution

22. Obtain the resonant frequency $\left(\omega_{r}\right)$ of a series LCR circuit withL $=2.0 \mathrm{H}, \mathrm{C}=32 \mu \mathrm{~F}$ and $R=10$ ohm. What is the Q value of this circuit ?
A. 15
B. 20
C. 25
D. 30

Answer: C

D Watch Video Solution
23. Figure shows a series LCR circuit connected to a variable frequency 230 V source.

The source frequency which drives the circuit the circuit in resonance is
A. 4 Hz
B. 5 Hz
C. 6 Hz
D. 8 Hz

Answer: D
24. A series LCR circuit has
$R=5 \Omega, L=40 \mathrm{mH} \quad$ and $\quad C=1 \mu F, \quad$ the bandwidth of the circuit is
A. 10 Hz
B. 20 Hz
C. 30 Hz
D. 40 Hz

Answer: B

D Watch Video Solution
25. In LCR - circuit if resistance increases, quality factor
A. increases finitely
B. decreases finitely
C. remains constant
D. None of these

Answer: B
26. In a series LCCR circuit having
$L=30 \mathrm{mH}, R=8 \Omega$ and the resonant
frequency is 50 Hz . The quality factor of the circuit is
A. 0.118
B. 11.8
C. 118
D. 1.18

Answer: D
27. A series resonant LCR circuit has a quality
factor (Q-factor)=0.4. If $R=2 k \Omega, C=0.1 \mu F$
then the value of inductance is
A. $0.1 H$
B. $0.064 H$
C. 2 H
D. 5 H

Answer: B
28. In series LCR circuit, the plot of $I_{\max }$ versus
ω is shown in figure. Find the bandwith and mark in the figure.

A. zero
B. 0. $1 \mathrm{rad} s^{-1}$
C. $0.2 \mathrm{rad} s^{-1}$
D. $0.4 \mathrm{rad} s^{-1}$

Answer: D

D Watch Video Solution

Power In Ac Circuit

1. Power dissipated in an $L-C-R$ series
circuit connected to an $A C$ source of emf ε is

$$
\frac{\varepsilon^{2} \sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}{R}
$$

A.

$$
\frac{\varepsilon^{2}\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]}{R}
$$

$$
\text { C. } \frac{\varepsilon^{2} R}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}
$$

D.

$$
\varepsilon^{2} R
$$

$$
\overline{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]}
$$

Answer: D

D Watch Video Solution

2. A series $L C R$ circuit with
$R=20 \Omega, L=1.5 H \quad$ and $\quad C=35 \mu F \quad$ is
connected to a variable frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power in $k W$ transferred to the circuit in one complete cycle?
A. 200 W
B. 2000 W
C. 100 W

D. 4000 W

Answer: B

D Watch Video Solution

3. A series LCR circuit with
$R=22 \Omega, L=1.5 H \quad$ and $\quad C=40 \mu F \quad$ is
connected to a variable frequency 220 V ac supply. When the frequency of the supply equals the natural frequency of the circuit,
what is the average power transferred to the

circuit in one complete cycle?

A. 2000 W
B. 2200 W
C. 2400 W
D. 2500 W

Answer: B
(Watch Video Solution
4. An alternating supply of 220 V is applied across a circuit with resistance 22Ω and impedance 44Ω. The power dissipated in the circuit is
A. 1100 W
B. 550 W
C. 2200 W
D. $(2200 / 3) \mathrm{W}$

Answer: B
5. Quality factor and power factor both have
the dimensions of
A. time
B. frequency
C. work
D. angle

Answer: D

6. The power factor of the circuit as shown in

figure is

A. 0.2
B. 0.4
C. 0.8
D. 0.6

Answer: C

- Watch Video Solution

7. A resistor of 500Ω and an inductance of 0.5
H are in series with an ac source which is given
by $V=100 \sqrt{2} \sin (1000 t)$. The power factor of
the combination is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{\sqrt{3}}
\end{aligned}
$$

C. 0.5

D. 0.6

Answer: A

D Watch Video Solution

8. In a series LCR circuit, the phase difference
between the voltage and the current is 45°.

Then the power factor will be
A. 0.607
B. 0.707

C. 0.808

D. 1

Answer: B

D Watch Video Solution

9. For an LCR circuit, the power transferred from the driving source to the driven oscillator is $P=I^{2} Z \cos \phi$.
A. the power factor $\cos \phi \geq 0, P \geq 0$
B. the driving force can give no energy to the $\operatorname{oscillator}(\mathrm{P}=0)$ in some cases.
C. the driving force cannot syphon out $(P<0)$ the energy out of oscillator.
D. all of these.

Answer: D

D Watch Video Solution

10. An electrical device draws 2 kW power from ac mains voltage $223 V_{r m s}$. The current differs
(lags) in phase by $\phi=\tan ^{-1}\left(-\frac{3}{4}\right)$ as compared to voltage. The resistance R in the circuit is
A. 15Ω
B. 20Ω
C. 25Ω
D. 30Ω
11. An inductor 200 mH , capacitor $500 \mu F$ and resistor 10Ω are connected in series with a 100

V variable frequency ac source. What is the frequency at which the power factor of the circuit is unity?
A. 10.22 Hz
B. 12.4 Hz
C. 19.2 Hz

D. 15.9 Hz

Answer: D

D Watch Video Solution

12. In an electrical circuit R, L, C and an $A C$
voltage source are all connected in series.

When L is removed from the circuit, the phase difference between the voltage and the current in the circuit is $\pi / 3$. If instead, C is removed from the circuit, difference the phase
difference is again $\pi / 3$. The power factor of the circuit is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. 1
D. $\frac{\sqrt{3}}{2}$

Answer: C
(Watch Video Solution
13. A voltage of peak value 283 V and varying
frequency is applied to series LCR combination
in \quad which $\quad R=3 \Omega, L=25 m H \quad$ and
$C=400 \mu F$. Then the frequency (in Hz) of the
source at which maximum power is dissipated
in the above is
A. 51.5
B. 50.7
C. 51.1
D. 50.3

Answer: D

D Watch Video Solution

Lc Oscillations

1. The natural frequency $\left(\omega_{0}\right)$ of oscillations in

LC circuit is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi} \frac{1}{\sqrt{L C}} \\
& \text { B. } \frac{1}{\pi} \frac{1}{\sqrt{2 L C}} \\
& \text { C. } \frac{1}{\sqrt{L C}}
\end{aligned}
$$

D. $\sqrt{L C}$

Answer: A

D Watch Video Solution

2. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self inductance L at $t=0$. The time at which the energy is stored equally between the electric and the magnetic fields is

$$
\text { A. } \frac{\pi}{4} \sqrt{L C}
$$

B. $2 \pi \sqrt{L C}$
C. $\sqrt{L C}$
D. $\pi \sqrt{L C}$

Answer: A

D Watch Video Solution
3. A charged $30 \mu F$ capacitor is connected to a 27 mH inductor. What is the angular frequency of free oscillations of the circuit?
A. $1.1 \times 10^{3} \mathrm{rad} s^{-1}$
B. $2.1 \times 10^{3} \mathrm{rad} s^{-1}$
C. $3.1 \times 10^{3} \mathrm{rad} s^{-1}$
D. $4.1 \times 10^{3} \mathrm{rad} s^{-1}$

Answer: A

- Watch Video Solution

4. An Lc circuit contains a 40 mH inductor and
a $25 \mu F$ capacitor. The resistance of the circuit
is negligible.The time is measured from the
instant the circuit is closed. The energy stored
in the circuit is completely magnetic at time
(in milliseconds)
A. $0,3.14,6.28$
B. $0,1.57,4.71$
C. $1.57,4.71,7.85$
D. $1.57,3.14,4.71$

Answer: C

D Watch Video Solution
5. An LC circuit contains a 20 mH inductor and
a $50 \mu F$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible.

Let the instant at which the circuit which is
closed be $\mathrm{t}=0$. At what time the energy stored is completely magnetic ?
A. $t=0$
B. $t=1.54 \mathrm{~ms}$
C. $t=3.14 m s$
D. $t=6.28 \mathrm{~ms}$

Answer: B

D Watch Video Solution

6. An LC circuit contains a 20 mH inductor and $25 \mu F$ capacitor with an initial charge of 5 mC .

The total energy stored in the circuit initially is
A. 5 J
B. $0.5 J$
C. 50 J
D. 500 J

Answer: B

D Watch Video Solution

7. A $1.5 \mu F$ capacitor is charged of 60 V . The charging battery is then disconnected and a 15 mH coil is connected in series with the capacitor so that LC oscillations occur.

Assuming that the circuit contains no
resistance, the maximum current in this coil shall be close to
A. $1.4 A$
B. $1.2 A$
C. $0.8 A$
D. $0.6 A$

Answer: D

D Watch Video Solution

8. A condenser of capacity C is charged to a potential difference of V_{1}. The plates of the condenser are then connected to an ideal
inductor of inductance L. The current through
the inductor wehnn the potential difference across the condenser reduces to V_{2} is

$$
\begin{aligned}
& \text { A. }\left(\frac{C\left(V_{1}-V_{2}\right)^{2}}{L}\right)^{\frac{1}{2}} \\
& \text { B. } \frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L}
\end{aligned}
$$

$$
\text { C. } \frac{C\left(V_{1}^{2}+V_{2}^{2}\right)}{L}
$$

$$
\text { D. }\left(\frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L}\right)^{\frac{1}{2}}
$$

Answer: D

9. What is the mechanical equivalent of spring

constant k in LC oscillating circuit?

$$
\begin{aligned}
& \text { A. } \frac{1}{L} \\
& \text { B. } \frac{1}{C} \\
& \text { C. } \frac{L}{C} \\
& \text { D. } \frac{1}{L C}
\end{aligned}
$$

Answer: B

- View Text Solution

1. A transformer works on the principle of
A. self induction
B. electrical inertia
C. mutual induction
D. magnetic effect of the electricl current

Answer: C

2. Transformer is used to

A. convert ac to dc voltage
B. convert dc to ac voltage
C. obtain desired dc power
D. obtain desired ac voltage and current

Answer: D
3. For an ideal step-down transformer, the quantity which is constant for both the coils is
A. current in the coils
B. voltage across the coils
C. resistance of coils
D. power in the coils

Answer: D
(Watch Video Solution
4. Quantity that remains unchanged in a transformer is
A. voltage
B. current
C. frequency
D. None of these

Answer: C

D Watch Video Solution
5. The core of a transformer is laminated to

reduce

A. flux leakage
B. hysteresis
C. copper loss

D. eddy current

Answer: D
(D) Watch Video Solution
6. The loss of energy in the form of heat in the iron core of a transformer is
A. iron loss
B. copper loss
C. mechanical loss
D. None of these

Answer: A

D View Text Solution

7. In a transformer the transformation ratio is

0.3 . If 220 V ac is fed to the primary, then the
voltage across the secondary is
A. 44 V
B. 55 V
C. 60 V
D. 66 V

Answer: D

D Watch Video Solution
8. A transformer is used to light a $140 \mathrm{~W}, 24 \mathrm{~V}$
lamp from 240 V AC mains. The current in mains cable is 0.7 A , find the efficiency of transformer.
A. 63.8%
B. 74%
C. 83.3%
D. 48%

Answer: C

9. in a step-up transformer, the turn ratio is

1:2 leclanche cell (e.m.f. 1.5V) is connected across the primary. The voltage devloped in the secondary would be
A. 3 V
B. 1.5 V
C. 0.75 V
D. zero

Answer: A

- Watch Video Solution

10. A transformer has 100 turns in the primary
coil and carries $8 A$ current. If input power is
one kilowatt, the number of turns required in
the secondary coil to have 500 V output will be
A. 100
B. 200
C. 400

D. 300

Answer: C

D Watch Video Solution

11. A 60 W load is connected to the secondary
of a transformer whose primary draws line
voltage. If a current of 0.54 A flows in the load,
what is the current in the primary coil?

Comment on the types of transformer being used.
A. $0.27 m A$
B. $2.7 A$
C. $0.27 A$
D. 10 A

Answer: C

D Watch Video Solution

12. A step down transformer converts
transmission line voltage from 11000 V to 220
V. The primary of the transformer has 6000
turns and efficiency of the transformer is 60%.

If the output power is 9 kW , then the input power will be
A. 11 kW
B. 12 kW
C. 14 kW
D. 15 kW

Answer: D

D Watch Video Solution
13. In the question number 96 , the number of turns in the secondary is
A. 20
B. 80
C. 120
D. 160

Answer: C

14. A power transmission line feeds input power at 2400 V to a step down transformer with its primary windings having 4000 turns.

What should be the number of turns in the secondary windings in order to get output power at 240 V ?
A. 400
B. 420
C. 424
D. 436

Answer: A

D Watch Video Solution

15. Calculate current drawn by primary coil of a transformer, Which steps down 200 V to 20 V to operate a device of 20 ohm resistance. Assume efficiency of transformer 80%.
A. $0.125 A$
B. $0.225 A$
C. $0.325 A$

D. $0.425 A$

Answer: A

D Watch Video Solution

16. A small town with a demand of 800 kW of electric power at 220 V is situated 15 km away
from an electric plant generating power at 440 V . The resistance of the two line wires carrying power is 0.5Ω per km . The town gets power from the lines through a 4000-220 V
step down transformer at a substation in the town.

Estimate the line power loss in the form of heat.
(b) How much power must the plant supply. assuming there is negligible power loss due to leakage?
(c) Characterize the step up transformer at the plant.
A. 400 kW
B. 600 kW
C. 300 kW

D. 800 W

Answer: B

- Watch Video Solution

Higher Order Thinking Skills

1. In the given circuit, the $A C$ source has
$(\omega)=100 \mathrm{rad} / \mathrm{s}$. Considering the inductor
and capacitor to be ideal, the correct choice(s)
is (are)

A. the current throughh the circuit, 1 is 0.3
A.
B. the current through the circuit, I is
$0.3 \sqrt{2}$ A.
C. the voltage across 100Ω resistor $=10 \mathrm{~V}$.

D. the voltage across 50Ω resistor $=10 \mathrm{~V}$.

Answer: A

D Watch Video Solution

2. A series R-C combination is connected to an

AC voltage of angular frequency
$\omega=500 \mathrm{radian} / \mathrm{s}$. If the impedance of the R-C
circuit is $R \sqrt{1.25}$, the time constant (in millisecond) of the circuit is
A. 2
B. 3
C. 4
D. 5

Answer: C

D Watch Video Solution

3. A series LCR circuit containing a resistance of 120Ω has angular resonance frequency
$4 \times 10^{5} \mathrm{rads}^{-1}$. At resonance the voltage
across resistance and inductance are 60 V and

40 V , respectively,

At what frequency, the current in the circuit lags the voltage bu 45° ?
A. $16 \times 10^{5} \mathrm{rad} s^{-1}$
B. $8 \times 10^{5} \mathrm{rad} s^{-1}$
C. $4 \times 10^{5} \mathrm{rad} \mathrm{s}^{-1}$
D. $2 \times 10^{5} \mathrm{rad} s^{-1}$

Answer: B

D Watch Video Solution
4. A box P and a coil Q are connected in series
with an ac source of variable frequency. The emf of the source is constant at 10 V . Box P contains a capacitance of 32Ω. Coil Q has a self inductance of 4.9 mH and a resistance of 68Ω in series. The frequency is adjusted so that maximum current flows in P and Q .

The impedance of Q at this frequency is
A. $9.76 \mathrm{~V}, 8.92 \mathrm{~V}$
B. $6.29 \mathrm{~V}, 7.96 \mathrm{~V}$
C. $7.70 \mathrm{~V}, 10.92 \mathrm{~V}$
D. $7.70 \mathrm{~V}, 9.76 \mathrm{~V}$

Answer: D

- Watch Video Solution

5. A circuit draws a power of 550 watt from a source of 220 volt, 50 Hz . The power factor of the circuit is 0.8 and the current lags in phase
behind the potential difference. To make the power factor of the circuit as 1.0, The capacitance should be connected in series with it is

$$
\begin{aligned}
& \text { A. } \frac{1}{42 \pi} \times 10^{-2} F \\
& \text { B. } \frac{1}{41 \pi} \times 10^{-2} F \\
& \text { C. } \frac{1}{5 \pi} \times 10^{-2} F \\
& \text { D. } \frac{1}{84 \pi} \times 10^{-2} F
\end{aligned}
$$

Answer: A

6. In a series L-R circuit
($L=35 m H$ and $R=11 \Omega$), a variable emf
source $\left(V=V_{0} \sin \omega t\right)$ of $V_{r m s}=220 \mathrm{~V}$ and
frequency 50 Hz is applied. Find the current amplitude in the circuit and phase of current with respect to voltage. Draw current-time graph on given graph $\left(\pi=\frac{22}{7}\right)$.

A. $10 A$
B. 20 A
C. 30 A
D. 40 A

Answer: B

D Watch Video Solution

7. Alternating current of peak value $\left(\frac{2}{\pi}\right)$ ampere flows through the primary coil of the
transformer. The coefficient of mutual
inductance between primary and secondary
coil is 1 henry. The peak e.m.f. induced in
secondary coil is (Frequency of $A C=50 \mathrm{~Hz}$)
A. 100 V
B. 200 V
C. 300 V
D. 400 V

Answer: B
8.1 MW power is to be delivered from a power station to a town 10 km away. One uses a pair of Cu wires of radius 0.5 cm for this purpose.

Calculate the fraction of ohmic losses to power transimitted if (i) power is transformer is used to boost the voltage to 11000 V , power transmitted, then a step down transformer is used to bring voltages to 220 V .
$\left(\rho_{C u}=1.7 \times 10^{-8} S I\right.$ unit $)$
A. 1.8%
B. 1.5%
C. 3.6%
D. 7.2%

Answer: C

D Watch Video Solution

Ncert Exemplar

1. If the rms current in a 50 Hz ac circuit is 5 A ,
the value of the current $1 / 300$ second after its
value becomes zero is
A. $5 \sqrt{2} A$
B. $5 \sqrt{\frac{3}{2}} A$
C. $\frac{5}{6} A$
D. $\frac{5}{\sqrt{2}} A$

Answer: B

D Watch Video Solution

2. An alternating current generator has an internal resistance R_{g} and an internal reactance X_{g}. It is used to supply power to a passive load consisting of a resistance R_{g} and a rectance X_{L}. For maximum power to be delivered from the generator to the load, the value of X_{L} is equal to
A. zero
B. X_{g}
C. $-X_{g}$

D. R_{g}

Answer: C

D Watch Video Solution

3. When a voltage measuring device is connected to a.c. mains the meter shows the steady input voltage of 220 V . This means
A. input voltage cannot be ac voltage, but a dc voltage.
B. maximum input voltage is 220 V
C. the meter reads voltage not V but $<V^{2}>$ and is calibrated to read

$$
\sqrt{<V^{2}>}
$$

D. the pointer of the meter is stuck by
some mechanical defect.

Answer: C

D Watch Video Solution

4. To reduce the resonant frequency in an $L C R$ series circuit with a generator
A. the generator frequency should be reduced.
B. another capacitor should be added in parallel to the first.
C. the iron core of the inductor should be removed.

D. dielectric in the capacitor should be

 removed.Answer: B

D Watch Video Solution

5. Which of the following combinations should be selected for better turning of an LCR circuit used for communication?

$$
\text { A. } R=20 \Omega, L=1.5 H, C=35 \mu F
$$

$$
\text { B. } R=25 \Omega, L=2.5 H, C=45 \mu F
$$

C. $R=15 \Omega, L=3.5 H, C=30 \mu F$

$$
\text { D. } R=25 \Omega, L=1.5 H, C=45 \mu F
$$

Answer: C

D Watch Video Solution

6. A inductor of reactance 1Ω and a resistor of
2Ω are connected in series to the terminals of
a 6 V (rms) a.c. source. The power dissipated in
the circuit is
A. 8 W
B. 12 W
C. $14.4 W$
D. 18 W

Answer: C

D Watch Video Solution
7. The output of a step-down transformer is measured to be $24 V$ when connected to a 12
watt light bulb. The value of the peak current
is
A. $\frac{1}{\sqrt{2}} A$
B. $\sqrt{2} A$
C. $2 A$
D. $2 \sqrt{2} A$

Answer: A
(D) Watch Video Solution

1. Assertion : An alternating current does not show any magnetic effect.

Reason : Alternating current does not vary with time.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: C

D View Text Solution

2. Assertion: Average value of $A C$ over a complete cycle is always zero.

Reason: Average value of $A C$ is always defined over half cycle.
A. If both assertion ans reason are true ans
reaason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
3. Assertion : The capacitive reactance limits
the amplitude of the current in a purely capacitive circuit.

Reason : Capacitive reactance is proportional to the frequency and the capacitance.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

4. Assertion : The inductive reactance limits amplitude of the current in a purely inductive circuit.

Reason : The inductive reactance is independent of the frequency of the current.
A. If both assertion ans reason are true ans
reaason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

5. Assertion : In series LCR resonance circuit,
the impedance is equal to the ohmic resistance.

Reason : At resonance, the inductive reactance exceeds the capacitive reactance.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

6. Assertion : In a purely inductive or capacitive
circuit, the current is referred to as wattless
currents.

Reason : No power is dissipated in a purely
inductive or capacitive circuit even though a
current is flowing in the circuit.
A. If both assertion ans reason are true ans
reaason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: A

7. Assertion : The only element that dissipates
energy in an ac circuit is the resistive element.
Reason : There are no power losses associated with pure capacitances and pure inductances
in an ac circuit.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

8. Assertion : The power in ac circuit is minimum if the circuit has only a resistor.

Reason : Power of a circuit is independent of the phase angle.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

9. Assertion : Resonance is exhibited by a circuit only if both L and C are present in the circuit.

Reason: Only then the voltage across L and C
cancel each other, both being out of phase.
A. If both assertion ans reason are true ans
reaason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: A

10. Assertion : When a current flows in the coil
of a transformer then its core becomes hot.

Reason : The core of transformer is made of soft iron.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

11. Assertion : An ideal transformer does not
vary the power.

Reason : An transformer is used to step-up or step-down ac voltages.
A. If both assertion ans reason are true ans
reaason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
12. Assertion : A step-up transformer changes
a low voltage into a high voltage.
Reason : This violate the law of conservation of energy.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

13. Assertion : A given transformer can be used to step-up to step-down the voltage.

Reason : The output voltage depends upon
the ratio of the number of turns of the two coils of the transformer.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: A

D View Text Solution

14. Assertion : A laminated core is used in transformers to increase eddy currents.

Reason : The efficiency of a transformer increases with increase in eddy currents.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion istrue but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

15. Assertion : A transformer cannot work on
dc supply.

Reason : dc changes neither in magnitude nor in direction.
A. If both assertion ans reason are true ans
reaason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.

C. If assertion istrue but reason is false.

D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

