

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

CURRENT ELECTRICITY

Physics

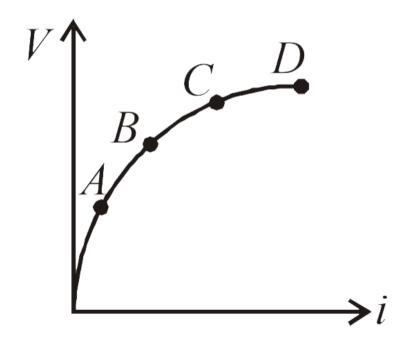
1. When 5 V potential difference is applied across a wire of length 0.1 m, the drift speed of electrons is $2.5 \times 10^{-4} ms^{-1}$. If the electron

density in the wire is $8 imes 10^{28} m^{-3}$, the resistivity of the material is close to:

A.
$$1.6 imes10^{-6}\Omega m$$

B.
$$1.6 imes10^{-5}\Omega m$$

C.
$$1.6 imes 10^{-8} \Omega m$$


D.
$$1.6 imes10^{-7}\Omega m$$

Answer:

Watch Video Solution

2. Variation of current passing through a conductor as the voltage applied across its ends is varied as shown in the adjoining diagram. If the resistance (R) is determined at the points A, B, C and D, we will find that

A.
$$R_C=R_D$$

B.
$$R_B>R_A$$

C.
$$R_C > R_B$$

D.
$$R_A > R_B$$

Watch Video Solution

3. The length of a wire of a potentiometer is 100 cm, and the e.m.f. of its standard cell is E volt. It is employed to measure the e.m.f. of a

battery whose internal resistance is 0.5Ω . If the balance point is obtained at I = 30 cm from the positive end, the e.m.f. of the battery is . where i is the current in the potentiometer wire.

A.
$$\overline{100.5}$$
B. $\overline{30E}$
 $\overline{(100-0.5)}$

c.
$$\frac{30(E-0.5i)}{100}$$

$$\frac{30E}{100}$$

Answer:

Watch Video Solution

4. The massses of the three wires of copper are in the ratio 1 : 3 : 5. And their lengths are in th ratio 5 : 3 : 1. the ratio of their electrical resistance is

A. 1:3:5

B. 5:3:1

C. 1: 25: 125

D. 125:15:1

Watch Video Solution

5. n equal resistors are first connected in series and then connected in parallel. What is the ratio of the maximum to the minimum resistance?

A. n

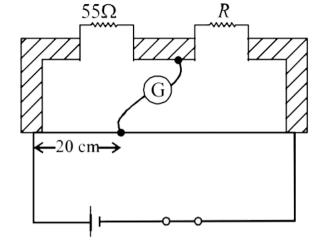
B. $1/n^2$

 $\mathsf{C}.\,n^2$

D.1/n

Answer:

Watch Video Solution


6. A battery is charged at a potential of 15V for 8 hours when the current flowing is 10A. The battery on discharge supplies a current of 5A for 15 hours. The terminal voltage during discharge is 14V. The 'Watt-hour" efficiency of the battery is.

- A. 80.5~%
- B. 82.5~%
- $\mathsf{C.}\,80\,\%$
- D. $90\,\%$

Watch Video Solution

7. Shown in the figure below is a meter- bridge set up will null deflection in the galvanometer.

The value of the unknown resistor R is

A.
$$13.75\Omega$$

 $\mathrm{B.}\ 220\Omega$

C. 110Ω

D. 55Ω

Answer:

8. In the equation AB = C, A is the current density, C is the electric field, Then B is

A. resistivity

B. conductivity

C. potential difference

D. resistance

Answer:

Vatch Video Solution

9. The Kirchhoff's first law $(\Sigma i=0)$ and second law $(\Sigma iR=\Sigma E)$, where the symbols have their usual meanings, are respectively based on

A. conservation of charge, conservation of momentum

B. conservation of energy, conservation of charge

C. conservation

of momentum,

conservation of charge

D. conservation of charge, conservation of energy

Answer:

Watch Video Solution

10. You are given a resistance coil and a battery. In which of the following cases is largest amount of heat generated?

- A. When the coil is connected to the battery directly
- B. When the coil is divided into two equal parts and both the parts are connected to the battery in parallel
- C. When the coil is divided into four equal parts and all the four parts are connected to the battery in parallel
- D. When only half the coil is connected to the battery

Watch Video Solution

- 11. The resistance of the coil of an ammeter is
- $\it R$. The shunt required to increase its range
- n-fold should have a resistance.

A.
$$\frac{R}{n}$$

$$\mathsf{B.}\;\frac{R}{n-1}$$

$$\mathsf{C.}\;\frac{R}{n+1}$$

 $\mathsf{D}.\,nR$

Watch Video Solution

- **12.** On increasing the temperature of a conductor, its resistance increases because
 - A. relaxation time increases
 - B. mass of electron increases
 - C. electron density decreases
 - D. relaxation time decreases

Watch Video Solution

13. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii are in the ratio of 4/3 and 2/3, then the ratio of the current passing through the wires will be

A. 8/9

B. 1/3

C. 3

D. 2

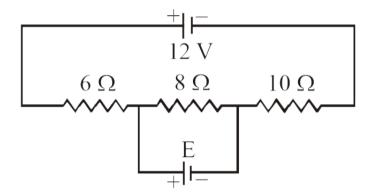
Answer:

Watch Video Solution

14. In a meter bridge experiment, null point is obtained at 20cm from one end of the wire when resistance X is balanced against another resistance Y. If X < Y, then the new

position of the null point from the same end, if one decides to balance a resistance of 4X against Y will be at.

- A. 40 cm
- B. 80cm
- C. 50 cm
- D. 70 cm


Answer:

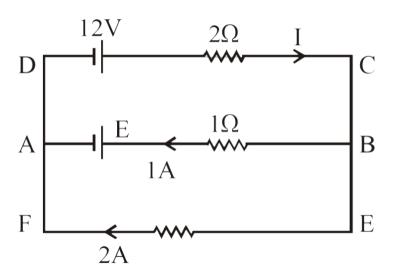
Watch Video Solution

15. In the circuit shown, the current through 8 ohm is same before and after connecting E.

The value of E is

A. 12V

B. 6V


C. 4V

D. 2V

Watch Video Solution

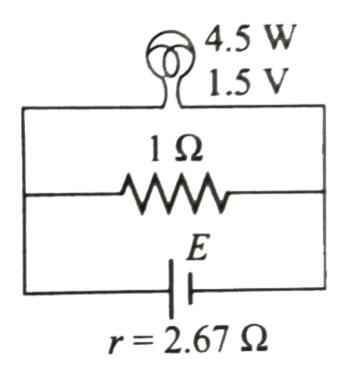
16. Find emf E of the cell as shown in figure.

A. 15 V

B. 10 V

C. 12 V

D. 5 V


Answer:

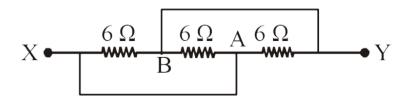
Watch Video Solution

17. A torch bulb rated $4.5W,\,1.5V$ is connected as shown in Fig. 7.35. The emf of the cell needed to make the bulb glow at full

intensity is

A. 4.5V

 ${\rm B.}\ 1.5V$


 $\mathsf{C.}\ 2.67V$

 $\mathsf{D.}\ 13.5V$

Watch Video Solution

18. In a given network, each resistance has value of 6Ω . The point X is connected to point A by a copper wire of negligible resistance and point Y is connected to point B by the same wire. The effective resistance between X and Y will be

A. 18Ω

B. 6Ω

 $\mathsf{C}.\,3\Omega$

 $D. 2\Omega$

Answer:

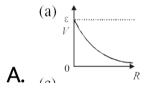
Watch Video Solution

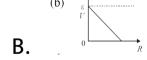
19. If n, e, τ , m, are representing electron density charge, relaxation time and mass of an electron respectively then the resistance of wire of length 1 and cross sectional area A is given by

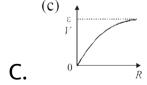
A.
$$\frac{2ml}{Ne^2A au}$$

B.
$$\dfrac{2m au A}{Ne^2l}$$

C.
$$\frac{Ne^2 au A}{2ml}$$


D.
$$\frac{Ne^2A}{2m\tau l}$$


Answer:



Watch Video Solution

20. 2A cell having an emf ε and internal resistance r is connected across a variable external resistance R. As the resistance R is increased, the plot of potential difference V across R is given by

Watch Video Solution

21. If voltage across a bulb rated 220 volt-100 watt drops by $2.5\,\%$ of its value, the percentage of the rated value by which the power would decrease is

A. 20~%

B. 2.5~%

 $\mathsf{C.}\,5\,\%$

D. 10%

Answer:

Watch Video Solution

22. If specific resistance of a potentiometer wire is $10^{-7}\Omega m$, the current flow through it is 0.1A and the cross-sectional area of wire is $10^{-6}m^2$ then potential gradient will be

A. 10^{-2} volt /m

B. 10^{-4} volt /m

C. 10^{-6} volt /m

D. 10^{-8} volt /m

Answer:

Watch Video Solution

23. Two resistance R_1 and R_2 are made of different material. The temperature coefficient of the material of R_1 is α and of the material

of R_2 is $-\beta$. Then resistance of the series combination of R_1 and R_2 will not change with temperature, if R_1/R_2 will not change with temperature if R_1/R_2 equals

A.
$$\frac{\alpha}{\beta}$$
B. $\frac{\alpha+\beta}{\alpha-\beta}$
C. $\frac{\alpha^2+\beta^2}{2\alpha\beta}$
D. $\frac{\beta}{\alpha}$

Answer:

Watch Video Solution

24. Five cells each of emf E and internal resistance r send the same amount of current through an external resistance R whether the cells are connected in parallel or in series. Then the ratio $\left(\frac{R}{r}\right)$ is

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.}\,\frac{1}{5}$$

Watch Video Solution

25. The length of a given cylindrical wire is increased by $100\,\%$. Due to the consequent decrease in diameter the change in the resistance of the wire will be

A. 200~%

 $\mathsf{B.}\ 100\ \%$

 $\mathsf{C.}\ 50\ \%$

D. 300%

Answer:

Watch Video Solution

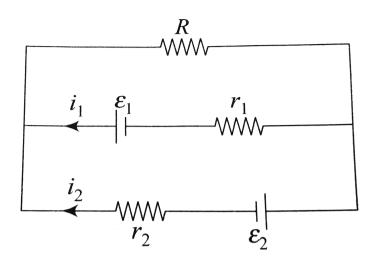
26. Potentiometer wire of length 1m is connected in series with 490Ω resistance and 2V battery. If $0.2m\frac{V}{c}m$ is the potential gradient, then resistance of the potentiameter wire is approximately

A. 4.9Ω

B. 7.9Ω

 $\mathsf{C}.\,5.9\Omega$

D. 6.9Ω


Answer:

Watch Video Solution

27. See the electrical circuit shown in this figure. Which of the following equations is the

correct equation for it?

A.
$$arepsilon_2-i_2r_2-arepsilon_1-i_1r_1=0$$

$$\mathsf{B.}-\varepsilon_2-(i_1+i_2)R+i_2r_2=0$$

C.
$$arepsilon_1-(i_1+i_2)R+i_ir_2=0$$

D.
$$arepsilon_1-(i_1+i_2)R-i_ir_2=0$$

Answer:

28. In a large building, there are 15 bulbs of 40 W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1 kW. The voltage of electric mains is 220 V. The minimum capacity fo the main fuse of the building will be:

A. 8A

B. 10A

C. 12A

D. 14A

Answer:

Watch Video Solution

29. Two sources of equal emf are connected to an external resistance R. The internal resistance of the two sources are R_1 and $R_2(R_1>R_1)$. If the potential difference across the source having internal resistance R_2 is zero, then

$$A.\,R=R_2-R_1$$

B.
$$R = R_2 imes (R_1 + R_2)/(R_2 - R_1)$$

C.
$$R = R_1 R_2 / (R_2 - R_1)$$

D.
$$R = R_1 R_2 / (R_1 - R_2)$$

Watch Video Solution

30. The resistance of the series combination of two resistances is S. When they are joined in

parallel the total resistance is P. If S= nP then

the minimum possible value of n is

- A. 2
- B. 3
- C. 4
- D. 1

Answer:

31. If an ammeter is to be used in place of a voltmeter, then we must connect with the ammeter a

- A. low resistance in parallel
- B. high resistance in parallel
- C. high resistance in series
- D. low resistance in series.

Answer:

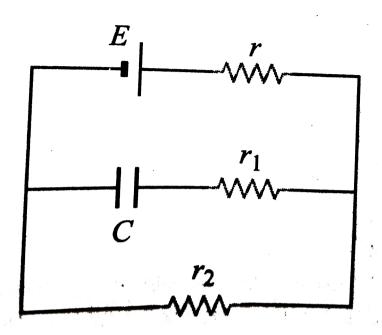
32. A d.c. main supply of e.m.f. 220V is connected across a storage battery of e.m.f. 200 V through a resistance of 1Ω . The battery terminals are connected to an external resistance 'R'. The minimum value of 'R', so that a current passes through the battery to charge it is:

A. 7Ω

B. 9Ω

 $\mathsf{C}.\,11\Omega$

D. zero


Answer:

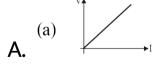
Watch Video Solution

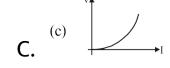
 ${f 33.}$ In the given circuit digram when the current reaclies steady state in the circuit , the charge an the capacity of capacitance C will

be

A.
$$CErac{r_2}{(r+r_2)}$$

B.
$$CErac{r_1}{(r_1+r)}$$


C.
$$CErac{r_2}{(r+r_1)}$$


D.
$$CErac{r_1}{(r_2+r)}$$

Watch Video Solution

34. Suppose the drift velocity v_d in a material varied with the applied electric field E as $v_d \propto \sqrt{E}$. Then V – I graph for a wire made of such a material is best given by :

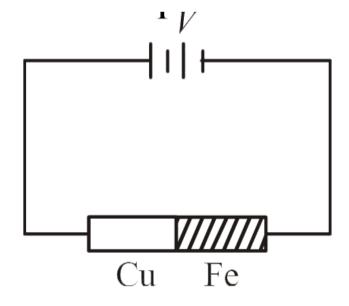
Watch Video Solution

35. In a neon discharge tube $2.9 imes 10^{18} Ne^+$ ions move to the right each second while $1.2 imes 10^{18}$ eletrons move to the left per

second. Electron charge is $1.6 \times 10^{-9} C$. The current in the discharge tube

 $\mbox{A.}\ 0.27\mbox{ A}$ to the right

 $\ensuremath{\mathrm{B.\,0.66}}$ A to the right


 $\mathsf{C.}\ 0.66\ \mathsf{A}\ \mathsf{to}\ \mathsf{the}\ \mathsf{left}$

D. zero

Answer:

36. Two rods are joined end to end, as shown. Both have a cross-sectional area of $0.01cm^2$. Each is 1 meter long. One rod is of copper with a resistivity of 1.7×10^{-6} ohm-centimeter, the other is of iron with a resistivity of 10^{-5} ohm-centimeter. How much voltage is required to produce a current of 1 ampere in the rods?

$$\mathsf{A.}\ 0.117V$$

 $\mathsf{B.}\ 0.00145V$

 $\mathsf{C.}\ 0.0145V$

D. $1.7 imes 10^{-6} V$

Answer:

Watch Video Solution

37. An energy source will supply a constant current into the load if its internal resistance is

A. very large as compared to the load resistance

B. equal to the resistance of the load

C. non-zero but less than the resistance of the load

D. zero

Answer:

38. The resistance of a wire at room temperature $30^{\circ}C$ is found to be 10Ω . Now to increase the resistance by $10\,\%$, the temperature of the wire must be [The temperature coefficient of resistance of the material of the wire is $0.002\,\mathrm{per}\,.^{\circ}\,C$]

A. $36^{\circ}\,C$

B. $83^{\circ}C$

 $\mathsf{C.}\,63^{\circ}C$

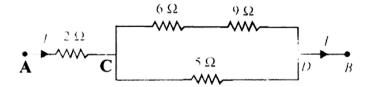
D. $33^{\circ}C$

Watch Video Solution

39. If the current in the electric bulb changes by 1%, then by what percentage will the power change?

A. $10\,\%$

B. $2\,\%$


 $\mathsf{C}.\,1\,\%$

D. 100%

Watch Video Solution

40. In the circuit shown in figure, the 5Ω resistance develops 20.00cal/s due to the current flowing through it. The heat developed in 2Ω resistance (in cal /s) is

A. 23.8

B. 14.2

C. 11.9

D. 7.1

Answer:

Watch Video Solution

41. In a Wheatstone's bridge, three resistances P,Q and R connected in the three arms and the fourth arm is formed by two resistances

condition for the bridge to be balanced will be

 S_1 and S_2 connected in parallel. The

A.
$$rac{P}{Q}=rac{2R}{S_1+S_2}$$
B. $rac{P}{Q}=rac{R(S_1+S_2)}{S_1S_2}$
C. $rac{P}{Q}=rac{R(S_1+S_2)}{2S_1S_2}$

D.
$$rac{P}{Q}=rac{R}{S_1+S_2}$$

Answer:

42. The electric resistance of a certain wire of iron is $\it R$. If its length and radius are both doubled, then

A. the resistance and the specific resistance, will both remain unchanged

B. the resistance will be doubled and the

specific resistance will be halved

C. the resistance will be halved and the specific resistance will remain unchanged

D. the resistance will be halved and the specific resistance will be doubled

Answer:

Watch Video Solution

43. A car has a fresh storage battery of emf 12 V and internal resistance $5.0 \times 10^{-2} \Omega$. If the starter motor draws a current of 90A, what is the terminal voltage of the battery when the starter is on?

- A. 15 volt
- B. 3 volt
- C. 5 volt
- D. 9 volt

Watch Video Solution

44. A conducting wire of cross-sectional area

 $1cm^2$ has $3 imes 10^{23}$ charge carriers per m3. If

wire carries a current of 24mA, then drift velocity of carriers is

A.
$$5 imes 10^{-2} m/s$$

B. 0.5m/s

C.
$$5 imes10^{-3}m/s$$

D.
$$5 imes10^{-6}m/s$$

Answer:

45. In the series combination of n cells each cell having emf ε and internal resistance r. If three cells are wrongly connected, then total emf and internal resistance of this combination will be

A.
$$n\varepsilon, (nr-3r)$$

B.
$$(narepsilon-2arepsilon)nr$$

C.
$$(narepsilon-4arepsilon), nr$$

D.
$$(n\varepsilon-6\varepsilon),\,nr$$

Answer:

