©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

MECHANICAL PROPERTIES OF FLUIDS

Physics

1. The density of water at the surface of ocean
is ρ. If the bulk modulus of water is B, then
the density of ocean water at depth, when the
pressure at a depth is αp_{0} and p_{0} is the atmospheric pressure is

$$
\begin{aligned}
& \text { A. } \frac{\rho B}{B-(n-1) P_{0}} \\
& \text { B. } \frac{\rho B}{B+(n-1) P_{0}} \\
& \text { C. } \frac{\rho B}{B-n P_{0}} \\
& \text { D. } \frac{\rho B}{B+n P_{0}}
\end{aligned}
$$

Answer:

D Watch Video Solution

2. A ball of radius r and density r falls freely under gravity through a distance h before entering water. Velocity of ball does not change even on entering water. If viscosity of
water is η the value of h is given by

A. $\frac{2}{9} r^{2}\left(\frac{1-\rho}{\eta}\right) g$
B. $\frac{2}{81} r^{2}\left(\frac{\rho-1}{\eta}\right) g$
C. $\frac{2}{81} r^{4}\left(\frac{\rho-1}{\eta}\right) g$
D. $\frac{2}{9} r^{4}\left(\frac{\rho-1}{\eta}\right) g$

Answer:

D Watch Video Solution

3. Two parallel glass plates are dipped partly in
the liquid of denstiy ' d ' keeping them vertical.

If the distance between the plates is ' x ', Surface tension is T and angle of contact is θ then ries of liquid between the plates due to capillary will be

> A. $\frac{\mathrm{T} \cos \theta}{x d}$ B. $\frac{2 \mathrm{~T} \cos \theta}{x d g}$ C. $\frac{2 \mathrm{~T}}{x d \cos \theta}$ D. $\frac{\mathrm{T} \cos \theta}{x d g}$

Answer:

- Watch Video Solution

4. A liquid is allowed to flow into a tube of truncated cone shape. Identify the correct statement from the following
A. The speed is high at the wider end and
high at the narrow end
B. The speed is low at the wider end and high at the narrow end
C. The speed is same at both ends in a
streamline flow
D. The liquid flows with uniform velocity in
the tube

Answer:

5. A wide vessel with small hole in the bottom
is filled with water and kerosene, Neglecting viscosity, the velocity of water flow v , if the thickness of water layer is H_{1} and that of kerosene layer is H_{2} is (density of water $\rho_{1} /$ and that of kerosene is $\rho_{2} /$.

$$
\begin{aligned}
& \text { A. }\left[2 g\left(h_{1}+h_{2}\right)\right]^{1 / 2} \\
& \text { B. }\left[2 g\left(h_{1} \rho_{1}+h_{2} \rho_{2}\right)\right]^{1 / 2} \\
& \text { C. }\left[2 g\left(h_{1}+h_{2}\left(\rho_{2} / \rho_{1}\right)\right)\right]^{1 / 2}
\end{aligned}
$$

$$
\text { D. }\left[2 g\left(h_{1}+h_{2}\left(\rho_{1} / \rho_{2}\right)\right)\right]^{1 / 2}
$$

Answer:

D Watch Video Solution

6. A capillary tube of radius r is immersed
vertically in a liquid such that liquid rises in it
to height h (less than the length of the tube).

Mass of liquid in the capillary tube is m . If radius of the capillary tube is increased by
50%, then mass of liquid that will rise in the tube, is
A. $\frac{2}{3} \mathrm{~m}$
B. $\frac{4}{9} \mathrm{~m}$
C. $\frac{3}{2} \mathrm{~m}$
D. $\frac{9}{4} \mathrm{~m}$

Answer:
(Watch Video Solution

7. A lead shot of a 1 mm diameter falls through

a long column of glycerine. The variation of its

velocity v with distance covered is represented

by,

Answer:

- Watch Video Solution

8. Two mercury drops (each of radius r) merge
to form a bigger drop. The surface energy of
the bigger drop, if T is the surface tension is
A. $4 \pi r^{2} T$
B. $2 \pi r^{2} T$
C. $2^{8 / 3} \pi r^{2} T$
D. $2^{5 / 3} \pi r^{2} T$

Answer:

- Watch Video Solution

9. Wax is coated on the inner wall of a capillary
tube and the tube is then dipped in water.

Then, compared to the unwaxed capillary, the angle of contact θ and the height h upto which water rises change. These changes are :
A. θ increases and h also increases
B. θ decreases and h also decreases
C. θ increases and h decreases
D. θ decreases and h increases

Answer:

D Watch Video Solution

10. A rain drop of radius 0.3 mm has a terminal
velocity in air $=1 \mathrm{~m} / \mathrm{s}$. The viscosity of air is
8×10^{-5} poise. The viscous force on it is
A. 45.2×10^{-4} dyne
B. 101.73×10^{-5} dyne
C. 16.95×10^{-4} dyne
D. 16.95×10^{-5} dyne

Answer:

D Watch Video Solution

11. A water tank of height 10 m , completely
filled with water is placed on a level ground. It has two holes one at $3 m$ and the other at $7 m$ form its base. The water ejecting from
A. both the holes will fall at the same spot
B. upper hole will fall farther than that
from the lower hole
C. upper hole will fall closer than that from
the lower hole
D. more information is required

Answer: A

D Watch Video Solution

12. Two capillary of length L and $2 L$ and of radius R and $2 R$ are connected in series. The net rate of flow of fluid through them will be
(given rate to the flow through single capillary, $\left(\mathrm{X}=\frac{\pi \mathrm{PR}^{4}}{8 \eta \mathrm{~L}}\right)$
A. $\frac{8}{9} X$
B. $\frac{9}{8} X$
C. $\frac{5}{7} X$
D. $\frac{7}{5} X$

Answer:

D Watch Video Solution

13. A candle of diameter d is floating on a
liquid in a cylindrical container of diameter
$D(D \ll d)$ as shown in figure. If is burning at the rate of $2 \mathrm{~cm} / \mathrm{h}$ then the top of the
candle will :

A. remain at the same height
B. fall at the rate of $1 \mathrm{~cm} /$ hour
C. fall at the rate $2 \mathrm{~cm} /$ hour
D. go up at the rate of $1 \mathrm{~cm} /$ hour

Answer:

- Watch Video Solution

14. An isolated and charged spherical soap
bubble has a radius 'r' and the pressure inside
is atmospheric. If ' T ' is the surface tension of soap solution, then charge on drop is:
A. 8
B. 9
C. 7
D. 2

Answer:

D Watch Video Solution

15.

A thread is tied slightly loose to a wire frame
as in figure and the frame is dipped into a soap solution and taken out. The frame is
comletely covered with the film. When the portion A puntured with a pin The thread.
A. becomes concave towards A
B. becomes convex towards A
C. remains in the initial position
D. either (a) or (b) depending on the size of

A w.r. t. B

Answer:

- Watch Video Solution

16. Which of the following expressions
represents the excess of pressure inside the soap bubble?

$$
\begin{aligned}
& \text { A. } P_{i}-P_{\circ}=\frac{s}{r} \\
& \text { В. } P_{i}-P_{\circ}=\frac{2 s}{r} \\
& \text { С. } P_{i}-P_{\circ}=\frac{2 s}{r}+h \rho g \\
& \text { D. } P_{i}-P_{\circ}=\frac{4 s}{r}
\end{aligned}
$$

Answer:

D Watch Video Solution
17. A spherical solid of volume V is made of a material of density ρ_{1}. It is falling through a liquid of density $\rho_{2}\left(\rho_{2}<\rho_{1}\right)$. Assume that the liquid applies a viscous froce on the ball that is proportional ti the its speed v, ie., $F_{\text {viscous }}=-k v^{2}(k>0)$. The terminal speed of the ball is
A. $\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}$
B. $\frac{\operatorname{Vg} \rho_{1}}{k}$
C. $\sqrt{\left(V \frac{g\left(\rho_{1}\right)}{k}\right)}$
D. $\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}$

Answer:

D Watch Video Solution

18. Select the correct statements from the

following.

A. Bunsen burner and sprayers work on

Bernoulli's principle
B. Blood flow in arteries is explained by

Bernoulli's principle

C. A siphon works on account of
atmospheric pressure
D. All are correct

Answer:

- Watch Video Solution

19. The wattability of a surface by a liquid depends primarily on
A. surface tension
B. density
C. angle of contact between the surface
and the liquid
D. viscosity

Answer:

20. The relative velocity of two parallel layers of water is $8 \mathrm{~cm} / \mathrm{sec}$. If the perpendicular distance between the layers is 0.1 cm , then velocity gradient will be
A. $80 / \mathrm{sec}$
B. $60 / \mathrm{sec}$
C. $50 / \mathrm{sec}$
D. $40 / \mathrm{sec}$

Answer:

21. Choose the correct statement
A. Terminal velocities of rain drops are proportional to square of their radii
B. Water proof agents decrease the angle of contact between water and fibres
C. Detergents increase the surface tension
of water
D. Hydraulic machines work on the principle of Torricelli's law

Answer:

D Watch Video Solution

22. When a ball is released from rest in a very
long column of viscous. Liquid its downwards
acceleration is a (just after release). Then its
acceleration when it has acquired two third of
the maximum velocity:
A. 2
B. 3
C. 4
D. 5

Answer:

D Watch Video Solution

23. A ring is cut from a platinum tube 8.5 cm internal and 8.7 cm external diameter. It is supported horizontally from the pan of a
balance, so that it comes in contact with the
water in a glass vessel. If an extra $3.103 g . f$. is
required to pull it away from water, the surface tension of water is
A. 72 dyne cm^{-1}
B. 70.80 dyne cm^{-1}
C. 63.35 dyne $^{\mathrm{cm}^{-1}}$
D. 60dyne cm^{-1}

Answer:

24. Which graph represents the variation of
surface tension with temperature over small
temperature ranges for water?

C.
(c) S.T.

Answer:

D Watch Video Solution

25. When a large bubble rises from the bottom
of a lake to the surface its radius doubles. If
atmospheric pressure is equal to that of
column of water height H then the depth of
lake is
A. H
B. 2 H
C. 7 H
D. 8 H

Answer: C

D Watch Video Solution

26. What is the velocity v of a metallic ball of radius r falling in a tank of liquid at the instant when its acceleration is one-half that of a freely falling body ? (The densities of metal
and of liquid are r and s respectively, and the viscosity of the liquid is η).

$$
\begin{aligned}
& \text { A. } \frac{r^{2} g}{9 \eta}(\rho-2 \sigma) \\
& \text { B. } \frac{r^{2} g}{9 \eta}(2 \rho-\sigma) \\
& \text { C. } \frac{r^{2} g}{9 \eta}(\rho-\sigma) \\
& \text { D. } \frac{2 r^{2} g}{9 \eta}(\rho-\sigma)
\end{aligned}
$$

Answer:
27. Two pieces of metals are suspended from
the arms of a balance and are found to be in
equilibrium when kept immersed in water. The
mass of one piece is 32 g and its density
$8 \mathrm{~g} \mathrm{~cm}^{-3}$. The density of the other is
5 g per cm^{3}. Then the mass of the other is
A. 28 g
B. 35 g
C. 21 g
D. 33.6 g

Answer:

D Watch Video Solution

28. A block of material of specific gravity 0.4 is
held submerged at a depth of 1 m in a vessel
filled with water. The vessel is accelerated upwards with acceleration of $a_{o}=g / 5$. If the
block is released at $\mathrm{t}=0$, neglecting viscous effects, it will reach the water surface at t equal to $\left(g=10 \frac{m}{s^{2}}\right)$:
A. 0.60 s
B. 0.33 s
C. 3.3 s
D. 1.2 s

Answer:

D Watch Video Solution

29. Figure shows a capillary tube C dipped in a
liquid that wets it. The liquid rises to a point A
. If we blow air through the horizontal tube H,
what will happen to the liquid column in the capillary tube?

A. $=H$
B. $>H$
C. $<H$
D. zero

Answer:

D Watch Video Solution

30. A small spherical ball falling through a viscous medium of negligible density has terminal velocity v. Another ball of the same mass but of radius twice that of the earlier falling through the same viscous medium will have terminal velocity
B. $v / 4$
C. $v / 2$
D. 2 v

Answer:

D Watch Video Solution

31. Two non-mixing liquids of densities ρ and ($n>1$) are put in a container. The height of each liquid is h. A solid cylinder of length L and density d is put in this container. The
cylinder floats with its axis vertical and length
$p L(p<1)$ in the denser liquid. The density d is equal to :

$$
\begin{aligned}
& \text { A. }\{1+(n+1) p\} \rho \\
& \text { B. }\{2+(n+1) p\} \rho \\
& \text { C. }\{2+(n-1) p\} \rho \\
& \text { D. }\{1+(n-1) p\} \rho
\end{aligned}
$$

Answer:

D Watch Video Solution
32. A thin liquid film formed between a Ushaped wire and a light slider supports a weight of $1.5 \times 10^{-2} N$ (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid film is

A. $0.0125 \mathrm{Nm}^{-1}$
B. $0.1 \mathrm{Nm}^{-1}$
C. $0.05 \mathrm{Nm}^{-1}$
D. $0.025 \mathrm{Nm}^{-1}$

Answer:

D Watch Video Solution

33. Two liquids of densities d_{1} and d_{2} are flowing in identical capillaries under same pressure difference. If t_{1} and t_{2} are the time taken for the flow of equal quantities of liquid,
then the ratio of coefficients of viscosities of
liquids must be

> A. $\frac{d_{1} t_{1}}{d_{2} t_{2}}$
> B. $\frac{t_{1}}{t_{2}}$
> C. $\frac{d_{2} t_{2}}{d_{1} t_{1}}$
> D. $\sqrt{\frac{d_{1} t_{1}}{d_{2} t_{2}}}$

Answer:

D Watch Video Solution

34. Let T_{1} be surface tension between solid and air, T_{2} be the surface tension between solid and liquid and T be the surface tension between liquid and air. Then in equilibrium, for a drop of liquid on a clean glass plate, the correct relation is (θ is angle of contact)

A. $\cos \theta=\frac{T}{T_{1}+T_{2}}$
B. $\cos \theta=\frac{T}{T_{1}-T_{2}}$
C. $\cos \theta=\frac{T_{1}+T_{2}}{T}$
D. $\cos \theta=\frac{T_{1}-T_{2}}{T}$

Answer:

D Watch Video Solution

35. A uniform rod of density ρ is placed in a wide tank containing a liquid of density $\rho_{0}\left(\rho_{0}>\rho\right)$. The depth of liquid in the tank is half the length of the rod. The rod is in
equilibrium, with its lower end resting on the bottom of the tank. In this position the rod makes an angle θ with the horizontal.

$$
\begin{aligned}
& \text { A. } \sin \theta=\frac{1}{2} \sqrt{\rho_{0} / \rho} \\
& \text { B. } \sin \theta=\frac{1}{2} \cdot \frac{\rho_{0}}{\rho} \\
& \text { C. } \sin \theta=\sqrt{\rho_{0} / \rho} \\
& \text { D. } \sin \theta=\rho_{0} / \rho
\end{aligned}
$$

Answer: A

D Watch Video Solution

36. A spherical ball of iron of radius 2 mm is falling through a column of glycerine. If densities of glycerine and iron are respectively $1.3 \times 103 \mathrm{~kg} / \mathrm{m}^{3}$ and $8 \times 103 \mathrm{~kg} / \mathrm{m}^{3} . \quad \eta$ for glycerine $=0.83 \mathrm{Nm}^{-2} \mathrm{sec}$, then the terminal velocity
A. $0.7 \mathrm{~m} / \mathrm{s}$
B. $0.07 \mathrm{~m} / \mathrm{s}$
C. $0.007 \mathrm{~m} / \mathrm{s}$
D. $0.0007 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

37. A film of water is formed between two straight parallel wires each 10 cm long and at
a seperation of 0.5 cm . Calculate the work required to increase 1 mm distance between
the wires. Surface tension of water $=72 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.
A. 36 erg
B. 288 erg
C. 144 erg
D. 72 erg

Answer:

- Watch Video Solution

38. A water proofing agent chages the angle of contact from
A. from obtuse to acute.
B. from acute to obtuse
C. from obtuse to $\frac{\pi}{2}$.
D. from acute to $\frac{\pi}{2}$.

Answer:

D Watch Video Solution

39. A thin metal disc of radius r floats on water surface and bends the surface downwards along the perimeter making an angle θ with vertical edge of the disc of the disc. If the disc
dispplaces a weight of water W and surface tension of water is T, then the weight of metal disc is
A. $2 \pi r T+W$
B. $2 \pi r T \cos \theta-W$
C. $2 \pi r T \cos \theta+W$
D. $W-2 \pi r T \cos \theta$

Answer:

D Watch Video Solution

A jar filled with two non-mixing liquid 1 and 2
having densities ρ_{1} and ρ_{2} respectively. A solid ball, made of a material of density ρ_{3} is dropped in the jar. It come to equilibrium in
the position shown in the figure. Which of the following is true for ρ_{1}, ρ_{2} and ρ_{3} ?
A. $\rho_{3}<\rho_{1}<\rho_{2}$
B. $\rho_{1}>\rho_{3}>\rho_{2}$
C. $\rho_{1}<\rho_{2}<\rho_{3}$
D. $\rho_{1}<\rho_{3}<\rho_{2}$

Answer: D

D Watch Video Solution

41. On heating water, bubbles being formed at
the bottom of the vessel detach and rise. Take
the bubbles to be spheres of radius R and
making a circular contact of radius r with the bottom of the vessel. If $r \ll R$ and the surface tension of water is T, value of r just before bubbles detach is: (density of water is $\left.\rho_{w}\right)$

A. $R^{2} \sqrt{\frac{2 \rho w g}{3 T}}$
B. $R^{2} \sqrt{\frac{\rho w g}{6 T}}$
C. $R^{2} \sqrt{\frac{\rho w g}{T}}$
D. $R^{2} \sqrt{\frac{3 \rho w g}{T}}$

Answer:

D Watch Video Solution

42. The lift of an air plane is based on
A. Torricelli's theorem
B. Bernoulli's theorem
C. Law of gravitation

D. conservation of linear momentum

Answer:

- Watch Video Solution

43. The cylindrical tube of a spray pump has
radius R, one end of which has n fine holes,
each of radius r. If the speed of the liquid in
the tube is V, the speed of the ejection of the
liquid through the holes is:

$$
\text { A. } \frac{V R^{2}}{n r^{2}}
$$

B. $\frac{V R^{2}}{n^{3} r^{2}}$
C. $\frac{V^{2} R}{n r}$
D. $\frac{V R^{2}}{n^{2} r^{2}}$

Answer:

- Watch Video Solution

44. A drop of liquid of density ρ is floating half-immersed in a liquid of density d. If σ is the surface tension the diameter of the drop of the liquid is

Answer:

D Watch Video Solution

