# ©゙’doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - DISHA PHYSICS (HINGLISH)

## ALTERNATING CURRENT

Physics

1. In a series resonant LCR circuit the voltage
across $R$ is 100 volts and $R=$
$1 k(\Omega)$ with $C=2(\mu) F . \quad$ The
resonant
frequency $(\omega)$ is $200 \mathrm{rad} / \mathrm{s}$. At resonance the voltage across $L$ is
A. $2.5 \times 10^{-2} V$
B. 40 V
C. 250 V
D. $4 \times 10^{-3} V$

Answer:
( Watch Video Solution
2. An alternating voltage $V=V_{0} \sin \omega t$ is applied across a circuit. As a result, a current $I=I_{0} \sin \left(\omega t-\frac{p}{2}\right)$ flows in it. The power consumed per cycle is
A. zero
B. $0.5 V_{0} I_{0}$
C. $0.707 V_{0} I_{0}$
D. $1.414 V_{0} I_{0}$

Answer:
3. For the circuit shown in the fig., the current through the inductor is 0.9 A while the current through the condenser is 0.4 A. Then

A. current drawn from generator
$I=1.13 A$

$$
\begin{aligned}
& \text { B. } \omega=1 /(1.5 L C) \\
& \text { C. } I=0.5 A \\
& \text { D. } I=0.6 A
\end{aligned}
$$

## Answer:

## D Watch Video Solution

4. A capacitor has capacity $C$ and reactance $X$.

If capacitance and frequency become double,
then reactance will be
A. $4 X$
B. $X / 2$
C. $X / 4$
D. $2 X$

Answer:

D Watch Video Solution
5. A coil of inductance 300 mh and resistance
$2 \Omega$ is connected to a source of voltage $2 V$.

The current reaches half of its steady state

## value in

A. 0.1 s
B. 0.05 s
C. 0.3 a
D. 0.15 s

Answer:
( Watch Video Solution
6. In an AC circuit, a resistance of Rohm is connected is series with an inductance $L$. If phase angle between volage and current be $45^{\circ}$, the value of inductive reactance will be
A. $R / 4$
B. $R / 2$
C. $R$
D. $R / 5$

## Answer:

7. A bulb is rated at $100 \mathrm{~V}, 100 \mathrm{~W}$. It can be treated as a resistor. Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb at its rated power with the help of an ac source of 200 V and 50 Hz .
A. $\frac{\pi}{\sqrt{3}} H$
B. 100 H
C. $\frac{\sqrt{2}}{\pi} H$

## D. $\frac{\sqrt{3}}{\pi} H$

## Answer:

## D Watch Video Solution

8. An ac source of angular frequency $\omega$ is fed across a resistor $R$ and a capacitor $C$ in series.

The current registered is $I$. If now the frequency of source is changed to $\omega / 3$ (but maintaining the same voltage), the current in
the circuit is found to be halved. Calculate the
ratio of the reactance to resistance at the original frequency $\omega$.
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{2}{5}}$
C. $\sqrt{\frac{1}{5}}$
D. $\sqrt{\frac{4}{5}}$

Answer:

D Watch Video Solution
9. Large transformers, when used for some time, become hot and are cooled by circulating oil. The heating of transformer is due to
A. heating effect of current alone
B. hysteresis loss alone
C. both the hysteresis loss and heating
effect of current
D. none of the above

## Answer:

## D Watch Video Solution

10. An inductor of inductance $L=400 \mathrm{mH}$ and resistors of resistance $R_{1}=2 \Omega$ and $R_{2}=2 \Omega$
are connected to a battery of emf 12 V as
shown in the figure. The internal resistance of
the battery is negligible. The switch $S$ is closed
at $t=0$. The potential drop across L as a
function of time is

A. $\frac{12}{t} e^{-3 t} V$
B. $6\left(1-e^{-t / 0.2}\right) V$
C. $12 e^{-5 t} V$
D. $6 e^{-5 t} V$

## Answer:

## D Watch Video Solution

11. An ideal coil of 10 H is connected in series
with a resistance of $5(\Omega)$ and a battery of 5 V .

2second after the connections is made, the
current flowing in ampere in the circuit is
A. $\left(1-e^{-1}\right)$
B. $(1-e)$
C.e

$$
\text { D. } e^{-1}
$$

## Answer:

## D Watch Video Solution

12. In an A.C. circuit, the current flowing in inductance is $I=5 \sin (100 t-\pi / 2)$ amperes and the potential difference is $V=200 \sin (100 t) \quad$ volts. The power consumption is equal to
A. 1000 watt
B. 40 watt
C. 20 watt
D. Zero

## Answer:

## D Watch Video Solution

13. In an oscillating LC circuit the maximum
charge on the capacitor is Q . The charges on
the capacitor when the energy is stored
equally between the electric and magnetic field is
A. $\frac{Q}{2}$
B. $\frac{Q}{\sqrt{3}}$
C. $\frac{Q}{\sqrt{2}}$
D. $Q$

Answer:
( Watch Video Solution
14. A fully charged capacitor $C$ with initial charge $q_{0}$ is connected to a coil of self inductance $L$ at $t=0$. The time at which the energy is stored equally between the electric and the magnetic fields is

$$
\begin{aligned}
& \text { A. } \frac{\pi}{4} \sqrt{L C} \\
& \text { B. } 2 \pi \sqrt{L C} \\
& \text { C. } \sqrt{L C} \\
& \text { D. } \pi \sqrt{L C}
\end{aligned}
$$

15. For an LCR series circuit with an aac source of angular frequency $\omega$.
A. circuit will be capacitive if $\omega>\frac{1}{\sqrt{L C}}$
B. circuit will be inductive if $\omega=\frac{1}{\sqrt{L C}}$
C. power factor of circuit will be unity if
capacitive reactance equals inductive reactance
D. current will be leading voltage if

$$
\omega>\frac{1}{\sqrt{L C}}
$$

## Answer:

## D Watch Video Solution

16. The rms value of potential difference $V$
shown in the figure is

A. $V_{0}$
B. $V_{0} / \sqrt{2}$
C. $V_{0} / 2$
D. $V_{0} / \sqrt{3}$

Answer:

- Watch Video Solution

17. Which of the following statements is/are incorrect?
A. If the resonance is less sharp, not only is
the maximum current less, the circuit is
close to resonance for a larger range $\Delta \omega$
of frequencies and the tuning of the
circuit will not be good.
B. Less sharp the resonance less is the
selectivity of the circuit or vice-versa.
C. If quality factor is large, i.e., $R$ is low or $L$
is large, the circuit is more selective.
D. Below resonance, voltage leads the
current while above it, current leads the
voltage

Answer:

- Watch Video Solution

18. A lamp consumes only $50 \%$ of peak power
in an a.c. circuit. What is the phase difference between the applied voltage and the circuit current

$$
\begin{aligned}
& \text { A. } \frac{\pi}{6} \\
& \text { B. } \frac{\pi}{3} \\
& \text { C. } \frac{\pi}{4} \\
& \text { D. } \frac{\pi}{2}
\end{aligned}
$$

## Answer:

19. A step down transformer reduces 220 V to

110 V . The primary draws 5 ampere of current and secondary supplies 9 ampere. The efficiency of transformer is
A. $20 \%$
B. $44 \%$
C. $90 \%$
D. $100 \%$

## Answer:

## - Watch Video Solution

20. The voltage time (V-t) graph for triangular wave having peak value $V_{0}$ is as shown in figure.The rms value of V in time interval from $t=0$ to $T / 4$ is

A. 5
B. 4
C. 7
D. 3

## Answer:

## D Watch Video Solution

21. The tuning circuit of a radio receiver has a resistance of $50 \Omega$, an inductor of 10 mH and a
variable capacitor. A 1 MHz radio wave
produces a potential difference of 0.1 mV . The
values of the capacitor to produce resonance
is (Take $\pi_{2}=10$ )
A. 2.5 pF
B. 5.0 pF
C. 25 pF
D. 50 pF

Answer:

D Watch Video Solution
22. In an alternating current circuit in which an inductance and capacitance are joined in
series, current is found to be maximum when
the value of inductance is 0.5 henry and the
value of capacitance is $8 \mu \mathrm{~F}$. The angular frequency of applied alternating voltage will be
A. $5000 \mathrm{rad} / \mathrm{sec}$
B. $4000 \mathrm{rad} / \mathrm{sec}$
C. $2 \times 10^{5} \mathrm{rad} / \mathrm{sec}$
D. $500 \mathrm{rad} / \mathrm{sec}$

## Answer:

## - Watch Video Solution

23. A coil has resistance 30 ohm and inductive
reactance 20 ohm at 50 Hz frequency. If an ac
source of 200 volts. 100 Hz , is connected across the coil, the current in the coil will be
A. 4.0 A
B. 8.0 A
C. $\frac{20}{\sqrt{13}} A$

## D. 2.0 A

## Answer:

## D Watch Video Solution

24. In the figure shown, three $A C$ voltmeters
have been connected. At resonance, the
reading of

A. $V_{2}=0$
B. $V_{1}=0$
C. $V_{3}=0$
D. $V_{1}=V_{2} \neq 0$

## - Watch Video Solution

25. A.C. power is transmitted from a power house at a high voltage as
A. the rate of transmission is faster at high
voltages
B. it is more economical due to less power
loss
C. power cannot be transmitted at low
voltages

# D. a precaution against theft of 

## transmission lines

Answer: B

## D Watch Video Solution

26. A transformer has an efficiency of $80 \%$. It works at 4 kW and 100 V . If secondary voltage is 240 V , the current in primary coil is
A. $0.4 A$
B. $4 A$
C. $10 A$
D. 40 A

## Answer:

## D Watch Video Solution

27. A $12 o h m$ resistor and a 0.21 henry inductor are connected in series to an $A C$ source operating at 20 volts,50 cycle/second. The
phase angle between the current and the source voltage is
A. $30^{\circ}$
B. $40^{\circ}$
C. $80^{\circ}$
D. $90^{\circ}$

Answer:
( Watch Video Solution
28. In LCR series circuit fed by a DC source, how does the amplitude of charge oscillations vary with time during discharge ?

(a) $\overbrace{\text { a }}^{q_{0}}$
B.

C.
(c) $\underbrace{9}{ }^{9}$
D.
(d)


## Answer:

## D Watch Video Solution

29. The primary and secondary coils of a transmformer have 50 and 1500 turns respectively. If the magnetic flux $\phi$ linked with
the primary coil is given by $\phi=\phi_{0}+4 t$, where $\phi$ is in weber, $t$ is time in second and $\phi_{0}$
is a constant, the output voltage across the secondary coil is
A. 120 volts
B. 220 volts
C. 30 volts
D. 90 volts

## Answer:

## D Watch Video Solution

30. The primary winding of a transformer has

100 turns and its secondary winding has 200 turns. The primary is connected to an ac
supply of 120 V and the current flowing in it is
$10 A$. The voltage and the current in the secondary are
A. $240 \mathrm{~V}, 5 \mathrm{~A}$
B. $240 \mathrm{~V}, 10 \mathrm{~A}$
C. $60 \mathrm{~V}, 20 \mathrm{~A}$
D. $120 \mathrm{~V}, 20 \mathrm{~A}$

Answer:

D Watch Video Solution
31. The resistance in the following circuit is increase at a particle instant. At this instant the value of resistanc eis $10 \Omega$. The current in the circuit will be now

A. $i=0.5 A$
B. $I>0.5 A$
C. $I<0.5 A$

$$
\text { D. } i=0
$$

## Answer:

## D Watch Video Solution

## 32. The current in a LR circuit builds up to $\frac{3}{4}$ th

 of its steady state value in 4 s . The time constant of this circuit is$$
\begin{aligned}
& \text { A. } \frac{1}{\ln 2} s \\
& \text { B. } \frac{2}{\ln 2} s
\end{aligned}
$$

> C. $\frac{3}{\ln 2} s$
> D. $\frac{4}{\ln 2} s$

## Answer:

## D Watch Video Solution

33. An $L C R$ circuit is connected to a source of alternating current. At resonance, the applied voltage and the current flowing through the circuit will have a phase difference of
A. $\pi$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. 0

## Answer:

## D Watch Video Solution

34. What is the value of inductance $L$ for which the current is a maximum in series $L C R$ circuit with $C=10 \mu F$ and $\omega=1000 \frac{r a d}{s}$ ?

## A. 1 mH

B. cannot be calculated unless $R$ is known
C. 10 mH
D. 100 mH

## Answer:

D Watch Video Solution
35. In the circuit of Fig, the bulb will become suddenly bright if

A. contact is made or broken
B. contact is made
C. contact is broken
D. won't become bright at all

## Answer:

36. The voltage of an ac source varies with
time according to the equation
$V=100 \sin 100 \pi t \cos 100 \pi t$ where t is in seconds and $V$ is in volt. Then
A. the peak voltage of the source is 100 volt
B. the peak voltage of the source is 50 volt
C. the peak voltage of the source is
$100 / \sqrt{2}$ volt
D. the frequency of the source is 50 Hz

## Answer:

## - Watch Video Solution

37. The current (I) in the inductance is varying with time according to the plot shown in figure.


Which one of the following is the correct variation of voltage with time in the coil?
A.
$\frac{\text { T/2 }}{\substack{V} t}$
$\frac{{ }_{T / 2}^{V} \text { T }}{4}$
B. $\quad \rightarrow t$
c.
(c) $\frac{1}{n}$
D.
(d)


## Answer:

## - Watch Video Solution

38. Using an ac voltmeter, the potential difference in the electrical line in a house is
read to be 234 V . If the line freqency is known
to be 50 cycles per second, the equation for the line voltage is
A. $V=165 \sin (100 \pi t)$
B. $V=331 \sin (100 \pi t)$
C. $V=220 \sin (100 \pi t)$
D. $V=440 \sin (100 \pi t)$

Answer:
39. In the circuit shown in fig. when the switch
is closed, the capacitor charges with a time constant

A. $R C$
B. $2 R C$
C. $\frac{1}{2} R C$
D. $R C \ln 2$

## Answer:

## D Watch Video Solution

40. A 100 mF capacitor in series with a $40 \Omega$ resistance is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz}$ supply. What is the maximum current in the circuit?
A. 3.24 A
B. 4.25 A
C. 2.25 A
D. 5.20 A

Answer:

## D Watch Video Solution

41. The core of any transformaer is laminated so as to
A. reduce the energy loss due to eddy
currents
B. make it light weight
C. make it robust and strong
D. increase the secondary voltage

Answer:

- Watch Video Solution

42. An AC generator of 220 V having internal resistance $r=10 \Omega$ and external resistance
$R=100 \Omega$. What is the power developed in the external circuit?
A. 484 W
B. 400 W
C. 441 W
D. 396 W

Answer:

# 43. What is increase in step-down 

## transformer?

A. Voltage
B. Current
C. Power
D. Current density

Answer:
44. In the circuit shown below, the key K is closed at $\mathrm{t}=0$. The current through the battery is

A. $\frac{V R_{1} R_{2}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}$ at $t=0$ and $\frac{V}{R_{2}}$ at $t=\infty$
B. $\frac{V}{R_{2}}$ at $t=0$ and

$$
t=\infty
$$

C. $\frac{V}{R_{2}}$ at $t=0$ and $\frac{V R_{1} R_{2}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}$ at $t=\infty$
D. $\frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}$ at $t=0$ and $\frac{V}{R_{2}}$ at $t=\infty$

Answer:

D Watch Video Solution

## 45. The inductance between $A$ and $D$ is


A. 3.66 H
B. 9 H
C. 0.66 H
D. 1 H

## Answer:

- Watch Video Solution

