©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

KINETIC THEORY OF GASES

Physics

1. 4.0 g of a gas occupies 22.4 litres at NTP. The
specific heat capacity of the gas at constant
volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of
sound in this gas at NTP is $952 m s^{-1}$. Then the heat capacity at constant pressure is

A. $7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer:

D Watch Video Solution

2. A fixed mass of gas at constant pressure occupies a volume V. The gas undergoes a rise in temperature so that the root mean square velocity of its molecules is doubled. The new volume will be
A. $v / 2$
B. $V \sqrt{2}$
C. 2 V
D. 4 V
3. A gaseous mixture consists of 16 g of helium and 16 g of oxygen. The ratio $\frac{C_{p}}{C_{v}}$ of the mixture is
A. 1.62
B. 1.59
C. 1.54
D. 1.4

Answer:

D Watch Video Solution

4. Air is pumped into an automobile tyre's tube up to pressure of $200 k P a$ in the morning when the air temperature is $20^{\circ} \mathrm{C}$. During the day the temperature rises to $40^{\circ} C$ and the tube expand by 2%. Calculate the pressure of the air in the tube at this temperature.

A. 212 kPa

B. 209 kPa

C. 206kPa
D. 200 kPa

Answer:

D Watch Video Solution

5. Calculate the rms speed of smoke particles of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian
motion
in
air
at
NTP.
Given
$k_{B}=1.38 \times 10^{-23} J / K$
A. $1.5 \mathrm{~m} / \mathrm{s}$
B. $3.0 \mathrm{~m} / \mathrm{s}$
C. $1.5 \mathrm{~cm} / \mathrm{s}$
D. $3 \mathrm{~cm} / \mathrm{s}$

Answer:

D Watch Video Solution

6. One mole of an ideal gas requires 207J heat to raise the temperature by 10 K , when heated at constant pressure. If the same gas is heated
at constant volume to raise the temperature by 10 K , then heat required is [given gas constant. $\mathrm{R}=8.3 \mathrm{1} /(\mathrm{mol}-\mathrm{K})$]
A. 198.7 J
B. 29 J
C. 215.3 J
D. 124 J

Answer:

D Watch Video Solution
7. Figure shows the variation in temperature (DT) with the amount of heat supplied (Q) in an isobaric process corresponding to a monoatomic (M), diatomic (D) and a polyatomic (P) gas. The initial state of all the gases are the same and the scales for the two axes coincide. Ignoring vibrational degrees of freedom, the lines a, b and c respectively

correspond to

A. P.MandD
B. M,DandP
C. P,D and M
D. D, M and P

Answer:

- Watch Video Solution

8. 1 mole of a monatomic and 2 mole of a
diatomic gas are mixed. The resulting gas is
taken through a process in which molar heat
capacity was found 3R. Polytropic constant in
the process is

$$
\text { A. }-1 / 5
$$

B. $1 / 5$
C. $2 / 5$

$$
\text { D. }-2 / 5
$$

Answer:

- Watch Video Solution

9. The density of a gas is $6 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3}$ and
the root mean square velocity of the gas molecules is $500 \mathrm{~m} / \mathrm{s}$. The pressure exerted by
the gas on the walls of the vessel is
A. $5 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$
B. $1.2 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}$
C. $0.83 \times 10^{-4} N / m^{2}$
D. $30 \mathrm{~N} / \mathrm{m}^{2}$

Answer:

D Watch Video Solution
10. The absolute temperature of the gas is increased 3 times. What will be the increases
in root mean square velocity of the gas molecules?
A. 3 times
B. 9 times
C. $1 / 3$ times

D. $\sqrt{3}$ times

Answer:
(Watch Video Solution
11. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increase as V^{q}, where V is the volume of the gas. The value of

$$
\mathrm{q} \text { is }:\left(\gamma=\frac{C_{p}}{C_{v}}\right)
$$

A. $\frac{\gamma+1}{2}$
B. $\frac{\gamma-1}{2}$
C. $\frac{3 \gamma+1}{2}$
D. $\frac{3 \gamma-1}{2}$

Answer:

- Watch Video Solution

12. One kg of a diatomic gas is at pressure of
$8 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is
$4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?
A. $5 \times 10^{4} J$
B. $6 \times 10^{4} J$
C. $7 \times 10^{4} J$

D. $3 \times 10^{4} J$

Answer:

D Watch Video Solution

13. A thermally insulated vessel contains an
ideal gas of molecular mass M and ratio of
specific heats γ. It is moving with speed v and
it's suddenly brought to rest. Assuming no
heat is lost to the surroundings, Its
temperature increases by:

> A. $\frac{(\gamma-1)}{2 \gamma R} M v^{2} k$
> B. $\frac{\gamma m v^{2}}{2 \gamma R} k$
> C. $\frac{(\gamma-1)}{2 R} M v^{2} k$
> D. $\frac{(\gamma-1)}{2(\gamma+1) R} M v^{2} k$

Answer:

D Watch Video Solution

14. Figure shows a parabolic graph between T and $1 / V$ for a mixture of a gases undergoing an adiabatic process. What is the ratio of $V_{n m s}$
of molecules and speed of sound in mixture?

A. $\sqrt{3 / 2}$
B. $\sqrt{2}$
C. $\sqrt{2 / 3}$
D. $\sqrt{3}$

Answer:

D Watch Video Solution

15. The work of 146 kJ is performed in order to
compress one kilo mole of a gas adiabatically
and in this process the temperature of the gas

$$
\begin{aligned}
& \text { increases by } 7^{\circ} \mathrm{C} . \quad \text { The gas is } \\
& \left(R=8.3 \mathrm{ml}^{-1} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)
\end{aligned}
$$

A. diatomic
B. triatomic

C. a mixture of monatomic and diatomic

D. monatomic

Answer:

D Watch Video Solution

16. At what temperature is the root mean
square velocity of gaseous hydrogen
molecules is equal to that of oxygen molecules
at $47^{\circ} C$?
A. 40 K
B. 80 K
C. $-73 K$
D. 3 K

Answer:

D Watch Video Solution

17. The kinetic theory of gases states that the average squared velocity of molecules varies
linearly with the mean molecular weight of the
gas. If the root mean square (rms) velocity of oxygen molecules at a certain temperature is
$0.5 \mathrm{~km} / \mathrm{sec}$. The rms velocity for hydrogen molecules at the same temperature will be :
A. $2 \mathrm{~km} / \mathrm{sec}$
B. $4 \mathrm{~km} / \mathrm{sec}$
C. $8 \mathrm{~km} / \mathrm{sec}$
D. $16 \mathrm{~km} / \mathrm{sec}$

Answer:

18. If 2 mol of an ideal monatomic gas at temperature T_{0} are mixed with 4 mol of another ideal monatoic gas at temperature
$2 T_{0}$ then the temperature of the mixture is
A. $\frac{5}{3} T_{0}$
B. $\frac{5}{3} T_{0}$
C. $\frac{4}{3} T_{0}$
D. $\frac{5}{4} T_{0}$

Answer:

- Watch Video Solution

19. From the following statements concerning
ideal gas at any given temperature T, select the correct one (s)
A. The coefficient of volume expansion at
constant pressure is same for all ideal
gas
B. The average translational kinetic energy
per molecule of oxygen gas is 3 KT (K
being Boltzmann constant)
C. In a gaseous mixture, the average translational kinetic energy of the molecules of each component is same
D. The mean free path of molecules increases with decrease in pressure

Answer:

D Watch Video Solution

20. Figure shows the pressure P versus volume

V graphs for a certains mass of a gas at two
constant temperature T_{1} and T_{2}. Which of the following interface is correct?

A. $T_{1}>T_{2}$
B. $T_{1}=T_{2}$
C. $T_{1}<T_{2}$
D. None of these

Answer:

- Watch Video Solution

21. The molecules of a given mass of a gas

$$
\begin{array}{lc}
\text { have } & \text { rms } \\
200 \mathrm{~m} / \mathrm{sat} 27^{\circ} \mathrm{C} \text { and } 1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}_{2}
\end{array}
$$

pressure. When the temperature and pressure
of the gas are respectively
$127^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{Nm}^{-2}$, the rms
velocity of its molecules in $m s^{-1}$ is

$$
\begin{aligned}
& \text { A. } \frac{400}{\sqrt{3}} \\
& \text { B. } 100 \sqrt{2} \\
& \text { C. } \frac{100 \sqrt{2}}{3} \\
& \text { D. } \frac{100}{3}
\end{aligned}
$$

Answer:

D Watch Video Solution
22. A graph is plotted with PV / T on y -axis and mass of the gas along x-axis for different gases. The graph is
A. a straight line parallel to x-axis for all the gases
B.a straight line passing through origin
with a slope having a constant value for
all the gases
C.a straight line passing through origin
with a slope having different values for
different gases

D. a straight line parallel to y-axis for all the

gases

Answer:

D Watch Video Solution

23. At identical temperatures, the rms speed of hydrogen molecules is 4 times that for oxygen molecules. In a mixture of these in mass ratio
$H_{2}: O_{2}=1: 8$, the rms speed of all molecules
in n times the rms speed for O_{2} molecules, where n is
A. 3
B. $4 / 3$
C. $(8 / 3)^{1 / 2}$
D. $(11)^{1 / 2}$

Answer:
(Watch Video Solution
24. Find the expression for the work done by a system undergoing isothermal compression
(or expansion) form volume V_{1} to V_{2} at temperature T_{0} for a gas which obeys the van der walls equation of state.
$\left(P+a n^{2} / V^{2}\right)(V-b n)=n R T ?$
A.

$$
n R T \log _{e}\left(\frac{V_{2}-n \beta}{v_{1}-n \beta}\right)+\alpha n^{2}\left(\frac{V_{1}-V_{2}}{V_{1} V_{2}}\right)
$$

B.

$$
n R T \log _{10}\left(\frac{V_{2}-n \beta}{v_{1}-n \beta}\right)+\alpha n^{2}\left(\frac{V_{1}-V_{2}}{V_{1} V_{2}}\right)
$$

C.

$$
n R T \log _{e}\left(\frac{V_{2}-n \beta}{v_{1}-n \beta}\right)+\beta n^{2}\left(\frac{V_{1}-V_{2}}{V_{1} V_{2}}\right)
$$

D.

$$
n R T \log _{e}\left(\frac{V_{1}-n \beta}{v_{2}-n \beta}\right)+\alpha n^{2}\left(\frac{V_{1} V_{2}}{V_{1}-V_{2}}\right)
$$

Answer:

D Watch Video Solution

25. Two vessel separately contains two ideal gases A and B at the same temperature, the pressure of A being twice that of B. under such
conditions, the density of A is found to be 1.5
times the density of B. the ratio of molecular weight of A and B is
A. $\frac{3}{4}$
B. 2
C. $\frac{1}{2}$
D. $\frac{2}{3}$

Answer:

D Watch Video Solution
26. The temperature of the mixture of one mole of helium and one mole of hydrogen is increased from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant pressure. The amount of heat delivered will be

A. 600cal

B. 1200 cal
C. 1800cal
D. 3600cal

Answer:

- Watch Video Solution

27. If the intermolecules forces vanish away, the volume occupied by the molecules
contained in 4.5 kg water at stantard temperature and pressure will be given by
A. 5.6litre
B. 4.5 litre
C. 11.2 litre
D. 6.5 litre
28. If the intermolecules forces vanish away,
the volume occupied by the molecules contained in 4.5 kg water at stantard temperature and pressure will be given by
A. 4RT
B. 15RT
C. 9RT
D. 11RT

Answer:

- Watch Video Solution

29. A vessel has 6 g of hydrogen at pressure P and temperature 500K. A small hole is made in
it so that hydrogen leaks out. How much hydrogen leaks out if the final pressure is $\mathrm{P} / 2$ and temperature falls to 300 K ?
A. 2 g
B. 3 g
C. 4 g
D. 1 g

Answer:

- Watch Video Solution

30. For a gas if ratio of specific heats at constant pressure and volume is g then value of degrees of freedom is

$$
\text { A. } \frac{3 \gamma-1}{2 \gamma-1}
$$

$$
\begin{aligned}
& \text { B. } \frac{2}{\gamma-1} \\
& \text { C. } \frac{9}{2}(\gamma-1) \\
& \text { D. } \frac{25}{2}(\gamma-1)
\end{aligned}
$$

Answer:

- Watch Video Solution

31. The given $\mathrm{P}-\mathrm{V}$ curve is predicted by

A. Boyle's law
B. Charle's law
C. Avogadro's law
D. Gaylussac's law

Answer:

D Watch Video Solution

32. Three perfect gases at absolute temperature T_{1}, T_{2}, and T_{3} are mixed. The masses of molecules are n_{1}, n_{2} and n_{3} respectively. Assuming to loss of energy, the final temperature of the mixture is:

$$
\begin{aligned}
& \text { A. } \frac{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}{n_{1}+n_{2}+n_{3}} \\
& \text { B. } \frac{n_{1} T_{1}^{2}+n_{2} T_{2}^{2}+n_{3} T_{3}^{3}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}
\end{aligned}
$$

> C. $\frac{n_{1} T_{1}^{2}+n_{2} T_{2}^{2}+n_{3} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$
> D. $\frac{\left(T_{1}+T_{2}+T_{3}\right)}{3}$

Answer:

D Watch Video Solution

33. A gas is enclosed in a cube of side I. What will be the change in momentum of the molecule, if it suffers an elastic collision with
the plane wall parallel to yz-plane and rebounds with the same velocity?
$\left[\left(V_{x}, V_{y} \& V_{z}\right)\right.$ initial velocities of the gas molecules]
A. $m v_{x}$
B. zero
C. $-m v_{x}$
D. $-2 m v_{x}$.

Answer:
(Watch Video Solution
34. What will be the ratio of number of molecules of a monoatomic and a diatomic gas in a vessel, if the ratio of their partial pressures is 5:3?
A. $5: 1$
B. $3: 1$
C. $5: 3$
D. $3: 5$

Answer:
35. The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are $6.21 \times 10^{-21} \mathrm{~J}$ and $484 \mathrm{~m} / \mathrm{s}$, respectively. The corresponding values at $600 K$ are nearly (assuming ideal gas behaviour)
A. $12.42 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$
B. $8.78 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$
C. $6.21 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$

D. $12.42 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

36. At $10^{\circ} C$, the value of the density of a fixed mass of an ideal gas divided by its pressure is x . at $110^{\circ} \mathrm{C}$, this ratio is
A. x
B. $\frac{383}{283} x$

> C. $\frac{10}{110} x$ D. $\frac{283}{383} x$

Answer:

D Watch Video Solution

37. If the potential energy of a gas molecule is
$U=\frac{M}{r^{6}}-\frac{N}{r^{12}}, M$ and N being positive constants, then the potential energy at equilibrium must be
A. zero
B. $M^{2} / 4 N$
C. $\mathrm{N}^{\wedge}(2) / / 4 \mathrm{M}^{`}$
D. $M N^{2} / 4$

Answer:

D Watch Video Solution

38. Consider a gas with density ' ρ ' and \bar{c} as the root mean square velocity of its molecules contained in a volume. If the system moves as
whole with velocity ' v ' , then the pressure exerted by the gas is

$$
\begin{aligned}
& \text { A. } \frac{1}{3} \rho \bar{c}^{2} \\
& \text { B. } \frac{1}{3} \rho(c+v)^{2} \\
& \text { C. } \frac{1}{3} \rho(\bar{c}-v)^{2} \\
& \text { D. } \frac{1}{3} \rho\left(c^{-2}-v\right)^{2}
\end{aligned}
$$

Answer:
39. How is the mean free path (λ) in a gas related to the interatomic distance?
A. λ is 10 times the interatomic distance
B. λ is 100 times the interatomic distance
C. λ is 1000 times the interatomic distance
D. λ is $\frac{1}{10}$ times of the interatomic distance

Answer:

40. Four molecules have speeds
$2 k m / s, 3 k m / s, 4 k m / s$ and $5 k m / s$. The $r m s$ speed of these molecules in $k m / s$ is
A. $\sqrt{54 / 4}$
B. $\sqrt{54 / 2}$
C. 3.5
D. $3 \sqrt{3}$

Answer:

41. If $R=$ universal gas constant, the amount of heat needed to raise the temperature the temperature of 2 mol of an ideal monatomic gas from $273 K$ to $373 K$ when no work is done is
A. 100R
B. 150R
C. 300R
D. 500 R

Answer:

D Watch Video Solution

42. N molecules, each of mass m of gas
A and $2 N$ molecules each of mass $2 m$ of gas
B are containted in the same vessel which is maintained at temperature T. The mean square velocity of molecules of B type is denoted by v^{2} and the mean square velocity of

A type is denoted by $(\omega)^{2}$. the ω^{2} / v^{2} is:
A. 2
B. 1
C. $1 / 3$
D. $2 / 3$

Answer:

D Watch Video Solution

43. The root mean square value of the speed of the molecules in a fixed mass of an ideal gas
is increased by increasing
A. the volume while keeping the temperature constant
B. the pressure while keeping the volume constant
C. the temperature while keeping the pressure constant
D. the pressure while keeping the temperature constant

Answer:

44. P-V diagram of a diatomic gas is a straight
line passing through origin. The molar heat capacity of the gas in the process will be
A. 4 R
B. 2.5 R
C. 3 R
D. $\frac{4 R}{3}$

Answer:

D Watch Video Solution
45. For a gas, difference between two specific heats is $5000 \mathrm{~J} /$ mole $^{\circ} \mathrm{C}$. If the ratio of specific heats is 1.6 , the two specific heats in $\mathrm{J} / \mathrm{mole}^{-}{ }^{\circ} \mathrm{C}$ are

$$
\begin{aligned}
& \text { A. } C_{p}=1.33 \times 10^{4}, C_{v}=2.66 \times 10^{4} \\
& \text { B. } C_{p}=13.3 \times 10^{4}, C_{v}=8.33 \times 10^{3} \\
& \text { C. } C_{p}=1.33 \times 10^{4}, C_{v}=8.33 \times 10^{3} \\
& \text { D. } C_{p}=2.6 \times 10^{4}, C_{v}=8.33 \times 10^{4}
\end{aligned}
$$

Answer:

- Watch Video Solution

