©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NCERT FINGERTIPS PHYSICS

(HINGLISH)

RAY OPTICS AND OPTICAL INSTRUMENTS

Reflection Of Light By Spherical Mirrors

1. A boy of height 1 m stands in front of a convex mirror. His distance from the mirror is equal to its focal length. The height of his image is
A. $0.25 m$
B. 0.33 m
C. $0.5 m$
D. 0.67 m

Answer: C

2. A concave shaving mirror has a radius of curvature of 35.0 cm . It is positioned so that the (upright) image of man's face is 2.50 times the size of the face. How far is the mirror from the face ?
A. 5.25 cm
B. 21.0 cm
C. 10.5 cm
D. 42 cm

Answer: C

D Watch Video Solution

3. A rod of length 10 cm lies along the principal axis of a concave mirror of focal length 10 cm in such a way that the end closer to the pole is 20 cm away from it. Find the length of the image.
A. 10 cm
B. 15 cm
C. 2.5 cm
D. 5 cm

Answer: D

D Watch Video Solution

4. An object 2 cm high is placed at a distance of 16 cm from a concave mirror, which produces a real image 3 cm high. What is the focal length of the mirror ? Find the position of the image ?
A. -9.6 cm
B. -3.6 cm
C. -6.3 cm
D. -8.3 cm

Answer: A

D Watch Video Solution
5. When an object is kept at a distance of 30 cm from a concave mirror, the image is formed at a distance of 10 cm . If the object is
moved with a speed of $9 \mathrm{cms}^{-1}$ the speed with which the image moves is
A. $10 m s^{-1}$
B. $1 m s^{-1}$
C. $9 m s^{-1}$
D. $0.9 m s^{-1}$

Answer: B

D Watch Video Solution

1. A microscope is focused on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again?
A. 4.5 cm downward
B. 1 cm downward
C. 2 cm downward
D. 1 cm upward

Answer: D

- Watch Video Solution

2. Refraction of light from air to glass and
from air to water are shown in figure (i) and
figure (ii) below. The value of the angle θ in the case of refraction as shown in figure (iii) will
be
(i)

(ii)

(iii)

A. 30°
B. 35°
C. 60°
D. 41°

Answer: B

3. A ray of light strikes a transparent rectangular slab of refractive index $\sqrt{2}$ at an angle of incidence of 45°. The angle between the reflected and refracted rays is
A. 75°
B. 90°
C. 105°
D. 120°

Answer: C
4. A rays of light is incident on a thick slab of glass of thickness t as shown in figure. The emergent ray is parallel to the incident ray but displaced sideways by a distance d. If the
angles are small then d is

A. $t\left(1+\frac{i}{r}\right)$
B. $r t\left(1-\frac{i}{r}\right)$
C. $i t\left(1-\frac{r}{i}\right)$
D. $t\left(1+\frac{r}{i}\right)$

Answer: C

D View Text Solution

5. A ray incident at a point at angle of incidence of 60° enters a glass sphere with refractive index $\sqrt{3}$ and it is reflected and refracted at the farther surface of the sphere.

The angle between the reflected and refracted rays at this surface is:
A. 50°
B. 60°
C. 90°
D. 40°

Answer: C

D Watch Video Solution

6. The apparent depth of a needle laying at the bottom of the tank, which is filled with water of refractive index 1.33 to a height of 12.5 cm
is measured by a microscope to be 9.4 cm . If
water is replaced by a liquid of refractive index
1.63 up to the same height. What distance
would the microscope have to be moved to
focus on the needle again?
A. 1.73 cm
B. 2.13 cm
C. 1.5 cm
D. 2.9 cm

Answer: A

7. A point luminous object (O) is at a distance
h from front face of a glass slab of width d and
of refractive index μ. On the back face of slab
is a refracting plane mirror. An observer sees
the image of object in mirror as shown in
figure. Distance of image from front face as
seen by observer will be

A. $h+\frac{2 d}{\mu}$
B. $2 h+2 d$
C. $h+d$
D. $h+\frac{d}{\mu}$

Answer: A

D View Text Solution

8. A vessel of depth x is half filled with oil of
refractive index μ_{1} and the other half is filled with water of refractive index μ_{2}. The apparent depth of the vessel when viewed above is

$$
\begin{aligned}
& \text { A. } \frac{x\left(\mu_{1}+\mu_{2}\right)}{2 \mu_{1} \mu_{2}} \\
& \text { B. } \frac{x \mu_{1} \mu_{2}}{2\left(\mu_{1}+\mu_{2}\right)} \\
& \text { C. } \frac{x \mu_{1} \mu_{2}}{\left(\mu_{1}+\mu_{2}\right)}
\end{aligned}
$$

$$
\frac{2 x\left(\mu_{1}+\mu_{2}\right)}{\mu_{1} \mu_{2}}
$$

Answer: A

- Watch Video Solution

9. Three immiscible liquids of densities
$d_{1}>d_{2}>d_{3} \quad$ and \quad refractive indices
$\mu_{1}>\mu_{2}>\mu_{3}$ are put in a beaker. The height of each liquid column is $\frac{h}{3}$. A dot is made at
the bottom of the beaker. For near normal
vision, find the apparent depth of the dot.
A. $\frac{h}{6}\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)$
B. $\frac{h}{6}\left(\frac{1}{\mu_{1}}-\frac{1}{\mu_{2}}-\frac{1}{\mu_{3}}\right)$
C. $\frac{h}{3}\left(\frac{1}{\mu_{1}}-\frac{1}{\mu_{2}}-\frac{1}{\mu_{3}}\right)$
D. $\frac{h}{3}\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)$

Answer: D

D Watch Video Solution

10. A tank is filled with water to a height of
15.5 cm . The apparent depth of a needle lying at the bottom of the tank is measured by a
microscope to be 8.5 cm . If water is replaced by a liquid of refractive index 1.94 up to the same height by what distance would the microscope have to be moved to focus on the needle again ?
A. 1.00 cm
B. 2.37 cm
C. 0.51 cm
D. 3.93 cm

Answer: C

Total Internal Reffection

1. For a total internal reflection, which of the following is correct ?
A. Light travel from rarer to denser medium.
B. Light travel from denser to rarer medium.
C. Light travels in air only.
D. Light travels in water only.

Answer: B

D Watch Video Solution

2. Light travels in two media A and B with speeds $\quad 1.8 \times 10^{8} \mathrm{~ms}^{-1}$ and $2.4 \times 10^{8} \mathrm{~ms}^{-1}$
respectively. Then the critical angle between them is

$$
\text { A. } \sin ^{-1}\left(\frac{2}{3}\right)
$$

B. $\tan ^{-1}\left(\frac{3}{4}\right)$
C. $\tan ^{-1}\left(\frac{2}{3}\right)$
D. $\sin ^{-1}\left(\frac{3}{4}\right)$

Answer: D

D Watch Video Solution

3. Critical angle of glass is θ_{1} and that of water
is θ_{2}. The critical angle for water and glass
surface would be $\left(\mu_{g}=3 / 2, \mu_{w}=4 / 3\right)$
A. less than θ_{2}
B. between θ_{1} and θ_{2}
C. greater than θ_{2}
D. less than θ_{1}

Answer: C

D Watch Video Solution

4. Critical angle for light going from medium
(i) to (ii) is θ. The speed of light in medium (i)
is v then speed in medium (ii) is
A. $v(1-\cos \theta)$
B. $\frac{v}{\sin \theta}$
C. $\frac{v}{\cos \theta}$
D. $\frac{v}{(1-\sin \theta)}$

Answer: B

- Watch Video Solution

5. A ray of light travelling in a transparent medium f refractive index μ, falls on a surface separating the medium from air at an angle of
incidence of 45°. For which of the following
value of μ the ray can undergo total internal reflection?

> A. $\mu=1.33$
> B. $\mu=1.40$
> C. $\mu=1.50$
> D. $\mu=1.25$

Answer: C

D Watch Video Solution
6. A point source of light is placed at a depth of h below the surface of water of refractive index μ. A floating opaque disc is placed on the surface of water so that light from the source is not visible from the surface. The minimum diameter of the disc is

$$
\begin{aligned}
& \text { A. } \frac{2 h}{\left(\mu^{2}-1\right)^{1 / 2}} \\
& \text { B. } 2 h\left(\mu^{2}-1\right)^{1 / 2} \\
& \text { C. } \frac{h}{2\left(\mu^{2}-1\right)^{1 / 2}} \\
& \text { D. } h\left(\mu^{2}-1\right)^{1 / 2}
\end{aligned}
$$

D Watch Video Solution

7. Mirage' is a phenomenon due to

A. refraction of light
B. reflection of light
C. total internal reflection of light
D. diffraction of light.

- Watch Video Solution

Reflection At Spherical Surfaces And By Lenses

1. From a point source a light falls on a spherical glass surface ($\mu=1.5$ and radius of curvature $=10 \mathrm{~cm}$). The distance between point source and glass surface is 50 cm . The position of image is
A. 25 cm
B. 50 cm
C. 100 cm
D. 150 cm

Answer: B

D Watch Video Solution

2. An air bubble in a glass sphere $(\mu=1.5)$ is
situated at a distance 3 cm from a convex
surface of diameter 10 cm . At what distance
from the surface will the bubble appear ?
A. 2.5 cm
B. -2.5 cm
C. 5 cm
D. -5 cm

Answer: B

D Watch Video Solution
3. A convex refracting surface of radius of curvature 20 cm separates two media of refractive indices $4 / 3$ and 1.60. An object is
placed in the first medium $(\mu=4 / 3)$ at a distance of 200 cm from the refracting surface.

Calculate the position of image formed.
A. 120 cm
B. 240 cm
C. 100 cm
D. 60 cm

Answer: B

D Watch Video Solution
4. Light from a point source in air falls on a spherical glass surface. If $\mu=1.5$, and radius of curvature $=20 \mathrm{~cm}$, the distance of light source from the glass surface is 100 cm , at what position will the image be formed ?
(NCERT Solved Example)
A. 25 cm
B. 50 cm
C. 100 cm
D. 200 cm

Answer: C

D Watch Video Solution

5. A mark placed on the surface of a sphere is
viewed through glass from a position directly opposite. If the diameter of the sphere is

10 cm and refractive index of glass is 1.5 , find the position of the image.
A. -20 cm
B. 30 cm
C. 40 cm
D. -10 cm

Answer: A

D Watch Video Solution

6. A biconvex lens has focal length $\frac{2}{3}$ times the radius of curvature of either surface.

Calculate refractive index of material of the lens.
A. 1.75
B. 1.33
C. 1.5
D. 1.0

Answer: A

- Watch Video Solution

7. A convex lens of focal length $0.2 m$ and made
of glass $(\mu=1.50)$ is immersed in water
$(\mu=1.33)$. Find the change in the focal length of the lens.
A. $5.8 m$
B. 0.58 cm
C. 0.58 m
D. 5.8 cm

Answer: C
(Watch Video Solution
8. A double convex lens, lens made of a material of refractive index μ_{1}, is placed inside two liquids or refractive indices μ_{2} and μ_{3}, as shown. $\mu_{2}>\mu_{1}>\mu_{3}$. A wide, parallel beam of light is incident on the lens from the left. The lens will give rise to

A. a single convergent beam
B. two different convergent beams
C. two different divergent beams
D. a convergent and a divergent beam.

Answer: D

D Watch Video Solution

9. A double convex lens is made of glass of refractive index 1.55 with both faces of same radius of curvature. Find the radius of curvature required, if focal length is 20 cm .
A. 11 cm
B. 22 cm
C. 7 cm
D. 6 cm

Answer: B

D Watch Video Solution
10. What is the refractive index of material of a plano-convex lens, if the radius of curvature of
the convex surface is 10 cm and focal length of
the lens is 30 cm ?

$$
\begin{aligned}
& \text { A. } \frac{6}{5} \\
& \text { B. } \frac{7}{4} \\
& \text { C. } \frac{2}{3} \\
& \text { D. } \frac{4}{3}
\end{aligned}
$$

Answer: D
(Watch Video Solution
11. The radii of curvature of the surfaces of a double convex lens are 20 cm and 40 cm respectively, and its focal length is 20 cm . What is the refractive index of the material of the lens?

> A. $\frac{5}{2}$
> B. $\frac{4}{3}$
> C. $\frac{5}{3}$
> D. $\frac{4}{5}$
12. A convex lens is dipped in a liquid whose refractive index is equal to the refractive of the lens. Then its focal length will
A. become zero
B. become infinite
C. remain small, but non-zero
D. remain unchanged

- Watch Video Solution

13. A convergent beam of light passes through
a diverging lens of focal length $0.2 m$ and comes to focus at a distance of $0.3 m$ behind the lens. Find the position of the point at which the beam would converge in the absence of the lens.
A. $0.12 m$
B. $0.6 m$
C. $0.3 m$

D. 0.15 m

Answer: A

- Watch Video Solution

14. Radii of curvature of a converging lens are
in the ratio $1: 2$. Its focal length is 6 cm and refractive index is 1.5 . Then its radii of curvature are
A. 9 cm and 18 cm
B. 6 cm and 12 cm
C. 3 cm and 6 cm
D. 4.5 cm and 9 cm

Answer: D

D Watch Video Solution

15. A man is trying to start a fire by focusing sunlight on a piece of paper using an equiconvex lens of focal length 10 cm . The
diameter of the sun is $1.39 \times 10^{9} \mathrm{~m}$ and the diameter of the sun's image on the paper is

A. $3.1 \times 10^{-4} \mathrm{~cm}$
B. $6.5 \times 10^{-5} \mathrm{~cm}$
C. $6.5 \times 10^{-4} m$
D. $9.2 \times 10^{-4} m$

Answer: D

- Watch Video Solution

16. A square card of side length 1 mm is being seen through a magnifying lens of focal length

10 cm . The card is placed at a distance of 9 cm
from the lens. The appaent area of the card thorugh the lens is
A. $1 \mathrm{~cm}^{2}$
B. $0.81 \mathrm{~cm}^{2}$
C. $0.27 \mathrm{~cm}^{2}$
D. $0.60 \mathrm{~cm}^{2}$

Answer: A

- Watch Video Solution

17. A converging lens is used to form an image on a screen. When the upper half of the lens is covered by an opaque screen
A. half the image will disappear
B. complete image will disappear
C. intensity of water will decrease
D. intensity of water will increase
18. Which of the following form(s) a virtual and erect image for all position of the object?
A. Concave lens
B. Concave mirror
C. Convex mirror
D. Both (a) and (c)

Answer: D
19. A real image of a distant object is formed
by a plano-convex lens of its principal axis.
Spherical aberration
A. absent
B. smaller, if the curved surface of the lens
face the object.
C. smaller, if the plane surface of the lens
faces the object.

D. same, which ever side of the lens faces

 the object.Answer: B

D Watch Video Solution

20. An object is placed at a distance of $1.5 m$
from a screen and a convex lens is interposed
between them. The magnification produced is
21. What is the focal length of the lens ?
A. $1 m$
B. $0.5 m$
C. $0.24 m$
D. $2 m$

Answer: C

D Watch Video Solution
21. The image of a needle placed 45 cm from a lens is formed on a screen placed 90 cm on the
other side of lens. Find displacement of image if object is moved 5 cm away from lens.
A. 10 cm , towards the lens
B. 15 cm , away from the lens
C. 15 cm , towards the lens
D. 10 cm , away from the lens

Answer: C

D Watch Video Solution

22. A tree is $18.0 m$ away from $2.0 m$ high from
a concave lens. How high is the image formed by the given lens of focal length $6 m$?
A. $1.0 m$
B. $1.5 m$
C. 0.75 m
D. 0.50 m

Answer: D

D Watch Video Solution
23. A luminous object is separated from a screen by distance d. A convex lends is placed between the object and the screen such that it forms a distinct image on the screen. The maximum possible focal length of this convex lens is.
A. $4 d$
B. $2 d$
C. $d / 2$
D. $d / 4$

Answer: D

D Watch Video Solution

24. A screen is placed 90 cm from an object.

The image of the object on the screen is
formed by a convex lens at two different location separated by 20 cm . Determine the focal length of the lens.
A. 42.8 cm
B. 21.4 cm
C. 10.7 cm
D. 5.5 cm

Answer: B

D Watch Video Solution

25. A lens having focal length f and aperture of diameter d forms an image of intensity I.

Aperture of diameter $d / 2$ in central region of lens is covered by a black paper. Focal length
of lens and intensity of image now will be respectively
A. f and $\frac{I}{4}$
B. $\frac{3 f}{4}$ and $\frac{I}{2}$
C. f and $\frac{3 I}{4}$
D. $\frac{f}{2}$ and $\frac{I}{2}$

Answer: C
(Watch Video Solution
26. A thin convex lens of focal length 25 cm is
cut into two pieces 0.5 cm above the principal
axis. The top part is placed at $(0,0)$ and an object placed at $(-50 \mathrm{~cm}, 0)$. Find the coordinates of the image.
A. $(50 \mathrm{~cm},-2 \mathrm{~cm})$
B. $(50 \mathrm{~cm},-1 \mathrm{~cm})$
C. $(3 \mathrm{~cm},-50 \mathrm{~cm})$
D. $(60 \mathrm{~cm},-25 \mathrm{~cm})$

Answer: B

- Watch Video Solution

27. A double convex lens made of glass of refractive index 1.56 has both radii of curvature of magnitude 20 cm . If an object is placed at a distance of 10 cm from this lens, find the position of image formed.
A. 22.86 same side of the object
B. 22.86 opposite side of the object
C. 44.89 same side of the object

D. 44.89 opposite side of the object.

Answer: A

D Watch Video Solution

28. The power of a biconvex lens is 10 dioptre and the radius of curvature of each surface is

10 cm . Then the refractive index of the material of the lens is
A. $\frac{3}{2}$
B. $\frac{4}{3}$
C. $\frac{9}{8}$
D. $\frac{5}{3}$

Answer: A

D Watch Video Solution
29. A thin glass (refractive index 1.5) lens has
optical power of $-8 D$ in air, its optical power
in a liquid medium with refractive index 1.6
will be
A. $1 D$
B. $-1 D$
C. $25 D$
D. $-25 D$

Answer: A

D Watch Video Solution
30. The radius curvature of each surface of a convex lens of refractive index 1.5 is 40 cm .

Calculate its power.
A. $2.5 D$
B. $2 D$
C. 1.5 D
D. $1 D$

Answer: A

D Watch Video Solution

31. Two lenses of focal lengths

20 cm and -40 cm are held in contact. The
image of an object at infinity will be formed by
the combination at
A. 10 cm
B. 20 cm
C. 40 cm
D. infinity

Answer: C
(Watch Video Solution
32. An eye specialist prescribes spectacles
having combination of convex lens of focal
length 40 cm in contact with a concave lens of
focal length 25 cm . The power of this lens combination in diopters is
A. $+1.5 D$
B. $-1.5 D$
C. $+6.67 D$
D. $-6.67 D$

Answer: B
33. Two lenses of power $+10 D$ and $-5 D$ are placed in contact,
(i) Calculate the focal length of the combination
(ii) where should an object be held from the combination so as to obtain a virtual image of magnification 2 ?
34. A real image of an object is formed at a distance of 20 cm from a lens. On putting another lens in contact with it, the image is shifted 10 cm towards the combination, Determine the power of the second lens.
A. 2D
B. 5 D
C. 6 D
D. 10 D

Answer: B
35. A concave lens is placed in contact with a convex lens of focal length 25 cm . The combination produces a real image at a distance of 80 cm , when an object is at a distance of 40 cm . What is the focal length of concave lens ?
A. -400 cm
B. -200 cm
C. +400 cm

D. +200 cm

Answer: A

- Watch Video Solution

36. Two identical glass $\left(\mu_{g}=3 / 2\right)$ equiconvex
lenses of focal length fare kept in contact. The
space between the two lenses is filled with
water $\left(\mu_{w}=4 / 3\right)$. The focal length of the combination is
A. f
B. $\frac{f}{2}$
C. $\frac{4 f}{3}$
D. $\frac{3 f}{4}$

Answer: D

D Watch Video Solution

37. A convex lens of focal length 15 cm is placed on a plane mirror. An object is placed at 30 cm from the lens. The image is
A. real, at 30 cm in front of the mirror
B. real, at 30 cm behind the mirror
C. real, at 10 cm in front of the mirror
D. virtual, at 10 cm behind the mirror

Answer: C

- Watch Video Solution

38. In the given figure, the radius of curvature of curved surface for both the plano-convex and plano-concave lens is 10 cm and refractive
index for both is 1.5 . The location of the final image after all the refractions through lenses is

A. 15 cm
B. 20 cm
C. 25 cm
D. 40 cm

Answer: B

- View Text Solution

39. A convex lens of radii of curvature 20 cm
and 30 cm respectively. It is silvered at the
surface which has smaller radius of curvature.
Then it will behave as $\left(\mu_{g}=1.5\right)$
A. concave mirror with equivalent focal

$$
\text { length } \frac{30}{11} \mathrm{~cm} \text {. }
$$

B. concave mirror with equivalent focal
length $\frac{60}{11} \mathrm{~cm}$.
C. convex mirror with equivalent focal
length $\frac{30}{11} \mathrm{~cm}$.
D. convex mirror with equivalent focal
length $\frac{60}{11} \mathrm{~cm}$.

Answer: B

D Watch Video Solution

40. A concave mirror of focal length f_{1} is placed at a distance of d from a convex lens of focal length f_{2}. A beam of light coming from infinity and falling on this convex lens-concave mirror combination returns to infinity. The distance d must equal.
A. $f_{1}+f_{2}$

$$
\text { B. }-f_{1}+f_{2}
$$

C. $2 f_{1}+f_{2}$

$$
\text { D. }-2 f_{1}+f_{2}
$$

Answer: C

- Watch Video Solution

41. A plano convex lens has focal length
$f=20 \mathrm{~cm}$. If its plane surface is silvered, then new focal length will be
A. 20 cm
B. 40 cm
C. 30 cm
D. 10 cm

Answer: D

- Watch Video Solution

Refraction Through A Prism

1. Two beam of red and violet colors are made
to pass separately through a prism (angle of
the prism is 60°). In the position of minimum deviation, the angle of refraction will be
A. 30° for both the colors
B. greater for the violet color
C. greater for the red color
D. equal but not 30° for both the colors

Answer: A

D Watch Video Solution

2. A ray of light passes through an equilateral
prism (refractive index 1.5) such that angle of incidence is equal to angle of emergence and
the latter is equal to $3 / 4 t h$ of the angle of prism. Calculate the angle of deviation.
A. 60°
B. 30°
C. 45°
D. 120°

Answer: B
(Watch Video Solution
3. A ray of light is incident at small angle I on
the surface of prism of small angle A and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ, the angle of incidence is nearly equal to
A. $\frac{A}{\mu}$
B. $\frac{A}{2 \mu}$
C. μA
D. $\frac{\mu A}{2}$

Answer: C

D Watch Video Solution

4. The angle of minimum deviation for prism of angle $\pi / 3$ is $\pi / 6$. Calculate the velocity of
light in the material of the prism if the velocity of light in vacuum is $3 \times 10^{8} \mathrm{~ms}^{-1}$.
A. $2.12 \times 10^{8} \mathrm{~ms}^{-1}$
B. $1.12 \times 10^{8} \mathrm{~ms}^{-1}$
C. $4.12 \times 10^{8} \mathrm{~ms}^{-1}$
D. $5.12 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: A

D Watch Video Solution

5. The angle of minimum deviation for a glass
prism with $\mu=\sqrt{3}$ equals the refracting
angle of the prism. What is the angle of the prism?
A. 45°
B. 30°
C. 90°
D. 60°

Answer: D

D Watch Video Solution

6. A ray of light is incident at 60° on one face of a prism of angle 30° and the emergent ray makes 30° with the incident ray. The refractive index of the prism is
A. 1.732
B. 1.414
C. 1.5
D. 1.33

Answer: A

D Watch Video Solution
7. A small angled prism $(\mu=1.62)$ gives a deviation of 4.8. Calculate the angle of prism.
A. 5°
B. 6.36°
C. 3°
D. 7.74°

Answer: D

D Watch Video Solution

8. Which of the following colours of white light

 deviated most when passes through a prism ?A. Red light
B. Violet light
C. Yellow light
D. Both (a) and (b)

Answer: B

D Watch Video Solution

9. White light is incident normally on a glass
slab. Inside the glass slab,
A. red light travels faster than other colours
B. violet light travels faster than other colours
C. yellow light travels faster than other colours
D. all colours travels with the same speed.

Answer: A

Some Natural Phenomena Due To Sunlight

1. Which light rays undergoes two internal
reflection inside a raindrop, which of the rainbow is formed?
A. Primary rainbow
B. Secondary rainbow
C. Both (a) and (b)
D. Cant's say

- Watch Video Solution

2. Which of the following satatment is correct ?
A. At sunset of sunrise, the sun's rays have
to pass through a small distance in the atmosphere.
B. At sunset of sunrise the sun's rays have
to pass through a larger distance in the atmosphere.
C. Rayleigh scattering
proportional to $\left(1 / \lambda_{2}\right)$
D. Most of the blue and other shorter
wavelengths are not removed by
scattering.

Answer: B

- Watch Video Solution

Optical Instruments

1. When objects at different distances are seen by the eye, which of the following remai constant?
A. the focal length of the eyes lens
B. the objects distance from the eye lens
C. the radii of curvature of the eye lens
D. the image distance from the eye lens

Answer: D

- Watch Video Solution

2. An under-water swimmer cannot see very
clearly even in absolutely clear water because
of
A. absorption of light in water
B. scattering of light in water
C. reduction of speed of light in water
D. change in the focal length of eye lens

Answer: D

D Watch Video Solution
3. The nearer point of hypermetropic eye is 40
cm . The lens to used for its correction should
have the power
A. $+1.5 D$
B. $-1.5 D$
C. $+2.5 D$
D. $+0.5 D$

Answer: C

- Watch Video Solution

4. When a telescope is in normal adjusment, the distance of the objective from the eyepiece is found to 100 cm . If the magnifying power of the telescope, at normal adjusment, is 24 focal lengths of the lenses are
A. $96 \mathrm{~cm}, 4 \mathrm{~cm}$
B. $48 \mathrm{~cm}, 2 \mathrm{~cm}$
C. $50 \mathrm{~cm}, 50 \mathrm{~cm}$
D. $80 \mathrm{~cm}, 20 \mathrm{~cm}$
5. A compound microscope consists of an objective lens with focal length 1.0 cm and eye piece of the focal length 2.0 cm and a tube 20 cm from eye lens, the distance between the two lenses is
A. 6.00 cm
B. 7.75 cm
C. 9.25 cm

D. 11.0 cm

Answer: C

D View Text Solution

6. In a compound microscope, the focal
lengths of two lenses are 1.5 cm and 6.25 cm an object is placed at 2 cm form objective and the final image is formed at 25 cm from eye lens. The distance between the two lenses is
A. 6.00 cm
B. 7.75 cm
C. 9.25 cm
D. 11.0 cm

Answer: D

- Watch Video Solution

7. A person with a normal near point $(25 \mathrm{~cm})$
using a compound microscope with an objective of focal length 8.0 mm and eye piece of focal length 2.5 cm can bring an object
placed 9.0 cm from the objective in sharp
focus. What is the separation between the two
lenses ? Calculate the magnifying power of the microscope?
A. $9.47 \mathrm{~cm}, 88$
B. $3.36 \mathrm{~cm}, 44$
C. $6.00 \mathrm{~cm}, 22$
D. $4.79 \mathrm{~cm}, 11$

Answer: A
8. The final image in an astronomical telescope adjustment, a straingt black line of length L is drawn on the objective lens. The eyepiece forms a real image of this line. The length of this image is I. The magnification of thed telescope is
A. virtual and erect
B. real and erect
C. real and inverted
D. virtual and inverted

Answer: D

D View Text Solution

9. In an astronomical telescope in normal adjustment a straight black line of length L is drawn on inside part of objective lens. The eye piece forms a real image of this line. The
length of this image is I. The magnification of the telescope is
A. $\frac{L}{l}$
B. $\frac{L}{l}+1$
C. $\frac{L}{l}-1$
D. $\frac{L+l}{L-l}$

Answer: A

D Watch Video Solution

10. The focal length of the lensese of an astronomical telescope are 50 cm and 5 cm .

The length of the telescope when the image is
formed at the least distance of distinct vision
is
A. 45 cm
B. 55 cm
C. $\frac{275}{6} \mathrm{~cm}$
D. $\frac{325}{6} \mathrm{~cm}$

Answer: D
(Watch Video Solution
11. A small telescope has an objective lens of
focal length 144 cm and an eye-piece of focal
length 6.0 cm . What is the magnifying power
of the telescope ? What is the separation between the objective and the eye-piece?
A. 0.75 cm
B. 1.38 cm
C. 1.0 m
D. $1.5 m$
12. An astronomical refractive telescope has an
objective of focal length 20 m and an eyepiece of focal length 2 cm . Then
A. the magnification is 1000
B. the length of the telescope tube is 20.02
m
C. the image formed is inverted
D. all of these.

Answer: D

D Watch Video Solution

13. A gaint refrecting telescope at an observatory has an objective lens of focal
length 15 m . If an eye piece lens of focal length

1 cm is used, find the angular magnification of
the telescope.

If this telescope is used to view the moon, what is the diameter of image of moon formed
by objective lens ? The diameter of the moon
is $3.42 \times 10^{6} \mathrm{~m}$ and radius of lunar orbit is
$3.8 \times 10^{8} \mathrm{~m}$.
A. 1000
B. 1500
C. 2000
D. 3000

Answer: B
(Watch Video Solution
14. A small telescope has an objective lens of
focal length 140 cm and an eyepiece of focal
length 5.0 cm . what is the magnifying power of
the telescope for viewing distant objects when
(a) the telescope is in normal adjustment (i.e, when the final image is at infinity),
(b) The final image is formed at the least distance of distinct vision (25 cm)
A. 33.6
B. 66.12
C. 22.6

D. 11.6

Answer: A

D Watch Video Solution

15. A reflecting type telescope has a large concave spherical mirror of radius of curvature 80 cm as objective. What is the magnifying power of telescope if eye piece used has a focal length of 1.6 cm ?
A. 100
B. 50
C. 25
D. 5

Answer: C

D Watch Video Solution

16. A giant telescope in an observatory has an objective of focal length 19 m and an eye-piece of focal length 1.0 cm . In normal adjustment, the telescope is used to view the moon. What
is the diameter of the image of the moon
formed by the objective? The diameter of the moon is $3.5 \times 10^{6} \mathrm{~m}$. and the radius of the lunar orbit round the earth is $3.8 \times 10^{8} \mathrm{~m}$.
A. 10 cm
B. 12.5 cm
C. 15 cm
D. 17.5 cm

Answer: D

Miscellaneous

1. A ray of light travelling in the direction $\frac{1}{2}$
$(\hat{i},+\sqrt{3} \hat{j})$ is incident on a plane mirror.
After reflection, it travels along the direction
$\frac{1}{2}(\hat{i}-\sqrt{3} \hat{j})$. The angle of incidence is
A. 30°
B. 45°
C. 60°
D. 75°

- Watch Video Solution

2. The number of capital letters such as
$A, B, C, D \ldots$ which are not laterally inverted by a plane mirror?
A. 6
B. 7
C. 11
D. 13

Answer: C

D View Text Solution

3. Two mirrors at an angle θ° produce 5 images of a point. The number of images produced when θ is decreased to $\theta^{\circ}-30^{\circ}$ is
A. 9
B. 10
C. 11
D. 12

Answer: C

D Watch Video Solution

4. A man stands symmetrically between two
large plane mirrors fixed to two adjacent walls
of a rectangular room. The number of images
formed as
A. 4
B. 3
C. 2

D. 6

Answer: B

D Watch Video Solution

5. Two plane mirrors M_{1} and M_{2} are inclined at angle as shown in Figure. A ray of light1, which is parallel to M_{1}, strike M_{2} and after two reflections, ray 2 becomes parallel to M_{2}.

Find the angle θ.

A. 0°
B. 30°
C. 45°
D. 60°

- Watch Video Solution

6. Two plane mirrors are placed parallel to each other at a distance L apart. A point object

O placed between them, at a distance $L / 3$
from the mirror. Both mirrors form multiple image. The distance between any two images
cannot be
A. $\frac{3 L}{2}$
B. $\frac{2 L}{3}$
C. $2 L$

D. L

Answer: A

D View Text Solution

7. Four identical mirror are made to stand
vertically to form a square arrangement as
shown in a top view. A ray starts from the midpoint M of mirror $A D$ and after two reflections reaches corner D. Then, angle θ
must be

A. $\tan ^{-1}(0.75)$
B. $\cot ^{-1}(0.75)$
C. $\sin ^{-1}(0.75)$
D. $\cos ^{-1}(0.75)$

Answer: B

D View Text Solution

8. Light incident normally on a plane mirror attached to a galvenometer coil reflects backward as shown in figure. A current in the coil produes a deflection of 3.5° if the mirror.

The displacement of the reflected spot of light
on a screen placed $1.0 m$ away is

A. $27.5 m$
B. 48.9 cm
C. 24.5 cm
D. $12.2 m$

Answer: C

D View Text Solution

9. A plane mirror is placed along the x-axis facing negative y-axis. The mirror is fixed, A point object is moving with $3 \hat{i}+4 \hat{j}$ in front of the plane mirror. The relative velocity of image with respect to its object is

A. $-8 \hat{j}$
B. $8 \hat{j}$
C. $3 \hat{i}-4 \hat{j}$
D. $-6 \hat{i}$

Answer: A

- Watch Video Solution

Higher Order Thinking Skills

1. A point object O is placed at a distance of 20
cm is front of a equiconvex lens $\left(.^{a} \mu_{g}=1.5\right)$
of focal length 10 cm . The lens is placed on a
liquid of refractive index 2 as shown in figure.
Image will be formed at a distance h from lens
the value of h is
A. 5 cm
B. 10 cm
C. 20 cm

D. 40 cm

Answer: D

D View Text Solution

2. A ray of light travelling in a medium of refractive index μ is incident at an angle θ on a composite transparent plate consisting of 50 plates of R.I. $1.0 \mu, 1.02 \mu, 1.03 \mu, \ldots \ldots, 1.50 \mu$.

The ray emerges from the composite plate into a medium of refractive index 1.6μ at
angle ' x '. Then
A. $\sin x\left(\frac{1.01}{1.5}\right)^{50} \sin \theta$
B. $\sin x=\frac{5}{8} \sin \theta$
C. $\sin x=\frac{8}{5} \sin \theta$
D. $\sin x=\left(\frac{1.5}{1.01}\right)^{50} \sin \theta$

Answer: B

- View Text Solution

3. A linear object of size 1.5 cm is placed at 10 cm from a lens of focal length 20 cm . The optic centre of lens and the object are displaced are displaced a distance Δ. Thed magnification of the image formed is m . (Take optic centre of origin). The coordinates of image of A and B are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively then
A. $\left(x_{1}, y_{1}\right)=(-20 \mathrm{~cm},-2 \mathrm{~cm})$
B. $\left(x_{2}, y_{2}\right)=(-20 \mathrm{~cm}, 2 \mathrm{~cm})$
C. $m=5$

$$
\text { D. } m=4
$$

Answer: B

D View Text Solution

4. The size of the image of an object, which is
at infinity, as formed by a convex lens of focal
length 30 cm is 2 cm . If a concave lens of focal length 20 cm is placed between the convex lens and the image at a distance of 26 cm from
the convex lens, calculate the new size of the image.
A. 1.25 cm
B. 2.5 cm
C. 1.05 cm
D. 2 cm

Answer: B

D View Text Solution
5. A bi-convex lens is formed with two thin
plano-convex lenses as shown in the figure.
Refractive index n of the first lens is 1.5 and
that of the second lens if 1.2 Both the curved
surfaces are of the same radius of curvature
$R=14 \mathrm{~cm}$. For this bi-convex lens, for an
object distance of 40 cm , the image distance
will be

A. -280.0 cm
B. 40.0 cm
C. 21.5 cm
D. 13.3 cm

Answer: B

D Watch Video Solution

6. A ray of light moving along the vector (
$-i-2 j$) undergoes refraction at an interface
two media, which is the $x-z$ plane. The refractive index for $y>0$ is 2 and below it is
$\sqrt{5} / 2$.the unit vector along which the refracted ray moves is:

$$
\begin{aligned}
& \text { A. } \frac{-3 \hat{i}-5 \hat{j}}{\sqrt{34}} \\
& \text { B. } \frac{-(4 \hat{i}-5 \hat{j})}{5} \\
& \text { C. } \frac{-3 \hat{i}-4 \hat{j}}{5} \\
& \text { D. } \frac{4 \hat{i}-3 \hat{j}}{5}
\end{aligned}
$$

Answer: D

D Watch Video Solution

7. A small bulb (assumed to be a point source)

is placed at the bottom of a tank containing water to a depth of 80 cm . Find out the area of the surface of water through which light from
the bulb can emerge. Take the value of refractive index of water to be $4 / 3$.
A. $2.6 m^{2}$
B. $3.6 m^{2}$
C. $4.2 m^{2}$
D. $5.8 m^{2}$

Answer: A

D Watch Video Solution

8. The mixture of a pure liquid and a solution
in a along vertical column (i.e., horizontal dimensions \ll vertical dimensions)
produces diffusion of solute particles and hence a refractive index gradient along the
vertical dimension. A ray of light entering the column at right angles to the vertical is deviated from its original path. Find the
deviation in travelling a horizontal distance $d \ll h$, the height of the column.

D Watch Video Solution

Ncert Exemplar

1. A ray of light incident at an angle θ on a refracting face of a prism emerges from the other face normally. If the angle of the prism is
5° and the prism is made of a material of refractive index 1.5 , the angle of incidence is.
A. 7.5°
B. 5°
C. 15°
D. 2.5°

Answer: A

D Watch Video Solution

2. A short pulse of white light is incident from air to a glass slab at normal incidence. After
travelling through the slab, the first colour to emerge is.
A. blue
B. green
C. violet
D. red

Answer: D

- Watch Video Solution

3. An object approaches a convergent lens from the left of the lens with a uniform speed $5 \mathrm{~m} / \mathrm{s}$ and stops at the focus. The image.
A. moves away from the lens with an
uniform speed $5 m s^{-1}$
B. moves away from the lens with an
uniform acceleration
C. moves away from the lens with a non-

D. moves towards the lens with a non -

 uniform acceleration.
Answer: C

D Watch Video Solution

4. A passenger in an aeroplane shall
A. never see a rainbow
B. may see a primary and a secondary
rainbow is concentric arcs.
C. may see a primary and a secondary rainbow as concentric arcs.
D. shall never see a secondary rainbow.

Answer: B

D Watch Video Solution

5. You are given four sources of light each one providing a light of a single colour-red, blue,green and yellow. Suppose the angle of refraction for a beam of yellow light
corresponding to a particular angle of incidence at the interface of two media is 90°.

Which of the folowing statements is correct it the source of yellow light is replaced with that of other lights without changing the angle of incidence?
A. The beam of red light would undergo total internal reflection.
B. The beam of red light would bend
toward normal while it gets refracted
through the second medium.

C. The beam of blue light would undergo

 total internal reflection.D. The beam of green light would bend away from the normal as it gets refracted through the second medium.

Answer: C

- Watch Video Solution

6. The radius of curvature of the curved
surface of a plano-convex lens is 20 cm . If the refractive index of the material of the lens be 1.5 , it will
A. act as a convex lens only for the objects
that lie on its curved side.
B. act as a concave lens for the objects that
lie on its curved side.
C. act as a convex lens irrespective of the
side on which the object lies.

D. act as a concave lens irrespective of side

 on which the object lies.
Answer: C

D Watch Video Solution

7. The phenomena involved in the reflected of

 radiowaves by ionosphere is similar to.A. reflection of light by a plane mirror.
B. total internal reflection of light in air during a mirage.
C. dispersion of light by water molecules
during the formation of a rainbow.
D. scattering of light by particles of air.

Answer: B

D Watch Video Solution

8. The direction of ray of light incident on a concave mirror is shown by $P Q$ while directions in which the ray would travel after reflection is shown by four rays marked $1,2,3$ and 4, Fig. Which of the four rays correctly
shows the direction of reflected ray?

A. 1
B. 2
C. 3

D. 4

Answer: B

D Watch Video Solution

9. The optical density of turpentine is higher
than that of water, while its mass density is
lower. Fig. shows a layer of turpentine floating over water in a container. For which one of the
four rays incident on turpentine in Fig., the
path shows is correct ?

A. 1
B. 2
C. 3
D. 4

Answer: B
10. A car is moving with a constant speed of $60 \mathrm{kmh}^{-1}$ on a straight road. Looking at the rear view mirror, the driver finds that the car following him is at a distance of 100 m and is approaching with a speed of $5 k m h^{-1}$. In order to keep track of the car in the rear, the driver begins to glance alternatively at the rear and side mirror of his car after every $2 s$
till the other car overtakes. If the two cars
were maintaining their speeds, which of the following statement (s) is/are correct ?
A. The speed of the car in the rear is
$65 k m h^{-1}$.
B. In the side mirror the car in the rear
would appear to approach with a speed
of $5 \mathrm{kmh}^{-1}$ to the driver of the leading
car.
C. In the rear view mirror the speed of the
approaching car would appear to
decrease as the distance between the
cars decreases.
D. In the side mirror, the speed of the approaching car would appear to increase as the distance between the cars decreases.

Answer: D

- Watch Video Solution

11. There are certain materials developed in
laboratories which have a negative refractive index, Fig. A ray incident from air (medium 1) into such a medium (medium 2) shall follow a path given by

A.
B.
C.

Answer: A

- Watch Video Solution

Assertion And Reason

1. Assertion : A convex mirror is preferred over
a plane mirror in vehicles to observer traffic coming from behind.

Reason: Images formed by convex mirrors are erect and diminished in size.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D View Text Solution

2. Assertion : The size of the mirror affect the nature of the image.

Reason : Small mirrors always forms a virtual image.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

3. Assertion : All the materials always have the
same colour, whether viewed by reflected light or through transmitted light.

Reason : The colour of material does not depend on nature of light.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true
and reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

4. Assertion : The radius of curvature of a mirror is double of the focal length.

Reason : A concave mirror of focal length f in air is used in a medium of refractive index 2.

Then the focal length of mirror in medium becomes 2 f .
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true
and reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

5. Assertion : The images formed by total internal reflections are much brighter than those formed by mirrors or lenses.

Reason : There is no loss of intensity in total internal reflection.
A. If both assertion and reason are true and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

6. Assertion : Optical fibers make use of total
internal reflection.

Reason : Light undergoes successive total internal reflections as it moves through an optical fiber.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

7. Assertion : Diamond are known for their spectacular brilliance, but diamonds found in nature rarely exhibit the brilliance.

Reason : By cutting the diamond suitably,
multiple total internal reflections can be made to occur.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

8. Assertion : A convex lens of glass $(\mu=1.5)$
behave as a diverging lens when immersed in
carbon disulphinde of higher refractive index
($\mu=1.65$).
Reason : A diverging lens is thinner in the middle and thicker at the edges.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
9. Assertion : Combination of lenses helps to
obtain diverging or converging lenses of desired magnification.

Reason : It enhances sharpness of the image.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D View Text Solution

10. Assertion : Angle of deviation depends on
the angle of prism.

Reason : For thin prism, $\partial=(\mu-1)-A$.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

11. Assertion : A beam of the white light shows no dispersion on emerging from a glass slab.

Reason : Dispersion in a glass slab is zero.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assertion : Bluish colour predominates in a clear sky, since blue has a shorter wavelength and is scattered strongly.

Reason : Blue has the shortest wavelength among all colours.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

13. Assertion : The rainbow is an example of
the dispersion of sunlight by the water drops
in the atmosphere.
Reason : No reflection or refraction of light is
involved in the formation of rainbow.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

14. Assertion : Sun looks reddish at sunrise and sunset.

Reason : Sun rays have to pass through larger distance in atmosphere.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

15. Assertion : The focal length of an equiconvex lens placed in air to radius of curvature of either face.

Reason : For an equiconvex lens radius of curvature of both the faces is same.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true
and reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
\square

