© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - NCERT FINGERTIPS PHYSICS

(HINGLISH)

ELECTRIC CHARGES AND FIELDS

Electric Charges

1. There are two types of electric charges
positive charges and negative charges. The
property which differentiates the two types of charges is
A. field of charge
B. amount of charge
C. strength of charge
D. polarity of charge

Answer: D
(Watch Video Solution
2. What will happen when we rub a glass rod with silk cloth?
A. Some of the electrons from the glass rod are transferred to the silk cloth.
B. The glass rod gets positive charge and
silk cloth gets negative charge.
C. New charge is created in the process of rubbing.
D. both (a) and (b) are correct.

Answer: D

D Watch Video Solution

3. When a person combs his hair, static electricity is sometimes generated by what process?
A. Contact between the comb and hair results in a charge.
B. Friction between the comb and hair results in a charge.
C. Deduction between the comb and hair.
D. Induction between the comb and hair.

Answer: B

D Watch Video Solution

4. Object may acquire an excess or deficiency of charge by
A. electric force
B. heating

C. shaking

D. by rubbing

Answer: D

- Watch Video Solution

5. The charge on an electron was calculated by
A. Faraday
B. J.J. Thomson
C. Millikan
D. Einstein

Answer: C

D Watch Video Solution

Charging By Induction

1. A method for charging a conductor without
bringing a charged body in contact with it is
called
A. Magnetization
B. Electrification
C. Electrostatic induction
D. Electromagnetic induction

Answer: C

D Watch Video Solution

2. An object is charged when it has a charge imbalance, which means the
A. object contains no protons
B. object contains no electrons
C. object contains equal number of
electrons and protons
D. object contains unequal number of
electrons and protons

Answer: D
(Watch Video Solution
3. A conducting sphere is negatively charged. Which of the following statements is true?
A. The charge is uniformly distributed
throughout the entire volume.
B. The charge is located at the center of
the sphere.
C. The charge is located at the bottom of
the sphere because of gravity.

D. The charge is uniformly distributed on

the surface of the sphere.

Answer: D

- Watch Video Solution

Basic Properties Of Electric Charge

1. The number of electrons present in -1 C of
charge is
A. 6.25×10^{18}
B. 1.6×10^{19}
C. 6×10^{19}
D. 1.6×10^{18}

Answer: A

D Watch Video Solution

2. A cup contains 250 g of water. Find the total positive charge present in the cup of water.
A. $1.34 \times 10^{19} C$
B. $1.34 \times 10^{7} C$
C. $2.43 \times 10^{19} C$
D. $2.43 \times 10^{7} C$

Answer: B

D Watch Video Solution
3. A polythene piece rubbed with wool is found to have a negative charge of $6 \times 10^{-7} C$. The
number of electrons transferred to polythene

from wool is

A. 3.75×10^{10}
B. 9.6×10^{10}
C. 9.6×10^{12}
D. 3.75×10^{12}

Answer: D
(Watch Video Solution
4. If 10^{9} electrons move out of a body to another body every second, then the time required to get a total charge of 1 C on the other body is
A. 250 years
B. 100 years
C. 198 years
D. 150 years

Answer: C
5. The number of electrons that must be removed from an electrically neutral silver dollar to give it a charge of +2.4 C is
A. 2.5×10^{19}
B. 1.5×10^{19}
C. 1.5×10^{-19}
D. 2.5×10^{-19}

Answer: B
6. A coin is made up of Al and weighs 0.75 g . It has a square shape and its diagonal measures

17 mm . It is electrically neutral and contains equal amounts of positive and negative charges. The magnitude of these charges is (Atomic mass of $\mathrm{Al}=26.98 \mathrm{~g}$)
A. $3.47 \times 10^{4} C$
B. $3.47 \times 10^{2} C$
C. $1.67 \times 10^{20} \mathrm{C}$
D. $1.67 \times 10^{22} C$

Answer: A

D Watch Video Solution

7. If an object of mass 1 kg contains 4×10^{20}
atoms. If one electron is removed from every
atom of the solid, the charge gained by the solid in 1 g is
A. 2.8 C
B. $6.4 \times 10^{-2} C$
C. $3.6 \times 10^{-3} C$
D. $9.2 \times 10^{-4} C$

Answer: B

D Watch Video Solution

Force Between Multiple Charges

1. Two charges q and $-3 q$ are placed fixed on x^{-} axis separated by distance d. Where should a
third charge $2 q$ be placed such that it will not experience any force?

$$
\begin{aligned}
& \text { A. } \frac{d-\sqrt{3} d}{2} \\
& \text { B. } \frac{d+\sqrt{3} d}{2} \\
& \text { C. } \frac{d+3 d}{2} \\
& \text { D. } \frac{d-3 d}{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

2. Consider the charges q, q and $-q$ placed at
the vertices of an equilateral triangle of each
side I. What is the force on each charge ?
A. $\frac{q^{2}}{4 \sqrt{2} \pi \varepsilon_{0} l^{2}}$
B. $\frac{-q^{2}}{4 \pi \varepsilon_{0} l^{2}}$
C. $\frac{q^{2}}{4 \pi \varepsilon_{0} l^{2}}$
D. zero

Answer: D

D Watch Video Solution
3. A charge Q is placed at the centre of the line
joining two point charges $+q$ and $+q$ as shown
in figure. The ratio of charges Q and q is

A. 4
B. $1 / 4$
C. -4

$$
\text { D. }-1 / 4
$$

- Watch Video Solution

4. Four point charges are placed at the corners of a square $A B C D$ of side 10 cm , as shown in figure. The force on a charge of $1 \mu C$ placed at the centre of square is

A. 7 N
B. 8 N
C. 2 N
D. zero

Answer: D

D Watch Video Solution
5. Consider three charges q_{1}, q_{2} and q_{3} each equal to q, at the vertices of an equilateral
triangle of side I. What is the force on a charge
Q placed at the centroid of the triangle?

> A. $\frac{3 Q q}{4 \pi \varepsilon_{0} l^{2}}$
> B. $\frac{2 Q q}{4 \pi \varepsilon_{0} l^{2}}$
> с. $\frac{Q q}{2 \pi \varepsilon_{0} l^{2}}$
D. zero

Answer: D
(D) Watch Video Solution

Electric Field

1. The force per unit charge is known as
A. electric flux
B. electric field
C. electric potential
D. electric current

Answer: B

- Watch Video Solution

2. Electrical as well as gravitational affects can
be thought to be caused by fields. Which of
the following is true of an electrical or gravitational field?
A. The field concept is often used to describe contact forces.
B. Gravitational or electric field does not exist in the space around an object.
C. Fields are useful for understanding
forces acting through a distance.

D. There is no way to verify the existence of

 a force field since it is just a concept.
Answer: C

D Watch Video Solution

3. The Electric field at a point is
A. always continuous
B. continuous if there is no charge at that

C. discontinuous if there is a charge at that

point
D. both (b) and (c) are correct

Answer: D

D Watch Video Solution

4. The dimensional formula of electric intensity is

$$
\text { A. }\left[M^{1} L^{1} T^{3} A^{-1}\right]
$$

$$
\begin{aligned}
& \text { B. }\left[M L^{-1} T^{-3} A^{1}\right] \\
& \text { C. }\left[M^{1} L^{1} T^{-3} A^{-1}\right] \\
& \text { D. }\left[M^{1} L^{2} T^{1} A^{1}\right]
\end{aligned}
$$

Answer: C

D Watch Video Solution

5. If the charge on an object is doubled then electric field becomes
A. half
B. double
C. unchanged
D. thrice

Answer: B

D Watch Video Solution

6. A force of 2.25 N acts on a charge of $15 \times 10^{-4} C$. The intensity of electric field at that point is
A. $150 N C^{-1}$
B. $15 N C^{-1}$
C. $1500 N C^{-1}$
D. $1.5 N C^{-1}$

Answer: C

D Watch Video Solution

7. A conducting sphere of radius 10 cm has unknown charge. If the electric field at a distance 20 cm from the centre of the sphere
is $1.2 \times 10^{3} \mathrm{NC}^{-1}$ and points radially inwards.

The net charge on the sphere is
A. $-4.5 \times 10^{-9} C$
B. $4.5 \times 10^{9} C$
C. $-5.3 \times 10^{-9} C$
D. $5.3 \times 10^{9} C$

Answer: C

D Watch Video Solution

8. A particle of mass $10^{-3} \mathrm{~kg}$ and charge $5 \mu C$
is thrown at a speed of $20 \mathrm{~ms}^{-1}$ against a
uniform electric field of strength
$2 \times 10^{5} N C^{-1}$. The distance travelled by particle before coming to rest is
A. 0.1 m
B. 0.2 m
C. 0.3 m
D. 0.4 m

Answer: B
9. An electron initially at rest falls a distance of
1.5 cm in a uniform electric field of magnitude
$2 \times 10^{4} N / C$. The time taken by the electron to fall this distance is
A. $1.3 \times 10^{2} s$
B. $2.1 \times 10^{-12} s$
C. $1.6 \times 10^{-10} s$
D. $2.9 \times 10^{-9} s$

Answer: D

D Watch Video Solution

10. The electric field that can balance a charged particle of mass $3.2 \times 10^{-27} \mathrm{~kg}$ is
(Given that the charge on the particle is $\left.1.6 \times 10^{-19} C\right)$
A. $19.6 \times 10^{-8} N C^{-1}$
B. $20 \times 10^{-6} N C^{-1}$
C. $19.6 \times 10^{8} \mathrm{NC}^{-1}$

D. $20 \times 10^{6} N C^{-1}$

Answer: A

D Watch Video Solution

11. An oil drop of 10 excess electron is held stationary under a consatnt electric field of $3.6 \times 10^{4} N C^{-1} \quad$ in Millikan's oil drop experiment. The density of oil is $1.26 \mathrm{gcm}^{-3}$.

Radius of the oil drop is
(Take, $g=9.8 m s^{-2}, e=1.6 \times 10^{-19} C$)
A. $1.04 \times 10^{-6} m$
B. $4.8 \times 10^{-5} m$
C. $4.8 \times 10^{-18} \mathrm{~m}$
D. $1.13 \times 10^{-18} \mathrm{~m}$

Answer: A

D Watch Video Solution
12. Five equal charges each of value q are placed at the corners of a regular pentagon of side a. The electric field at the centre of the
pentagon is

A. $\frac{q}{4 \pi \varepsilon_{0} r^{2}}$
B. $\frac{q^{2}}{4 \pi \varepsilon_{0} r^{2}}$
C. $\frac{2 q}{4 \pi \varepsilon_{0} r^{2}}$
D. zero

Answer: D

D Watch Video Solution

13. In question number 45 , what will be the electric field at centre O, if the charge from one of the corners (say A) is removed?
A. $\frac{q}{4 \pi \varepsilon_{0} r^{2}}$ along OA
B. $\frac{2 q}{4 \pi \varepsilon_{0} r^{2}}$ along OB
C. $\frac{q^{2}}{4 \pi \varepsilon_{0} r^{2}}$ along OC
D. $\frac{2 q}{4 \pi \varepsilon_{0} r^{2}}$ along OA

Answer: A

D View Text Solution

14. In question number 45 , what will be the electric field at O if the charge q at A is replaced by -q?
A. $\frac{q}{4 \pi \varepsilon_{0} r^{2}}$ along OB
B. $\frac{2 q}{4 \pi \varepsilon_{0} r^{2}}$ along OA
C. $\frac{4 q}{4 \pi \varepsilon_{0} r^{2}}$ along OC
D. zero

Answer: B

D View Text Solution

15. Figure shows tracks of three charged particles crossing a uniform electrostatic field with same velocities along horizontal. Give the sign of the three charges. Which particle has
the highest charge to mass ratio?

A. A
B. B
C. C
D. A and B

Answer: C
16. Take the particle in question number 49 an electron projected with velocity
$v_{x}=4 \times 10^{6} \mathrm{~ms}$-1. If electric field between
the plates separated by 1 cm is
$8.2 \times 10^{2} N C^{-1}$, then the electron will strike
the upper plate if the length of plate is (Take

$$
\left.m_{e}=9.1 \times 10^{-31} \mathrm{~kg}\right)
$$

A. 2.14 cm
B. 3.9 cm
C. 1.23 cm
D. 3.3 cm

Answer: D

D View Text Solution

Mcqs

1. A particle of mass m and charge $-q$ enters
the region between the two charged plates
initially moving along x-axis with speed v_{x} as
shown in figure. The length of plate is L and a
uniform electric field E is maintained between
the plates. The vertical deflection of the particle at the far edge of the plate is

A. $\frac{q E L^{2}}{2 m v_{x}^{2}}$
B. $\frac{q E L^{2}}{2 m v_{x}}$
C. $\frac{2 m v_{x}^{2}}{q E L^{2}}$
D. $\frac{2 m v_{x}}{q E^{2} L}$

Answer: A

D View Text Solution

2. An early model for an atom considered it to
have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge upto a radius R. The atom as a whole is neutral. The electric field at a distance
r from the nucleus is (r It R)

A. $\frac{Z e}{4 \pi \varepsilon_{0}}\left[\frac{1}{r^{2}}-\frac{r}{R^{3}}\right]$
B. $\frac{Z e}{4 \pi \varepsilon_{0}}\left[\frac{1}{r^{3}}-\frac{r}{R^{2}}\right]$
C. $\frac{Z e}{4 \pi \varepsilon_{0}}\left[\frac{r}{R^{3}}-\frac{1}{r^{2}}\right]$
D. $\frac{Z e}{4 \pi \varepsilon_{0}}\left[\frac{r}{R^{3}}+\frac{1}{r^{2}}\right]$

Answer: A

D View Text Solution

Electric Field Lines

1. Electric field lines provide information about
A. field strength
B. direction
C. nature of charge

D. all of these

Answer: D

D Watch Video Solution

2. Which of the following figures represents
the electric field lines due to a single positive charge?

Answer: A

- Watch Video Solution

3. Which of the following figure represents the
field lines due to a single negative charge ?
A.

Answer: B

- Watch Video Solution

4. Sketch the electric field lines for a uniformly
charged hollow cylinder shown in Fig.

A.

B.

C.

D.

Answer: B

- Watch Video Solution

5. Figure shows the electric field lines around
three point charges A, B and C. Which of the
following charges are positive?

A. Only A
B. Only C
C. Both A and C
D. Both B and C

D Watch Video Solution

6. In question 55, which charge has the largest magnitude?
A. A
B. B
C. C
D. B and C have equal magnitude

D View Text Solution

7. In question 55 , which region or regions of the figure could the electric field be zero?
A. Near A
B. Near B
C. Near C
D. Now here

Answer: A

D View Text Solution

8. Which of the following represent the electric field lines dut to a combinations of two negative charges?

B.

C.

D.

Answer: D

D Watch Video Solution

9. Which of the following figure represents the electronic field lines due to a combination of the one positive and one negative charge?

A.

Answer: A

D Watch Video Solution

10. A non-uniform electric field is represented
by the diagram. At which of the following
points the electric field is greatest in magnitude?

A. A
B. B
C. C
D. D

- Watch Video Solution

11. Which of the following curves represent electrostatic field lines correctly?

A.

D.

Answer: C

D Watch Video Solution

12. Which of the following statements is not true about electric field lines?
A. Electric field lines start from positive charge and end at negative charge.
B. Two electric field lines can never cross
each other.
C. Electrostatic field lines do not form any closed loops.
D. Electric field lines cannot be taken as continuous curve.

Answer: D

D Watch Video Solution

1. The SI unit of electric flux is
A. $N C^{-1} m^{2}$
B. $N C m^{-2}$
C. $N C^{-2} m^{2}$
D. $N C^{-1} m^{-2}$

Answer: A
2. The dimensional formula of electric flux is
A. $\left[M^{1} L^{1} T^{-2}\right]$
B. $\left[M^{1} L^{3} T^{-3} A^{-1}\right]$
C. $\left[M^{2} L^{2} T^{-2} A^{-2}\right]$
D. $\left[M^{1} L^{-3} T^{3} A^{1}\right]$

Answer: B
3. A circular plane sheet of radius 10 cm is
placed in a uniform electric field of
$5 \times 10^{5} N C^{-1}$, making an angle of 60° with
the field. Calculate electric flux through the sheet.
A. $1.36 \times 10^{2} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
B. $1.36 \times 10^{4} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
C. $0.515 \times 10^{2} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
D. $0.515 \times 10^{4} \mathrm{Nm}^{2} \mathrm{C}^{-1}$

Answer: B

- Watch Video Solution

4. A uniform electric field $E=2 \times 10^{3} N C^{-1}$
is acting along the positive x-axis. The flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane is
A. $20 N C^{-1} m^{2}$
B. $30 N C^{-1} m^{2}$
C. $10 N C^{-1} m^{2}$
D. $40 N C^{-1} m^{2}$

Answer: A

D Watch Video Solution

5. In the question number 66, the flux through
the same square if the line normal to its plane makes a 60° angle with the x-axis is
A. $30 N C^{-1} m^{2}$
B. $10 N C^{-1} m^{2}$
C. $20 N C^{-1} m^{2}$
D. $25 N C^{-1} m^{2}$

Answer: B

- View Text Solution

Electric Dipole

1. Which of the following statements about dipole moment is not true?
A. The dimensions of dipole moment is [L T

A].
B. The unit of dipole moment is Cm .
C. Dipole moment is vector quantity and
directed from negative to positive charge.
D. Dipole moment is a scalar quantity and
has magnitude charge equal to the potential of separation between charge.

Answer: D

D View Text Solution

2. Define electric dipole moment. Write its SI

 unit?A. newton
B. coulomb
C. farad
D. debye

Answer: D

D Watch Video Solution
3. Two charges $+20 \mu C$ and $-20 \mu C$ are placed 10 mm apart. The electric field at point P, on the axis of the dipole 10 cm away from its centre O on the side of the positive charge is

A. $8.6 \times 10^{9} N C^{-1}$
B. $4.1 \times 10^{6} N C^{-1}$
C. $3.6 \times 10^{6} N C^{-1}$
D. $4.6 \times 10^{5} N C^{-1}$

D Watch Video Solution

4. Consider a region inside which there are various types of charges but the total charge is zero ,.At points outside the region
A. the electric field is necessarily zero.
B. the electric field is due to the dipole moment of the charge distribution only.
C. the dominant electric field is inversely
proportional to ${ }^{\prime} \wedge(3)$, for large r
(distance from origin).
D. the work done to move a charged particle along a closed path, away from the region will not be zero.

Answer: C

D Watch Video Solution

5. Two point charges of $1 \mu C$ and $-1 \mu C$ are separated by a distance of $100 \AA$. A point P is at a distance of 10 cm from the midpoint and
on the perpendicular bisector of the line joining the two charges. The electric field at P will be
A. $9 N C^{-1}$
B. $0.9 N C^{-1}$
C. $90 N C^{-1}$
D. $0.09 N C^{-1}$

Answer: D

D Watch Video Solution

Dipole In A Uniform External Field

1. An electric dipole is placed at an angle of 30° with an electric field intensity $2 \times 10^{5} \mathrm{~N} / \mathrm{C}$. It experiences a torque equal to

4 Nm . The charge on the dipole, if the dipole is
length is 2 cm , is
A. 8 mC
B. 4 mC
C. 6 mC
D. 2 mC

Answer: D

- Watch Video Solution

2. In a certain region of space, electric field is
along the z-direction throughout. The
magnitude of electric field is , however, not constant but increases uniformly along the positive z-direction. At the rate of $10^{5} N C^{-1} m^{-1}$. What are the force and torque experienced by system having a total
dipole moment equal to $10^{-7} \mathrm{Cm}$ in the negative z-direction?
A. $-10^{-2} N$
B. $10^{-2} N$
C. $10^{-4} N$
D. $-10^{-4} N$

Answer: A
(Watch Video Solution
3. In the question number 74 , torque experienced by the system is
A. $10^{2} N$
B. $10^{-2} N$
C. zero
D. $10^{3} \mathrm{~N}$

Answer: C

- View Text Solution

Continuous Charge Distribution

1. Match the following and find the correct option.

	Column I	Column II	
(A)	Linear charge density	(p)	$\frac{\text { Charge }}{\text { Volume }}$
(B)	Surface charge density	(q)	$\frac{\text { Charge }}{\text { Length }}$
(C)	Volume charge density	(r)	$\frac{\text { Charge }}{\text { Area }}$

A. $A-q, B-r, C-p$
B. A-p, B-r, C-p
C. $A-r, B-p, C-q$

$$
\text { D. A - r, B }-q, C-p
$$

Answer: A

D Watch Video Solution

2. A uniformly charged conducting sphere of
4.4 m diameter has a surface change density
of $60 \mu \mathrm{Cm}^{-2}$. The charge on the sphere is
A. $7.3 \times 10^{-3} C$
B. $3.7 \times 10^{-6} C$
C. $7.3 \times 10^{-6} C$
D. $3.7 \times 10^{-3} C$

Answer: D

- Watch Video Solution

3. A metallic spherical shell has an inner radius
R_{1} and outer radius R_{2}. A charge is placed at the centre of the spherical cavity. The surface
charge density on the inner surface is

A. $\frac{q}{4 \pi R_{1}^{2}}$
B. $\frac{-q}{4 \pi R_{1}^{2}}$
C. $\frac{q^{2}}{4 \pi R_{2}^{2}}$
D. $\frac{q}{4 \pi R_{2}^{2}}$

Answer: B

- Watch Video Solution

4. In the question number 78 , the surface charge density on the outer surface is
A. $\frac{-q}{4 \pi R_{1}^{2}}$
B. $\frac{q}{4 \pi R_{2}^{2}}$
C. $\frac{q^{2}}{4 \pi R_{1}^{2}}$
D. $\frac{2 q}{4 \pi R_{2}^{2}}$

Answer: B

D View Text Solution

5. A positive charge Q is uniformly distributed
along a circular ring of radius R.a small test
charge q is placed at the centre of the ring
.The

A. if $q>0$, and is displaced away from the
centre in the plane of the ring, it will be
pushed back towards the centre.
B. if $q<0$ and is displaced away from the

Centre in the plane of the ring, it will never return to the centre and will continue moving till it hits the ring.
C. if $q<0$ it will perform SHM for small
displacement along the axis.
D. all of the above

Answer: D

D Watch Video Solution

1. The surface considered for Gauss's law is called
A. Closed surface
B. Sphereical surface
C. Gaussian surface
D. Plane surface

Answer: C

D Watch Video Solution
2. If $\oint_{s} E . d s=0$ Over a surface, then
A. the electric field inside the surface and
on it is zero.
B. the electric field inside the surface is
necessarily uniform.
C. all charges must necessarily be outside
the surface.
D. all of these.

D Watch Video Solution

3. If there were only one type of charge of the universe then
A. $\oint_{s} \vec{E} \cdot d \vec{s} \neq 0$ on any surface
B. $\oint_{s} \vec{E} \cdot d \vec{s}=0$ if the charge is outside
the surface
c. $\oint_{s} \vec{E} \cdot d \vec{s}=\frac{q}{\varepsilon_{0}} \quad$ if \quad charges \quad of magnitude q were inside the surface

D. both (b) and (c) are correct

Answer: D

D Watch Video Solution

4. A sphere encloses an electric dipole withon it. The total flux across the sphere is
A. zero
B. half that due to a single charge
C. double that due to a single charge
D. dependent on the position of dipole.

Answer: A

D Watch Video Solution

5. A point charge $4 \mu C$ is at the centre of a cubic Gaussian surface 10 cm on edge. Net electric flux through the surface is
A. $2.5 \times 10^{5} \mathrm{Nm}^{2} C^{-1}$
B. $4.5 \times 10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
C. $4.5 \times 10^{6} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
D. $2.5 \times 10^{6} \mathrm{Nm}^{2} \mathrm{C}^{-1}$

Answer: B

D Watch Video Solution

6. The electric components in the figure are
$E_{x}=\alpha x^{1 / 2}, E_{y}=0, E_{z}=0$
where
$\alpha=800 \mathrm{~N} / \mathrm{m}^{2}$ if $a=0.1 m$ is the side of
cube then the charge with in the cube is

A. $9.27 \times 10^{-12} C$
B. $9.27 \times 10^{12} C$
C. $6.97 \times 10^{-12} C$
D. $6.97 \times 10^{12} C$

Answer: A

D Watch Video Solution
7. The total flux through the faces of the cube with side of length a if a charge q is placed at corner A of the cube is

A. $\frac{q}{8 \varepsilon_{0}}$
B. $\frac{q}{4 \varepsilon_{0}}$
C. $\frac{q}{2 \varepsilon_{0}}$
D. $\frac{q}{\varepsilon_{0}}$

Answer: A

D Watch Video Solution

8. Which of the following statements is not true about Gauss's law?
A. Gauss's law is true for any closed
surface.
B. The term q on the ringht side of Gauss's
law includes the sum of all charges
enclosed by the surface.
C. Gauss's law is not much useful in
calculating electrostatic field when the
system has some symmetry.
D. Gauss's law is based on the inverse
square dependence on distance

contained in the coulomb's law.

Answer: C

D Watch Video Solution

9. A point charge ${ }^{`}+20 \mathrm{muC}$ is at a distance 6
cm directly above the centre of a square of
side 12 cm as shown is figure. The magnitude
of electric flux through the square is

A. $2.5 \times 10^{6} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
B. $3.8 \times 10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
C. $4.2 \times 10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
D. $2.9 \times 10^{6} \mathrm{Nm}^{2} \mathrm{C}^{-1}$

Answer: B

D Watch Video Solution

Application Of Gauss Law

1. A rod of length 2.4 m and radius 4.6 mm
carries a negative charge of $4.2 \times 10^{-7} C$
spread uniformly over it surface. The electric
field near the mid-point of the rod, at a point on its surface is
A. $-8.6 \times 10^{5} N C^{-1}$
B. $8.6 \times 10^{4} N C^{-1}$
C. $-6.7 \times 10^{5} \mathrm{NC}^{-1}$
D. $6.7 \times 10^{4} N C^{-1}$

Answer: C

D Watch Video Solution

2. Two parallel infinite line charges
$+\lambda$ and $-\lambda$ are placed with a separation
distance R in free space. The net electric field
exactly mid-way between the two line charges
is
A. zero
B. $\frac{2 \lambda}{\pi \varepsilon_{0} R}$
C. $\frac{\lambda}{\pi \varepsilon_{0} R}$
D. $\frac{\lambda}{2 \pi \varepsilon_{0} R}$

Answer: B

D Watch Video Solution
3. An electric dipole consists of charges
$\pm 2.0 \times 10^{8} C$ separated by a distance of $2.0 \times 10^{-3} \mathrm{~m}$. It is placed near a long line charge of linear charge density
$4.0 \times 10^{-4} \mathrm{Cm}^{-1}$ as shown in figure (30-W4),

Such that the negative charge is at a distance of 2.0 cm from the line charge. Find the force acting on the dipole.

A. 7.2 N towards the line charge
B. 6.6 N away from the line charge
C. 0.6 N away from the line charge
D. 0.6 N towards the line charge.

Answer: D

D Watch Video Solution

4. Two infinite plane parallel sheets, separated by a distance d have equal and opposite
uniform charge densities σ. Electric field at a
point between the sheets is
A. $\frac{\sigma}{2 \varepsilon_{0}}$
B. $\frac{\sigma}{\varepsilon_{0}}$
C. zero
D. depends on the location of the point

Answer: B

D Watch Video Solution
5. Two large, thin plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $16 \times 10^{-22} \mathrm{Cm}^{-2}$. The electric field between the plates is

$$
\begin{aligned}
& \text { А. } 1.8 \times 10^{-10} N C^{-1} \\
& \text { в. } 1.9 \times 10^{-10} N C^{-1} \\
& \text { C. } 1.6 \times 10^{-10} N C^{-1} \\
& \text { D. } 1.5 \times 10^{-10} N C^{-1}
\end{aligned}
$$

- Watch Video Solution

6. Two large thin metal plates are parallel and
close to each other. On their inner faces, the plates have surface charge densities of opposite signs and magnitude $27 \times 10^{-22} \mathrm{Cm}^{-2}$. The electric field \vec{E} in region II in between the plates is

A. $4.25 \times 10^{-8} N C^{-1}$
B. $6.28 \times 10^{-10} N C^{-1}$
C. $3.05 \times 10^{-10} N C^{-1}$
D. $5.03 \times 10^{-10} N C^{-1}$

Answer: C

D Watch Video Solution

7. A charged ball B hangs from a silk thread S,
which makes an angle θ with a large charged conducting sheet P, as shown in the figure.

The surface charge density σ of the sheet is

proportional to

A. $\cos \theta$

B. $\cot \theta$

C. $\sin \theta$

D. $\tan \theta$.

Answer: D

D Watch Video Solution

8. Consider a thin spherical shell of radius R consisting of uniform surface charge density σ
. The electric field at a point of distance x from its centre and outside the shell is
A. inversely proportional to σ
B. directly proportional to x^{2}
C. directlr proportional to R
D. inversely proportional to x^{2}

Answer: D

D Watch Video Solution

9. There is a solid sphere of radius R having uniformly distributed charge throughout it.

What is the relation between electric field E and distance r from the centre ($r \mathrm{lt} R$) ?
A. $E \propto r^{-2}$
B. $E \propto r^{-1}$
C. $E \propto r$
D. $E \propto r^{2}$

Answer: C

- View Text Solution

1.

Two
point
charges
$q_{1}=-4 \mu C$ and $q_{2}=8 \mu C$ are lying on the
y-axis. They are equidistant from the point P,
which lies on the x-axis. A small object of charge $q_{0}=8 \mu C$ and mass $\mathrm{m}=12 \mathrm{~g}$ is placed at P. When it is released, which is its acceleration in $m s^{-2}$?
(Neglect the effect of gravity)

A. $3 \sqrt{3} \hat{i}+9 \hat{j}$
B. $9 \hat{i}+3 \sqrt{3} \hat{j}$
C. $3 \hat{i}+3 \sqrt{3} \hat{j}$
D. $3 \sqrt{3} \hat{i}+3 \hat{j}$

Answer: A

- View Text Solution

Higher Order Thinking Skills

1. Two spherical conductors B and C having equal radii and carrying equal charges on them repel each other with a force F when kept apart at some distance. A third spherical conductor having same radius as that B but uncharged is brought in contact with B, then
brought in contact with C and finally removed
away from both. The new force of repulsion
between B and C is

$$
\begin{aligned}
& \text { A. } \frac{F}{4} \\
& \text { B. } \frac{3 F}{4} \\
& \text { C. } \frac{F}{8} \\
& \text { D. } \frac{3 F}{8}
\end{aligned}
$$

Answer: D

D Watch Video Solution
2. A very long, strainght, thin wire carries
$-3.60 \mathrm{nCm}^{-1}$ of fixed negative charge. The
wire is to be surrounded by a uniform cylinder of positive charge, radius 1.50 cm , coaxial with the wire. The volume charge density ρ of the cylinder is to be selected is zero. Calculate the required positive charge density ρ (in $\mu \mathrm{Cm}^{-3}$).
A. 6
B. 7
C. 5

D. 3

Answer: C

D View Text Solution

3. A system consits of a uniformly charged sphere of radius R and a surrounding medium
filled by a charge with the volume density $\rho=\frac{\alpha}{r}$, where α is a positive constant and r is
the distance from the centre of the sphere.

Find the charge of the sphere for which the
electric field intensity E outside the sphere is
independent of R .
A. $\frac{\alpha}{2 \varepsilon_{0}}$
B. $\frac{2}{\alpha \varepsilon_{0}}$
C. $2 \pi \alpha R^{2}$
D. None of these

Answer: C

D View Text Solution
4. A charge is distributed with a linear density
λ over a rod of the length L placed along
radius vector drawn from the point where a point charge q is located. The distance between q and the nearest point on linear charge is R. The electrical force experienced by the linear charge due to q is
A. $\frac{q \lambda L}{4 \pi \varepsilon_{0} R^{2}}$
B. $\frac{q \lambda L}{4 \pi \varepsilon_{0} R(R+L)}$
C. $\frac{q \lambda L}{4 \pi \varepsilon_{0} R L}$
D. $\frac{q \lambda L}{4 \pi \varepsilon_{0} L^{2}}$

Answer: B

D View Text Solution

5. When a charge of amount Q is given to an
isolated metal plate X of surface area A, its
surface charge density becomes σ_{1}. When an isolated identical plate Y is brought close to X
the surface charge density on X becomes σ_{2}.

When Y is earthed the surface charge density on X becomes σ_{3}. Choose the incorrect option.

$$
\begin{aligned}
& \text { A. } \sigma_{1}=\frac{Q}{A} \\
& \text { В. } \sigma_{1}=\frac{Q}{2 A} \\
& \text { C. } \sigma_{1}=\sigma_{2} \\
& \text { D. } \sigma_{3}=\frac{Q}{A}
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. Let $\rho(r)=\frac{Q r}{\pi R^{4}}$ be the charge density distribution for a soild sphere of radius R and total charge Q . For a point P inside the sphere at a distance r_{1} from the centre of the sphere, the magnitude of electric field is

$$
\begin{aligned}
& \text { A. } \frac{Q}{4 \pi \varepsilon_{0} r_{1}^{2}} \\
& \text { B. } \frac{Q r_{1}^{2}}{4 \pi \varepsilon_{0} R^{4}} \\
& \text { C. } \frac{Q r_{1}^{2}}{3 \pi \varepsilon_{0} R^{4}} \\
& \text { D. zero }
\end{aligned}
$$

7. A spherical insulator of radius R is charged uniformly with a charge Q throughout its volume and contains a point charge $\frac{Q}{16}$ located at its centre. Which of the following graphs best represents qualitatively, the variation of electric field intensity E with distance r from the centre?

B.
c.

Answer: A

- View Text Solution

Ncert Exemplar

1. In figure two positive charges q_{2} and q_{3} fixed along the y-axis ,exert a net electric force in the $+x$ direction on a charge q_{1} fixed along the x-axis if a positive charge Q is added at $(x, 0)$ the force on q_{1}

A. shall increase along the positive x-axis.
B. shall decrease along the positive x-axis.
C. shall point along the negative x-axis.

D. shall increase but the direction changes

because of the intersection of Q with
q_{2} and q_{3}.

Answer: A

D Watch Video Solution

2. A point positive charge is brought near an isolated conducting sphere as shown in figure
the electric field is best given by

A. Figure (i)
B. Figure (ii)

C. Figure (iii)

D. Figure (iv)

Answer: A
(D) Watch Video Solution

3. The electric flux through the surface

A. in figure (iv) is the largest
B. in figure (iii) is the least
C. in the figure (ii) is same as in figure (iii)
but is smaller than figure (iv)

D. is the same for all the figures

Answer: D

D Watch Video Solution

4. A point charge $+q$, is placed at a distance d from an isolated conducting plane. The field at a point P on the other side of the plane is
A. directed perpendicular to the plane and
away from the plane.
B. directed perpendicular to the plane but towards the plane.
C. directed radially away from the point charge.
D. directed radially towards the point charge.

Answer: A

5. A hemispherical shell is uniformly charge positively the electric field at point on a diameter away from the centre is directed
A. perpendicular to the diameter
B. parallel to the diameter
C. at an angle tilted towards the diameter
D. at an angle tilted away from the
diameter

Answer: A

D Watch Video Solution

Exemplar Problems

1. Figure shows electric field lines in which an
electric dipole \vec{P} is placed as shown. Which of the following statements is correct?
A. The dipole will not experience any force.
B. The dipole will experience a force towards right.
C. The dipole will experience a force towards left.

D. The dipole will experience a force upwards.

Answer: C

- View Text Solution

1. Assertion : When bodies are charged through friction, there is a transfer of electric charge from one body to another, but no creation or destruction of charge.

Reason : This follows from conservation of electric charges.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

2. Assertion : When we rub a glass rod with
silk, the rod gets positively charged and the
silk gets negatively charged.
Reason : On rubbing, electrons from silk cloth move to the glass rod.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

3. Assertion : The charge on any body can be increased or decreased in terms of e.

Reason : Quantisation of charge means that
the charge on a body is the integral multiple of e.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

4. Assertion : When a body acquires negative charge, its mass decreases.

Reason : A body acquires negative charge when it loses electrons.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

5. Assertion. When charges are shared between any two bodies, no charge is really lost but some loss of energy does occur.

Reason. Some energy disappears in the from of heat, sparking etc.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

6. Assertion : Coulomb force and gravitational force follow the same inverse-square law. Reason : Both laws are same in all aspects.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

7. Assertion: If there exists coulombic attracation between two bodies both of them may not be charged.

Reason: In coulombic attraction two bodies are oppositely charged.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

8. Assertion :The force with which two charges
attract or repel each other are not affected by
the presence of a third charge.

Reason : Force on any charge due to a number
of other charges is the vector sum of all the
forces on that charge due to other charges, taken one at a time.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

9. Assertion : The electric field due to a discrete charge configuration is not defined at the locations of the discrete charges.

Reason : For a surface charge distribution, electric field is discontinuous across the surface.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D View Text Solution

10. Assertion : Protons carrying positive charges are compactly residing inside the nucleus.

Reason : Electrostatic repulsive force between protons is very weak.
A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but

reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
11. Assertion : In a uniform electric field electrons move in the opposite direction of electric field.

Reason : This is because of the negative charge of an electron.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

12. Assertion : Electrostatic field lines start at
positive charges and end at negative charges.
Reason : Field lines are continuous curves
without any breaks and they form closed loop.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution
13. Assertion : Surface charge density of an irregularly shaped conductor is non-uniform.

Reason : Surface density is defined as charge per unit area.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

14. Assertion: The whole charge of a conductor cannot be transferred to another isolated conductor. Itbr Reason: The total transfer of charge from one to another is not possible.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

15. Assertion : Total flux through a closed
surface is zero if no charge is enclosed by the
surface.
Reason : Gauss law is true for any closed surface, no matter what its shape or size is.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

Others

1. The Coulomb's law of electric force between

 two charged bodies isA. proportional to the sum of the charges
B. inversely proportional to the distance
between charges
C. proportional to the product of the
charges and inversely proportional to
the distance
D. proportional to the product of the
charges and inversely proportional to
the square of distance.

Answer: D

D Watch Video Solution

2. Which of the following statements is true about electrical forces?
A. Electrical forces are produced by
electrical charges.
B. Like charges attract, unlike charges
repel.
C. Electric forces are weaker than
gravitational forces.
D. Positive and negative charges can
combine to produce a third type of charge.

Answer: A

D Watch Video Solution

3. In coulomb's law, on what factors does the value of electrostatic force constant k depend
A. nature of medium
B. system of units
C. intensity of charge
D. both (a) and (b)

Answer: D

4. Which of the following statement is not a similarity between electrostaic and gravitational forces?
A. Both forces obey inverse square law.
B. Both forces operate over very large distances.
C. Both forces are conservative in nature.
D. Both forces are attractive in nature always.

Answer: D

D Watch Video Solution

5. The unit of permittivity of free space ε_{0} is:
A. Farad
B. Weber
C. $C^{2} N^{-1} m^{-2}$
D. $C^{2} N^{-1} m^{-1}$
6. The force between two small charged spheres having charges of
$1 \times 10^{-7} C$ and $2 \times 10^{-7} C$ placed 20 cm apart in air is
A. $4.5 \times 10^{-2} N$
B. $4.5 \times 10^{-3} N$
C. $5.4 \times 10^{-2} N$
D. $5.4 \times 10^{-3} N$

Answer: B

D Watch Video Solution

7. The nucleus of helium atom contains two protons that are separated by distance $3.0 \times 10^{-15} \mathrm{~m}$. The magnitude of the electrostatic force that each proton exerts on the other is
A. 20.6 N
B. 25.6 N

C. 15.6 N

D. 12.6 N

Answer: B

D Watch Video Solution

8. Two insulated charged metallic spheres P
and Q have their centres separated by a distance of 60 cm . The radii of P and Q are negligible compared to the distance of separation. The mutual force of electrostatic
repulsion if the charge on each is

$$
3.2 \times 10^{-7} C \text { is }
$$

> A. $5.2 \times 10^{-4} N$
> B. $2.5 \times 10^{-3} N$
> C. $1.5 \times 10^{-3} N$
> D. $3.5 \times 10^{-4} N$

Answer: B
(Watch Video Solution
9. Two point charges of $+3 \mu C$ and $+4 \mu C$
repel each other with a force of 10 N . If each is given an additional charge of $-6 \mu C$, the new force is
A. $2 N$
B. $4 N$
C. $5 N$
D. 7.5 N

Answer: C
10. The ratio of magnitude of electrostatic
force and gravitational force for an electron
and a proton is
A. 6.6×10^{39}
B. 2.4×10^{39}
C. 6.6×10^{29}
D. 2.4×10^{29}

Answer: B
11. The electrostatic attracting froce on a small sphere of charge $0.2 \mu C$ due to another small sphere of charge $-0.4 \mu C$ in air is 0.4 N . The distance between the two spheres is
A. $43.2 \times 10^{-6} m$
B. $42.4 \times 10^{-3} m$
C. $18.1 \times 10^{-3} m$
D. $19.2 \times 10^{-6} m$

Answer: B

- Watch Video Solution

12. Under the action of a given coulombic force
the acceleration of an electron is
$2.5 \times 10^{22} \mathrm{~ms}^{-1}$. Then, the magnitude of the acceleration of a proton under the action of same force is nearly

$$
\text { A. } 1.6 \times 10^{-19} m s^{-2}
$$

B. $9.1 \times 10^{31} \mathrm{~ms}^{-2}$

C. $1.5 \times 10^{19} \mathrm{~ms}^{-2}$
 D. $1.6 \times 10^{27} \mathrm{~ms}^{-2}$

Answer: C

D Watch Video Solution

13. The acceleration for electron and proton
due to electrical force of their mutual
attraction when they are $1 \AA$ apart is
A. $3.1 \times 10^{22} \mathrm{~ms}^{-2}, 1.3 \times 10^{19} \mathrm{~ms}^{-2}$

$$
\begin{aligned}
& \text { B. } 3.3 \times 10^{28} \mathrm{~ms}^{-2}, 3.2 \times 10^{16} \mathrm{~ms}^{-2} \\
& \text { C. } 2.5 \times 10^{22} \mathrm{~ms}^{-2}, 1.4 \times 10^{19} \mathrm{~ms}^{-2} \\
& \text { D. } 2.5 \times 10^{18} \mathrm{~ms}^{-2}, 1.3 \times 10^{16} \mathrm{~ms}^{-2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

