©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

MAGNETISM AND MATTER

Physics

1. Two identical magnetic dipoles of magnetic moments $1 \cdot 0 A m^{2}$ each are placed at a separation of $2 m$ with their axes
perpendicular to each other. What is the resultant magnetic field at a point midway between the dipoles?

> A. $5 \times 10^{-7} T$
> B. $\sqrt{5} \times 10^{-7} T$
> C. $10^{-7} T$
> D. $2 \times 10^{-7} T$

Answer:

D Watch Video Solution
2. Two identical thin bar magnets, each of length L and pole strength m are placed at right angles to each other, with the N pole of one touching the S-pole of the other. Find the magnetic moment of the system.
A. 1 ml
B. 2 ml
C. $\sqrt{2} m l$
D. $m l / 2$
3. the magnetic lines of force inside a bar magnet
A. are from north-pole to south-pole of the magnet
B. do not exist
C. depend upon the area of cross-section
of the bar magnet

D. are from south-pole to north-pole of the

magnet.

Answer:

D Watch Video Solution

4. Relative permitivity and permeability of a material ε_{r} and μ_{r}, respectively. Which of the following values of these quantities are allowed for a diamagnetic material?

$$
\begin{aligned}
& \text { A. } \varepsilon_{r}=0.5, \mu=1.5 \\
& \text { B. } \varepsilon_{r}=1.5, \mu_{r}=0.5 \\
& \text { C. } \varepsilon_{r}=0.5, \mu_{r}=0.5 \\
& \text { D. } \varepsilon_{r}=1.5, \mu_{r}=1.5
\end{aligned}
$$

Answer:

- Watch Video Solution

5. Three identical bars A, B and C are made of different magnetic materials. When kept in a uniform magnetic field, the field lines around
them look as follows:

Make the correspondence of these bars with
their material being diamagnetic
ferromagnetic (F) and paramagnetic (P):

A. $A \leftrightarrow D, B \leftrightarrow P, C \leftrightarrow F$
B. $A \leftrightarrow F, B \leftrightarrow D, C \leftrightarrow P$
C. $A \leftrightarrow P, B \leftrightarrow F, C \leftrightarrow D$
D. $A \leftrightarrow F, B \leftrightarrow P, C \leftrightarrow D$

- Watch Video Solution

6. Curie temperature is the temperature above which
A.a ferromagnetic material becomes
paramagnetic
B.a paramagnetic material becomes
diamagnetic
C.a ferromagnetic material becomes
diamagnetic
D. a paramagnetic material becomes
ferromagnetic

Answer:

D Watch Video Solution

7. A watch glass containing some powdered substance is placed between the pole pieces
of a magnet. Deep concavity is observed at the centre. The substance in the watch glass is
A. iron
B. chromium
C. carbon
D. wood

Answer:

- Watch Video Solution

8. A coil in the shape of an equilateral triangle of side I is suspended between the pole pieces of a permanent magnet such that \vec{B} is in the
plane of the coil. If due to a current i in the triangle a torque τ acts on it, the side I of the triangle is

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}}\left(\frac{\tau}{B \cdot i}\right)^{\frac{1}{2}} \\
& \text { B. } 2\left(\frac{\tau}{\sqrt{3} B \cdot i}\right)^{\frac{1}{2}} \\
& \text { C. } \frac{2}{\sqrt{3}}\left(\frac{\tau}{B \cdot i}\right) \\
& \text { D. } \frac{1}{\sqrt{3}} \frac{\tau}{B \cdot i}
\end{aligned}
$$

Answer:

- Watch Video Solution

9. A compass needle whose magnetic moment is $60 A m^{2}$, is directed towards geographical north at any place experiencing moment of force of $1.2 x \times 10^{-3} \mathrm{Nm}$. At that place the horizontal component of earth field is 40 micro W / m^{2}. What is the value of dip angle at that place?
A. 30°
B. 60°
C. 45°
D. 15°

Answer:

D Watch Video Solution

10. The material suitable for making electromagnets should have
A. high retentivity and low coercivity
B. low retentivity and low coercivity
C. high retentivity and high coercivity
D. low retentivity and high coercivity

Answer:

D Watch Video Solution

11. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is
$2 s$. The magnet is cut along its length into
three equal parts and these parts are then placed on each other with their like poles together. The time period of this combination will be
A. $2 \sqrt{3} s$
B. $\frac{2}{3} s$
C. 2 s
D. $\frac{2}{\sqrt{3}} s$

Answer:

D Watch Video Solution
12. Hysteresis loops for two magnetic materials A and B are given below:

These materials are used to make magnets for electric generators , transformer core and electromagnet core. Then it is proper to use :
A. A for transformers and B for electric generators.
B. B for electronmagnets and transformers.
C. A for electric generators and trasformers.

D. A for electronmagnets and B for electric generators.

Answer:

13. Which of the following is responsible for the earth's magnetic field ?
A. Convective currents in earth's core.
B. Diversive current in earth's core.
C. Rotational motion of earth
D. Translational motion of earth

Answer:

D Watch Video Solution
14. In a vibration magnetometer, the time period of a bar magnet oscillating in horizontal componnt of earth's magnetic field is 2 sec . When a magnet is brought near and parallel to it, the time period reduces to 1 sec .

The ratio H / F of the horizontal component
H and the field F due to magnet will be
A. 3
B. $1 / 3$
C. $\sqrt{3}$
D. $1 / \sqrt{3}$

Answer:

- Watch Video Solution

15. Let V and H be the vertical and horizontal
components of earth's magnetic field at any point on earth. Near the north pole
A. $V \gg H$
B. $V \ll H$
C. $V=H$
D. $\mathrm{V}=\mathrm{H}=\mathrm{O}$

Answer:

D Watch Video Solution

16. A thin circular wire carrying a current I has
a magnetic moment M. The shape of the wire
is changed to a square and it carries the same
current. It will have a magnetic moment
A. M
B. $\frac{4}{\pi^{2}} M$
C. $\frac{4}{\pi} M$

D. $\frac{\pi}{4} M$

Answer:

D Watch Video Solution

17. A bar magnet of magnetic moment M is
placed at right angles to a magnetic induction
B. If a force F is experienced by each pole of
the magnet, the length of the magnet will be
A. $F / M B$
B. $M B / / F^{`}$
C. $B F / M$
D. $M F / / B^{`}$

Answer:

D Watch Video Solution

18. If the susceptibility of dia, para and ferro
magnetic materials are $\chi_{d}, \chi_{p}, \chi_{f}$ respectively,
then
A. $\chi_{d}<\chi_{p}<\chi_{f}$
B. $\chi_{d}<\chi_{f}<\chi_{p}$
C. $\chi_{f}<\chi_{d}<\chi_{p}$
D. $\chi_{f}<\chi_{p}<\chi_{d}$

Answer:

D Watch Video Solution

19. The basic magnetization curve for a ferromagnetic material is shown in figure.

Then, the value of relative permeability is
highest for the point
A. P
B. Q
C. R
D. S

Answer:

D Watch Video Solution
20. A magnetic needle suspended by a silk
thread is vibrating in the earth's magnetic
field. If the temperature of the needle is increased by $500^{\circ} \mathrm{C}$, then
A. time period decreases
B. time period increases
C. time period remians unchanged
D. the needle stops vibrating

Answer:

21. A bar magnet has a length of 8 cm . The magnetic field at a point at a distnace 3 cm
from the centre in the broadside-on position is found to be $4 \times 10^{-6} T$. Find the pole strength of the magnet.

$$
\begin{aligned}
& \text { A. } 6 \times 10^{-5} \mathrm{Am} \\
& \text { B. } 5 \times 10^{-5} \mathrm{Am} \\
& \text { C. } 2 \times 10^{-4} \mathrm{Am} \\
& \text { D. } 3 \times 10^{-4} \mathrm{Am}
\end{aligned}
$$

Answer:

D Watch Video Solution

22. A vibrations magnetometer consists of two
indentical bar magnet placed one over the other that they are perpendicular and bisect each other. The time period of oscillation in a horizontal magnetic field is $2^{5 / 4} \mathrm{~s}$. One of the magnets is removed and if the other magnet oscillates in the same field, then the time period in second is :
A. $2^{1 / 4}$
B. $2^{1 / 2}$
C. 2
D. $2^{3 / 4}$

Answer:

D Watch Video Solution

23. A magnetic needle is kept in a non uniform magnetic field. It experiences
A. neither a force nor a torque
B. a torque but not a force
C. a force but not a torque
D. a force and a torque

Answer:

D Watch Video Solution
24. Needles N_{1}, N_{2}, and N_{3} are made of a ferromagnetic, a paramagnetic and a
diamagnetic substance respectively. A magnet when brought close to them will
A. attract N_{1} and N_{2} strongly but repel
N_{3}
B. attract N_{1} strongly, N_{2} weakly and repel
N_{3} weakly
C. attract N_{1} strongly, but repel
N_{2} and N_{3} weakly
D. attract all three of them

- Watch Video Solution

25. Figure shows a small magnetised needle P placed at a point O . The arrow shows the direction of magnetic moment. The other arrows show different positions (and orientations of the magnetic moment) of another identical magnetised needle Q .

(a) In which configuration is the system not in equilibrium?
(b) In which configuration is the system in (i) stable and (ii) unstable equilibrium?
(c) Which configuration corresponds to the
lowest potential energy among all the

configurations shown?

A. $P Q_{3}$
B. $P Q_{4}$
C. $P Q_{5}$
D. $P Q_{6}$

Answer:
(Watch Video Solution
26. A dip needle lies initially in the magnetic merdian when it shows an angle of $\operatorname{dip} \theta$ at a place. The dip circle is rotated through an angle x in the horizontal plane and then it shows an angle of $\operatorname{dip} \theta^{\prime}$. Then $\frac{\tan \theta^{\prime}}{\tan \theta}$ is
A. $\frac{1}{\cos x}$
B. $\frac{1}{\sin x}$
C. $\frac{1}{\tan x}$
D. $\cos x$

- Watch Video Solution

27. Two tangent galvanometers having coils of the same radius are connected in series. A current flowing in them produces deflections of 60° and 45° respectively. The ratio of the number of turns in the coils is
A. $4 / 3$
B. $\frac{\sqrt{3}+1}{1}$
c. $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
D. $\frac{\sqrt{3}}{1}$

Answer:

D Watch Video Solution

28. Following figures show the arrangement of
bar magnets in different configurations. Each
magnet has magnetic dipole moment (m).
Which configuration has highest value of magnetic dipole moment?
A. \int_{s}^{N}
B.

(c)

(d)

Answer:

- Watch Video Solution

29. A compose needle which is allowed to move in a horizontal plane is taken to a geomagnetic pole. It
A. will become rigid showing no movement
B. will stay in any position
C. will stay in north-south direction only
D. will stay in east-west direction only

Answer:

D Watch Video Solution
30. If a magnetic dipole of moment M situated
in the direction of a magnetic field B is rotated by 180°, then the amount of work done is

A. MB

B. 2 MB
C. $\frac{M B}{\sqrt{2}}$
D. 0

Answer:

- Watch Video Solution

31. A bar magnet is oscillating in the earth's magnetic field with a period T. What happens to its period and motion if its mass is quadrupled
A. motion remains simple harmonic with
new period $=T / 2$
B. motion remains simple harmonic with
new period $=2 \mathrm{~T}$
C. motion remains simple harmonic with
new period $=4 T$

D. motion remains simple harmonic and

 the period stays nearly constant
Answer:

D Watch Video Solution

32. The magnetic field of earth at the equator is approximately
$4 x \times 10^{-5} T$. Theradiusofearthis 6.4
$10^{\wedge}(6)^{\wedge} \mathrm{m}$. Then the dipole moment of the earth will be nearly of the order of:
A. $10^{23} A m^{2}$
B. $10^{20} \mathrm{Am}^{2}$
C. $10^{16} \mathrm{Am}^{2}$
D. $10^{10} \mathrm{Am}^{2}$

Answer:

D Watch Video Solution
33. The relative permeability of a medium is
0.075. What is its magnetic susceptibility?
A. 0.925
B. -0.925
C. 1.075
D. -1.075

Answer:

D Watch Video Solution

34. A dip circle is adjusted so that its needle moves freely in the magnetic meridian. In this position, the angle of dip ia 40°. Now the dip
circle is rotated so that the plane in which the needle moves makes an angle of 30° with the magnetic meridian. In this position the needle will dip by an angle
A. 40°
B. 30°
C. more than 40°
D. less than 40°

Answer:

35. The mid points of two small magnetic dipoles of length d in end-on positions, are separated by a distance $\mathrm{x},(x \gg d)$. The force between them is proportional to x^{-n} where n is:

A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution

36. At a temperature of $30^{\circ} C$, the
susceptibility of ferromagnetic material is
found to be ' χ ' its susceptibility at $333^{\circ} C$ is
A. χ
B. 0.5χ

C. 2χ

D. 11.1χ

Answer:

D Watch Video Solution

37. The susceptibility of annealed iron at saturation is 5500 . Find the permeability of annealed iron at saturation.
A. 6.9×10^{-3}
B. 5.1×10^{-2}
C. 5×10^{2}
D. 3.2×10^{-5}

Answer:

D Watch Video Solution

38. A short magnet oscillates in an oscillation magnetometer with a time period of 0.10s where the earth's horizontal magnetic field is $24 \mu T$. A downward current of $18 A$ is
established in a vertical wire placed 20 cm east of the magnet. Find the new time period.
A. 0.076 s
B. 0.5 s
C. 0.1s
D. 0.2 s

Answer:
(Watch Video Solution
39. A permanent magnet in the shape of a thin
cylinder of length 10 cm has $M=10^{6} \mathrm{~A} / \mathrm{m}$.

Calculate the magnetisation current I_{M}. (Here
M is the intensity of magnetisation).
A. $10^{5} \mathrm{~A}$
B. $10^{6} A$
C. $10^{7} \mathrm{~A}$
D. $10^{8} \mathrm{~A}$

Answer:

40. The earth's magnetic field lines resemble that of a dipole at the centre of the earth. If the magnetic moment of this dipole is close to $8 x \times 10^{22} A m^{2}$, the value of earth's magnetic field near the equator is close to (radius of the earth $\left.=6.4 \times 10^{6} \mathrm{~m}\right)$
A. 0.6 Gauss
B. 1.2 Gauss
C. 1.8 Gauss

D. 0.32 Gauss

Answer:

D Watch Video Solution

41. The coercitivity of a small magnet where
the ferromagnet gets demagnetized is
$3 \times 10^{3} \mathrm{Am}^{-1}$. The current required to be passed in a solenoid of length 10 cm and number of turns 100 , so that the magnet gets demagnetized when inside the solenoid, is :
A. 30 mA
B. 60 mA
C. $3 A$
D. $6 A$

Answer:

D Watch Video Solution

42. A thin bar magnet of length 21 and breadth 2 b pole strength m and magnetic moment M is divided into four equal parts
with length and breadth of each part being half of original magnet.

Then, the magnetic moment of each part is
A. $M / 4$
B. M
C. $M / 2$
D. 2 M

Answer:

D Watch Video Solution

