©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

ELECTROMAGNETIC INDUCTION

Physics

1. A metal disc of radius 100 cm is rotated at a
constant angular speed of $60 \mathrm{rad} / \mathrm{s}$ in a plane
at right angles to an external field of magnetic
induction $0.05 \mathrm{~Wb} / \mathrm{m}^{2}$. The emf induced
between the centre and a point on the rim will be
A. 3 V
B. 1.5 V
C. 6 V
D. 9 V

Answer:

D Watch Video Solution
2. In a coil of resistance 100Ω, a current is induced by changing the magnetic flux through it as shown in the figure. The magnitude of change in flux through the coil is

\rightarrow Time
A. 250 Wb
B. 275 Wb

C. 200 Wb

D. 225 Wb

Answer:

D Watch Video Solution

3. A 10-meter wire is kept in east-west direction. It is falling down with a speed of
5.0meter / second, perpendicular to the horizontal component of earth's magnetic field of $0.30 x \times 10^{-4}$ weber $/$ meter 2. The
momentary potential difference induced between the ends of the wire will be

A. 0.0015 V

B. 0.015 V
C. 0.15 V
D. 1.5 V

Answer:
(Watch Video Solution
4. The figure shows certain wire segments joined together to form a coplaner loop. The loop is placed in a perpendicular magnetic field in the direction going into the plane of the figure. The magnitude of the field increases with time I_{1} and I_{2} are the currents in the segments ab and cd . Then,

A. $I_{1}>I_{2}$
B. $I_{1}<I_{2}$
C. I_{1} is in the direction ba and I_{2} is in the
direction cd
D. I_{1} is in the direction ab and I_{2} is in the direction dc

Answer:
(Watch Video Solution
5. Two solenoids of equal number of turns
have their lengths and the radii in the same
ratio $1: 2$. The ratio of their self inductances will be
A. $1: 2$
B. 2:1
C. 1:1
D. 1: 4

Answer:
6. A metal conductor of length 1 m rotates
vertically about one of its ends at angular
velocity 5 radians per second. If the horizontal component of earth's magnetic field is
$0.2 \times 10^{-4} T$, then the emf developed between the two ends of hte conductor is
A. 5 mV
B. $50 \mu V$
C. $5 \mu V$

D. 50 mV

Answer:

D Watch Video Solution

7. Eddy currents do not produce

A. heat
B. a loss of energy
C. spark
D. damping of motion

Answer:

D Watch Video Solution

8. A conducting square frame of side ' a ' and a
long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity ' V '. The emf induced in the
frame will be proportional to

A. $\frac{1}{(2 x-a)^{2}}$
B. $\frac{1}{(2 x+a)^{2}}$
C. $\frac{1}{(2 x-a)(2 x+a)}$

$$
\text { D. } \frac{1}{x^{2}}
$$

Answer:

D Watch Video Solution

9. Which of the following figure correctly depicts the Lenz's law. The arrows show the movement of the labelled pole of a bar magnet into a closed circular loop and the arrows on the circle show the direction of the induced current

Answer:

- Watch Video Solution

10. The magnetic flux (in weber) linked with a coil of resistance 10Ω is varying with respect
to time $\mathrm{t} \phi=4 t^{2}+2 t+1$. Then the current in the coil at time $t=1$ second is
A. 0.5 A
B. $2 A$
C. 1.5 A
D. $1 A$

Answer:

11. Two coaxial solenoids are made by winding thin insulated wire over a pipe of crosssectional area $A=10 \mathrm{~cm}^{2}$ and length $=20 \mathrm{~cm}$.

If one of the solenoid has 300 turns and the other 400 turns, their mutual indcutance is

> A. $\left.2.4 \pi \times 10^{-5}\right) \mathrm{H}$
> B. $4.8 \pi \times 10^{-4} H$
> C. $4.8 \pi \times 10^{-5} H$
> D. $2.4 \pi \times 10^{-4} H$

Answer:

D Watch Video Solution

12. When the current changes from $+2 A \rightarrow-2 A$ in 0.05 second, an e.m.f. of 8 V is induced in a coil. The coefficient of self induction of the coil is
A. 0.2 H
B. 0.4 H
C. 0.8 H

D. 0.1 H

Answer:

D Watch Video Solution

13. A long solenoid has 500 turns. When a current of $2 A$ is passed through it, the resulting magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} W b$. The selfinductance of the solenoid is
A. 2.5 henry

B. 2.0 henry

C. 1.0 henry
D. 40 henry

Answer:

D Watch Video Solution

14. A metallic square loop $A B C D$ is moving in
its own plane with velocity v in a uniform magnetic field perpendicular to its plane as
shown in the figure. An electric field is induced

A. in $A D$, but not in $B C$
B. in $B C$, but not in $A D$
C. neither in AD nor in $B C$
D. in both $A D$ and $B C$

Answer:

- Watch Video Solution

15. In an AC generator, a coil with N turns, all of the same area A and total resistance R, rotates with frequency (ω) in a magnetic field B. The maximum value of emf generated in the coils is
A. N. A. B. R. ω
B. N.A.B
C. N.A.B.R.
D. N. A. B. ω

Answer:

- Watch Video Solution

16. In an inductor of self-inductance $\mathrm{L}=2 \mathrm{mH}$,
current changes with time according to relation $i=t^{2} e^{-t}$. At what time emf is zero ?
A. 4 s
B. 3s
C. 2s
D. 1 s

Answer:

D Watch Video Solution

17. Choke coil works on the principle of
A. transient current
B. self induction
C. mutual induction
D. wattles current

- Watch Video Solution

18. A coil having n turns and resistance $R \Omega$ is
connected with a galvanometer of resistance
$4 R \Omega$. This combination is moved in time t seconds from a magnetic field W_{1} weber to
W_{2} weber. The induced current in the circuit is

$$
\begin{aligned}
& \text { A. }-\frac{\left(W_{1}-W_{2}\right)}{R n t} \\
& \text { B. } \frac{n\left(W_{2}-W_{1}\right)}{5 R t} \\
& \text { C. }-\frac{\left(W_{2}-W_{1}\right)}{5 R n t}
\end{aligned}
$$

$$
\text { D. }-\frac{n\left(W_{2}-W_{1}\right)}{5 R t}
$$

Answer:

- Watch Video Solution

19. A thin circular ring of area A is held perpendicular to a uniform magnetic field of induction B. A small cut is made in the ring and a galvanometer is connected across the ends such that the total resistance of the circuit is R. When the ring is suddenly
squeezed to zero area, the charge flowing
through the galvanometer is
A. $\frac{B R}{A}$
B. $\frac{A B}{R}$
C. ABR
D. $\frac{B^{2} A}{R^{2}}$

Answer:
(Watch Video Solution
20. A boat is moving due east in a region where the earth's magnetic field is
$5.0 x \times 10^{-5} N A^{-1} m^{-1}$ due north and horizontal. The boat carries a vertical aerial 2 m long. If the speed of the boat is $1.50 \mathrm{~ms}^{-1}$, the magnitude of the induced emf in the wire of aerial is:
A. 0.75 mV
B. 0.50 mV
C. 0.15 mV

D. 1 mV

Answer:

D Watch Video Solution

21. A coil of area $10 \mathrm{~cm}^{2}$ and 10 turns is in magnetic field directed perpendicular to the plane and changing at a rate of 10^{8} gauss $/ \mathrm{s}$.

The resistance of coil is 20Ω. The current in the coil will be
A. 0.5 A
B. $5 A$
C. 50 A
D. $5 \times 10^{8} \mathrm{~A}$

Answer:

- Watch Video Solution

22. A horizontal straight wire 20 m long extending from east to west falling with a speed of $5.0 \mathrm{~m} / \mathrm{s}$, at right angles to the horizontal component of the earth's magnetic
field $0.30 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. The instantaneous

value of the e.m.f. induced in the wire will be

A. 3 mV
B. 4.5 mV
C. 1.5 mV
D. 6.0 mV

Answer:
(Watch Video Solution
23. The self inductance of a long solenoid cannot be increased by
A. increasing its area of cross section
B. increasing its length
C. changing the medium with greater permeability
D. increasing the current through it

Answer:

24. A metallic rod of length 'I' is tied to a string of length 21 and made to rotate with angular speed w on a horizontal table with one end of the string fixed. If there is a vertical magnetic field ' B ' in the region, the e.m.f. Induced across the ends of the rod is

A. $\frac{2 B \omega l^{2}}{2}$
B. $\frac{3 B \omega l^{2}}{2}$
C. $\frac{4 B \omega l^{2}}{2}$
D. $\frac{5 B \omega l^{2}}{2}$

Answer:

D Watch Video Solution
25. Lenz's law gives:
A. the magnitude of the induced e.m.f.

B. the direction of the induced current

C. both the magnitude and direction of the induced current
D. the magnitude of the induced current

Answer:

D Watch Video Solution
26. A metal ring is held horizontally and bar magnet is dropped through the ring with its
length along the axis of the ring. The acceleration of the falling magnet
A. is equal to g
B. is less than g
C. is more than g
D. depends on the diameter of ring and
length of magnet

Answer:

27. The pointer of a dead-beat galvanometer gives a steady deflection because
A. eddy currents are produced in the conducting frame over which the coil is
wound.
B. its magnet is very strong
C. its pointer is very light.
D. its frame is made of ebonite.

Answer:
28. A metal rod of length I cuts across a uniform magnetic field B with a velocity v. If the resistance of the circuit of which the rod forms a part is r, then the force required to move the rod is

$$
\begin{aligned}
& \text { A. } \frac{B^{2} l^{2} v}{r} \\
& \text { B. } \frac{B l v}{r} \\
& \text { C. } \frac{B^{2} l v}{r} \\
& \text { D. } \frac{B^{2} l^{2} v^{2}}{r}
\end{aligned}
$$

Answer:

D Watch Video Solution

29. In an A.C. generator, when the plane of the armature is perpendicular to the magnetic field
A. both magnetic flux and emf are maximum
B. both magnetic flux and emf are zero
C. both magnetic flux and emf are half of their respective maximum values

D. magnetic flux is maximum and emf is

zero

Answer:

D Watch Video Solution

30. A copper disc of radius $0.1 m$ rotates about its centre with 10 revolutuion per second in a
uniform magnetic field of 0.1 tesla. The emf induced across the radius of the disc is
A. $\frac{\pi}{10}$ volt
B. $\frac{2 \pi}{10}$ volt
C. $\pi \times 10^{-2}$ volt
D. $2 \pi \times 10^{-2}$ volt

Answer:
(Watch Video Solution
31. The mutual inductance of a pair of coils, each of N turns, is M henry. If a current of I ampere in one of the coils is brought to zero in t second, the emf induced per turn in the other coil, in volt, will be

> A. $\frac{M I}{t}$
> B. $\frac{N M I}{t}$
> C. $\frac{M N}{I t}$
> D. $\frac{M I}{N t}$

- Watch Video Solution

32. Consider the situation shown in . if the
switch is closed and after some time it is opened again, the closed loop will show

A. a clockwise current
B. an anticlockwise current
C. an anticlockwise current and then
D. a clockwise current and then an

anticlock wise current

Answer:

D Watch Video Solution

33. A magnet is moved towards a coil

quickly (ii) slowly, then the induced e.m.f. is

A. larger in case (i)
B. smaller in case (i)

C. equal to both the cases

D. larger or smaller depending upon the radius of the coil

Answer:

D Watch Video Solution

34. A circular wire of radius r rotates about its own axis with angular speed w in a magnetic field B perpendicular to its plane, then the induced e.m.f. is
A. $\frac{1}{2} B r \omega^{2}$
B. $B r \omega^{2}$
C. $2 B r \omega^{2}$
D. zero

Answer:

D Watch Video Solution

35. A conducting ring of radius 1 m kept in a uniform magnetic field B of 0.01 T , rotates uniformly with an angular velocity $100 \mathrm{rad} s^{-1}$
with its axis of rotation perpendicular to B.

The maximum induced emf in it is

A. $1.5 \pi V$
B. πV
C. $2 \pi V$
D. $0.5 \pi V$

Answer:
(Watch Video Solution
36. A magnetic field of $2 \times 10^{-2} T$ acts at right angles to a coil of area $100 \mathrm{~cm}^{2}$ with 50 turns.

The average emf induced in the coil is $0.1 V$, when it is removed from the field in time t. The value of t is
A. 10 s
B. 0.1s
C. 0.01 s
D. 1 s

- Watch Video Solution

37. The magnetic flux through a circuit of resistance R changes by an amount $\Delta \phi$ in a time Δt. Then the total quantity of electric charge Q that passes any point in the circuit during the time Δt is represent by
A. $Q=R . \frac{\Delta \phi}{\Delta t}$
B. $Q=\frac{1}{R} \cdot \frac{\Delta \phi}{\Delta t}$
c. $Q=\frac{\Delta \phi}{R}$
D. $Q=\frac{\Delta \phi}{\Delta t}$

Answer:

D Watch Video Solution

38. Fig shown below represents an area
$A=0.5 m^{2}$ situated in a uniform magnetic
field $B=2.0$ weber $/ m^{2}$ and making an angle of 60° with respect to magnetic field.

The
value of the magnetic flux through the area would be equal to
A. 2.0 weber
B. $\sqrt{3}$ weber
C. $\sqrt{3} / 2$ weber
D. 0.5 weber

Answer:

D Watch Video Solution

39. As a result of change in the magnetic flux
linked to the closed loop shown in the fig, an
e.m.f. V volt is induced in the loop. The work done (joule) in taking a charge Q coulomb
once along the loop is

A. QV
B. 2 QV
C. $Q V / 2$

D. Zero

Answer:

D Watch Video Solution

40. Two coil are placed close to each other. The mutual inductance of the pair of coils depends
upon.
A. the rates at which currents are changing in the two coils
B. relative position and orientation of the two coils
C. the materials of the wires of the coils
D. the currents in the two coils

Answer:

D Watch Video Solution
41. When current i passes through an inductor of self inductance L, energy stored in it is $1 / 2 . L i^{2}$. This is stored in the
A. current
B. voltage
C. magnetic field
D. electric field

Answer:

D Watch Video Solution
42. A conducting wire frame is placed in a magnetic field which is directed into the paper.

The magnetic field is increasing at a constant
rate. The direction of induced current in wire
$A B$ and $C D$ are

A. B to A and D to C
B. A to B and C to D
C. A to B and D to C
D. B to A and C to D

Answer:

- Watch Video Solution

43. Two different wire loops are concentric and
lie in the same plane. The current in the outer
loop (I) is clockwise and increases with time.

The induced current in the inner loop

A. is clockwise
B. is zero
C. is counter clockwise
D. has a direction that depends on the ratio of the loop radii.

Answer:

D Watch Video Solution

44. When current in a coil changes from 5 A to

2 A in 0.1 s , average voltage of 50 V is produced. The self-inductance of the coil is:
A. 6 H

B. 0.67 H

C. 3 H
D. 1.67 H

Answer:

- Watch Video Solution

45. Two concentric circular coil,s one of small radius r_{1} and the other of large radius r_{2}, such that $r_{1} \ll r_{2}$, are placed co-axially
with centres coinciding. Obtain the mutual inductance of the arrangement.
A. R_{1} / R_{2}
B. R_{2} / R_{1}
C. R_{1}^{2} / R_{2}
D. R_{2}^{2} / R_{1}

Answer:
(Watch Video Solution

