©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

MOTION IN A STRAIGHT LINE

Physics

1. A particle starts moving rectilinearly at time
$t=0$ such that its velocity v changes with
time t according to the equation $v=t^{2}-t$,
where t is in seconds and v in $m s^{-1}$. Find the
time interval for which the particle retards.

$$
\begin{aligned}
& \text { A. } \frac{1}{2}<t<1 \\
& \text { B. } \frac{1}{2}>t>1 \\
& \text { C. } \frac{1}{4}<t<1 \\
& \text { D. } \frac{1}{2}<t<\frac{3}{4}
\end{aligned}
$$

Answer:

D Watch Video Solution

2. The co-ordinates of a moving particle at anytime 't' are given by $x=\alpha t^{3}$ and $y=\beta t^{3}$.

The speed of the particle at time ' t ' is given by

> A. $3 t \sqrt{\alpha^{2}+\beta^{2}}$
> B. $3 t^{2} \sqrt{\alpha^{2}+\beta^{2}}$
> C. $t^{2} \sqrt{\alpha^{2}+\beta^{2}}$
> D. $\sqrt{\alpha^{2}+\beta^{2}}$

Answer:

D Watch Video Solution
3. If a car covers $\frac{2}{(5)^{t h}}$ of the total distance with v_{1} speed and $\frac{3}{(5)^{t h}}$ distance with v_{2}.

Then average speed is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \sqrt{v_{1} v_{2}} \\
& \text { B. } \frac{v_{1}+v_{2}}{2} \\
& \text { C. } \frac{2 v_{1} v_{2}}{v_{1}+v_{2}} \\
& \text { D. } \frac{5 v_{1} v_{2}}{3 v_{1}+2 v_{2}}
\end{aligned}
$$

Answer:

4. Choose the correct statements from the following.

A. The magnitude of instantaneous velocity

of a particle is equal to its instantaneous
speed

B. The magnitude of the average velocity in

an interval is equal to its average speed in that interval.

C. It is possible to have a situation in which

the speed of the particle is never zero
but the average speed in an interval is
zero.
D. It is possible to have a situation in which
the speed of particle is zero but the average speed is not zero.

Answer:

5. A particle located at $x=0$ at time $t=0$, starts moving along with the positive x - direction with a velocity 'v' that varies as $v=a \sqrt{x}$. The displacement of the particle varies with time as
A. t^{2}
B. t
C. $t^{1 / 2}$
D. t^{3}

- Watch Video Solution

6. Figure here gives the speed-time graph for a body. The displacement travelled between $\mathrm{t}=$ 1.0 second and $t=7.0$ second is nearest to

A. 1.5 m
B. 2 m

C. 3 m

D. 4 m

Answer:

D Watch Video Solution

7. A particle is moving in a straight line with initial velocity u and uniform acceleration f. If the sum of the distances travelled in $t^{t h}$ and $(t+1)^{t h}$ seconds is 100 cm , then its velocity after t seconds, in cm / s, is.
A. 80
B. 50
C. 20
D. 30

Answer:

D Watch Video Solution

8. A thief is running away on a straight road in
a moving with a speed of $9 m s^{-1}$. A policeman
chases him on a motor cycle moving at a
speed of $10 \mathrm{~ms}^{-1}$. If the instantaneous
separation of the jeep from the motor cycle is
100 m , how long will it take for the policeman to catch the thief ?
A. 1 second
B. 19 second
C. 90 second
D. 100 second

Answer:

9. The displacement x of a particle varies with time according to the relation
$x=\frac{a}{b}\left(1-e^{-b t}\right)$. Then select the false alternative.
A. $A t t=\frac{1}{b}$ the displacement of the particle is nearly $\frac{2}{3}\left(\frac{a}{b}\right)$
B. The velocity and acceleration of the particle at $t=0$ are a and $-a b$ respectively
C. The particle cannot go beyond $x=\frac{a}{b}$ D. The particle will not come back to its starting point at $t \rightarrow 00$

Answer:

D Watch Video Solution

10. metro train starts from rest and in five seconds achieves a speed $108 \mathrm{~km} / \mathrm{h}$. After that it moves with constant velocity and comes to rest after travelling 45 m with uniform
retardation. If total distance travelled is 395 m ,
find total time of travelling.
A. 12.2 s
B. 15.3 s
C. 9 s
D. 17.2 s

Answer:
(Watch Video Solution
11. The deceleration experienced by a moving motor blat, after its engine is cut-off is given
by $d v / d t=-k v^{3}$, where k is constant. If v_{0} is the magnitude of the velocity at cut-off, the magnitude of the velocity at a time t after the cut-off is.
A. $\frac{v_{0}}{\sqrt{\left(2 v_{0} .^{2} k t+1\right)}}$
B. $v_{0} e^{-k t}$
C. $v_{0} / 2$
D. v_{0}

Answer:

D Watch Video Solution

12. The velocity of a particle is $v=v_{0}+g t+f t^{2}$. If its position is $x=0$ at
$t=0$, then its displacement after unit time $(t=1)$ is
A. $v_{0}+g / 2+f$
B. $v_{0}+2 g+3 f$
C. $v_{0}+g / 2+f / 3$

D. $v_{0}+g+f$

Answer: C

D Watch Video Solution

13. A man is 45 m behind the bus when the bus
starts acceleration from rest with acceleration
$2.5 \frac{m}{s^{2}}$. With what minimum velocity should man start running to catch the bus?
A. $12 m / s$
B. $14 m / s$
C. $15 m / s$
D. $16 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

14. A body is at rest at $x=0$. At $t=0$, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through $x=0$
moving in the positive x-direction with a constant speed. The position of the first body is given by $x_{1}(t)$ after time ' t ', and that of the second body by $x_{2}(t)$ after the same time interval . which of the following graphs correctly describes $\left(x_{1}-x_{2}\right)$ as a function of time 't' ?
A.

B.
(b)

C.
(c)

${ }^{t}(\mathrm{~d})$

Answer:

- Watch Video Solution

15. From the top of a multi-storeyed building

40m tall, a boy projects a stone vertically upwards with an initial velocity of $10 \mathrm{~ms}^{-1}$ such
that it eventually falls to the ground.
A. 1 second
B. 2 s
C. 3 s
D. 4 s

Answer:

D Watch Video Solution

16. Two bodies begin to fall freely from the same height but the second falls T second after the first. The time (after which the first
body begins to fall) when the distance between the bodies equals L is

> A. $\frac{1}{2} T$
> B. $\frac{T}{2}+\frac{L}{g T}$
> C. $\frac{L}{>}$
> D. $t+\frac{2 L}{g T}$

Answer:

17. Let A, B, C, D be points on a vertical line
such that $A B=B C=C D$. If a body is released
from position A, the times of descent through
$A B, B C$ and $C D$ are in the ratio.
A. $1: \sqrt{3}-\sqrt{2}: \sqrt{3}+\sqrt{2}$
B. $1: \sqrt{2}-1: \sqrt{3}-\sqrt{2}$
C. $1: \sqrt{2}-1: \sqrt{3}$
D. $1: \sqrt{2}: \sqrt{3}-1$

Answer:

18. Water drops fall at regular intervals from a
tap 5 m above the ground. The third drop is
leaving the tap, the instant the first drop touches the ground. How far above the ground is the second drop at that instant. $\left(g=10 m s^{-2}\right)$
A. 1.25 m
B. 2.50 m
C. 3.75 m

D. 5.00 m

Answer:

D Watch Video Solution

19. The displacement ' x ' (in meter) of a particle of mass ' m ' (in kg) moving in one dimension under the action of a force is released to time
't' (in sec) by $t=\sqrt{x}+3$. The displacement of
the particle when its velocity is zero will be.
A. 2 m
B. 4 m
C. zero
D. 6 m

Answer:

- Watch Video Solution

20. A body moving with a uniform acceleration crosses a distance of 65 m in the 5 th second and 105 m in 9th second. How far will it go in 20 s ?
A. 2040 m
B. 240 m
C. 2400 m
D. 2004 m

Answer:

D Watch Video Solution

21. An automobile travelling with a speed $60 \mathrm{~km} / \mathrm{h}$, can brake to stop within a distance
of 20 m . If the car is going twice as fast i. e., $120 \mathrm{~km} / \mathrm{h}$, the stopping distance will be
A. 60 m
B. 40 m
C. 20 m
D. 80 m

Answer:
(Watch Video Solution
22. A particle accelerates from rest at a constant rate for some time and attains a velocity of $8 \mathrm{~m} / \mathrm{sec}$. Afterwards it decelerates
with the constant rate and comes to rest. If
the total time taken is 4 sec , the distance travelled is
A. 32 m
B. 16 m
C. 4 m
D. none of above

Answer:

- Watch Video Solution

23. The equation represented by the graph below is :

> A. $y=\frac{1}{2} g t$
> B. $y=\frac{-1}{2} g \mathrm{gt}$
> C. $y=\frac{1}{2} \mathrm{gt}^{2}$
> D. $y=\frac{-1}{2} \mathrm{gt}^{2}$

Answer:

D Watch Video Solution

24. A particle move a distance x in time t according to equation $x=(t+5)^{-1}$. The acceleration of particle is alphaortional to.
A. $(\text { velocity })^{3 / 2}$
B. $(\text { distance })^{2}$
C. $(\text { distance })^{-2}$
D. $(\text { velocity })^{2 / 3}$

Answer:

D Watch Video Solution

25. A particle when thrown, moves such that it passes from same height at 2 and 10 seconds, then this height h is :
A. 5 g
B. g
C. 8 g
D. 10 g

Answer:

D Watch Video Solution
26. The distance through which a body falls in
the nth second is h. The distance through
which it falls in the next second is
A. h

$$
\text { B. } h+\frac{g}{2}
$$

C. h-g
D. $h+g$

Answer:

D Watch Video Solution

27. A stone is thrown vertically upwards with
an initial speed u from the top of a tower,
reaches the ground with a speed $3 u$. The height of the tower is :
A. $3 h^{2} / g$
B. $4 u^{2} / g$
C. $6 u^{2} / g$
D. $9 u^{2} / g$

Answer:
(Watch Video Solution
28. A particle moves along a straight line $O X$.

At a time t (in seconds) the distance x (in metre) of the particle is given by
$x=40+12 t-t^{3}$. How long would the particle travel before coming to rest ?
A. 40 m
B. 56 m
C. 16 m
D. 24 m
29. The graph below shws the velocity versus
time graph for a body

Which of the following graph represents the corresponding acceleration $\mathrm{v} / / \mathrm{s}$ time graph?
(a)
A.

(b)

Answer:

- Watch Video Solution

30. A particle moving along x-axis has acceleration f, at time t, given by
$f=f_{0}\left(1-\frac{t}{T}\right)$, where f_{0} and T are

constant.

The particle at $t=0$ has zero velocity. In the
time interval between $t=0$ and the instant
when $f=0$, the particle's velocity $\left(v_{x}\right)$ is :
A. $\frac{1}{2}\left(f_{0} T^{2}\right.$
B. $f_{0} T^{2}$
C. $\frac{1}{2} f_{0} T$
D. $f_{0} T$

Answer:
31. A ball is thrown vertically up with a velocity
u. It passes three points A, B and C in its upward journey with velocities $\frac{u}{s}, \frac{u}{3}$ and $\frac{u}{4}$, respectively. Find $\frac{A B}{B C}$.
A. 20: 7
B. 2
C. 10:7
D. 1

Answer:

- Watch Video Solution

32. A boat takes two hours to travel 8 km and back in still water. If the velocity of water is 4 km / h, the time taken for going upstream 8 km and coming back is
A. 160 minutes
B. 80 minutes
C. 100 minutes

D. 120 minutes

Answer:

D Watch Video Solution

33. A body starts from rest and travels a distance x with uniform acceleration, then it travels a distance $2 x$ with uniform speed, finally it travels a distance $3 x$ with uniform retardation and comes to rest. If the complete motion of the particle is along a straight line,
then the ratio of its average velocity to maximum velocity is
A. $2 / 5$
B. $3 / 5$
C. $4 / 5$
D. $6 / 7$

Answer:

- Watch Video Solution

34. A man of 50 kg mass is standing in a gravity
free space at a height of 10 m above the floor.

He throws a stone of 0.5 kg mass downwards
with a speed $2 m / s$. When the stone reaches
the floor, the distance of the man above the
floor will be
A. 9.9 m
B. 10.1 m
C. 10 m
D. 20 m

Answer:

D Watch Video Solution

35. A boy moving with a velocity of $20 \mathrm{kmh}^{-1}$ along a straight line joining two stationary objects. According to him both objects
A. move in the same direction with the
same speed of $20 \mathrm{kmh}^{-1}$
B. move in different direction with the
same speed of $20 \mathrm{kmh}^{-1}$

C. move towards him

D. remain stationary

Answer:

D Watch Video Solution

36. A rubber ball is dropped from a height of $5 m$ on a plane, where the acceleration due to gravity is not shown. On bouncing it rises to
$1.8 m$. The ball loses its velocity on bouncing by a factor of
A. $\frac{3}{5}$
B. $\frac{9}{25}$
C. $\frac{2}{5}$
D. $\frac{16}{25}$

Answer:

D Watch Video Solution

37. A stone falls freely from rest from aheight
h and it travels a distance $9 h / 25$ in the last second. The value of h is
A. 145 m
B. 100 m
C. 122.5 m
D. 200 m

Answer:

D Watch Video Solution

38. Which of the following equation represents the motion of a body moving with constant finite acceleration ? In these
equation, y denotes the displacement in time t and p.q and r the arbitary constants ?
A. $y=a t$
B. $y=a t+b t^{2}$
C. $y=a t+b t^{2}+c t^{2}$
D. $y=\frac{a}{t}+b t$

Answer:

39. A particle travels half the distance with a velocity of $6 \mathrm{~ms}^{-1}$. The remaining half distance is covered with a velocity of $4 \mathrm{~ms}^{-1}$ for half the time and with a velocity of $8 \mathrm{~ms}^{-1}$ for the rest of the half time. What is the velocity of the particle averaged over the whole time of motion ?
A. $9 m s^{-1}$
B. $6 m s^{-1}$
C. $5.35 \mathrm{~ms}^{-1}$

D. $5 m s^{-1}$

Answer:

D Watch Video Solution

40. A bullet is fired with a speed of $1000 \mathrm{~m} / \mathrm{sec}$
in order to penetrate a target situated at 100 m away. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the gun should be aimed
A. directly towards the target
B. 5 cm above the target
C. 10 cm above the target
D. 15 cm above the target

Answer:

- Watch Video Solution

41. A body covers $26,28,30,32$ meters in
10^{\wedge} (th), 11^{\wedge} (th), 12^{\wedge} (th) and 13^{\wedge} (th) seconds respectively. The body starts
A. from rest and moves with uniform
velocity
B. from rest and moves with uniform
acceleration
C. with an initial velocity and moves with
uniform acceleration
D. with an initial velocity and moves with
uniform velocity

Answer:

42. A particle is moving with uniform acceleration along a straight line. The average velocity of the particle from P to Q is $8 m s^{-1}$ and that Q to S is $12 m s^{-1}$. If $\mathrm{QS}=\mathrm{PQ}$, then the average velocity from P to S is

A. $9.6 m s^{-1}$
B. $12.87 m s^{-1}$

C. $64 m s^{-1}$

D. 30 m

Answer:

D Watch Video Solution

43. The variation of velocity of a particle with
time moving along a straight line is illustrated
in the following figure. The distance travelled

by the particle in four seconds is.

A. 60 m
B. 55 m
C. 25 m
D. 30 m

- Watch Video Solution

44. A stone falls freely under gravity. It covered distances h_{1}, h_{2} and h_{3} in the first 5 seconds.

The next 5 seconds and the next 5 seconds respectively. The relation between h_{1}, h_{2} and h_{3} is :

$$
\begin{aligned}
& \text { A. } h_{1}=\frac{h_{2}}{3}=\frac{h_{3}}{5} \\
& \text { B. } h_{2}=3 h_{1} \text { and } h_{3}=3 h_{2} \\
& \text { C. } h_{1}=h_{2}=h_{3}
\end{aligned}
$$

$$
\text { D. } h_{1}=2 h_{2}=3 h_{3}
$$

Answer:

- Watch Video Solution

45. A car , starting from rest, accelerates at the
rate f through a distance S then continues at constant speed for time t and then decelerates at the rate $\frac{f}{2}$ to come to rest. If the total distance traversed is $15 S$, then

$$
\text { A. } S=\frac{1}{6} f t^{2}
$$

B. $S=f t$
C. $S=\frac{1}{4} f t^{2}$
D. $S=\frac{1}{72} f t^{2}$

Answer:

- Watch Video Solution

