# đず doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - DISHA PHYSICS (HINGLISH)

## NUCLEI

Physics

1. The mass of a $a_{3}^{7} L i$ nucleus is $0.042 u$ less
than the sum of the masses of all its nucleons.

The binding energy per nucleon of.${ }_{3}^{7}$ Li nucleus is nearly.
A. 46 MeV
B. 5.6 MeV
C. 3.9 MeV
D. 23 MeV

Answer:
( Watch Video Solution
2. In the given reaction
${ }_{\cdot z} X^{A} \rightarrow{ }_{\cdot z+1} Y^{A} \rightarrow{ }_{z-1} K^{A-4} \rightarrow{ }_{\cdot z-1} K^{A-4}$
Radioactive radiations are emitted in the sequence.
A. $\gamma, \beta, \alpha$
B. $\beta, \gamma, \alpha$
C. $\alpha, \beta, \gamma$
D. $\beta, \alpha, \gamma$

## Answer:

# 3. If the nuclear radius of.${ }^{27} A 1$ is 3.6 Fermi, 

the approximate nuclear radius of 64 Cu in
Fermi is :
A. 2.4
B. 1.2
C. 4.8
D. 3.6

Answer:
4. Which of the following statements is incorrect for nuclear forces?
A. they obey the inverse square law of distance
B. they obey the inverse third power law of distance
C. they are short range forces

# D.they are equal in strength to 

electromagnetic forces.

## Answer:

## D Watch Video Solution

5. A radioactive sample at any instant has its
disintegration rate 5000 disintegrations per minute After 5 minutes, the rate is 1250 disintegration per minute. Then, the decay constant (per minute)
A. $0.4 \ln 2$
B. $0.1 \ln 2$
C. $0.1 \ln 2$
D. $0.8 \ln 2$

## Answer:

## D Watch Video Solution

6. The radioactivity of a sample is $R_{1}$ at a time
$T_{1}$ and $R_{2}$ at time $T_{2}$. If the half-life of the specimen is $T$, the number of atoms that have
disintegrated in the time $\left(T_{2}-T_{1}\right)$ is proporational to
A. $\left(R_{1} T_{1}-R_{2} T_{2}\right)$
B. $\left(R_{1}-R_{2}\right)$
C. $\left(R_{1}-R_{2}\right) / T$
D. $\left(R_{1}-R_{2}\right) T$

Answer:

- Watch Video Solution

7. In the reaction $.{ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} n$, if the binding energies of $.{ }_{1}^{2} \mathrm{H},{ }_{1}^{3} \mathrm{H}$ and.${ }_{2}^{4} \mathrm{He}$ are respectively $a, b$ and $c$ (in MeV ), then the energy (in MeV ) released in this reaction is.
A. $a+b+c$
B. $a+b-c$
C. $c-a-b$
D. $c+a-b$

## Answer:

8. If $M(A, Z), M_{p}$ and $M_{n}$ denote the masses of the nucleus $\cdot{ }_{Z} X^{A}$, proton and neutron respectively in units of $U$ (where $1 U=931 \mathrm{MeV} / \mathrm{c}^{2}$ ) and B.E. represents its B.E. in MeV , then

$$
\text { A. } \mathrm{M}(\mathrm{~A}, \mathrm{Z})=Z M_{p}+(A-Z) M_{n}-B E / c^{2}
$$

$$
\text { B. } \mathrm{M}(\mathrm{~A}, \mathrm{Z})=Z M_{p}+(A-Z) M_{n}+B E
$$

$$
\text { С. М(A,Z) }=Z M_{p}+(A-Z) M_{n}-B E
$$

D.

$$
M(A, Z)=Z M_{p}+(A-Z) M_{n}+B E / c^{2}
$$

## Answer:

## D Watch Video Solution

9. When the number of nucleons in a nuclues
increases the binding energy per nucleon
A. Increases continuously with mass
number
B. Decreases continuously with mass
number
C. First decreases and then increases with increase in mass number
D. First increases and then decreases with
increase in mass number

## Answer:

## D Watch Video Solution

10. The energy spectrum of $\beta$ - particle [number $N €$ as a function of $\beta$ - energy E] emitted from a radioactive source is
A.

B.

C.

D.

Answer:
11. A radioactive nucleus undergoes a series of deacy according to the scheme.
$A \xrightarrow{\alpha} A_{1} \xrightarrow{\beta^{-}} A_{2} \xrightarrow{\alpha} A_{3} \xrightarrow{\gamma} A_{4}$
If the mass number and atomic number of $A$
are 180 and 172 respectively, what are these numbers for $A_{4}$.
A. 172 and 69
B. 174 and 70
C. 176 and 69

## D. 176 and 70

## Answer:

## D Watch Video Solution

12. The activity of a radioactive sample is measured as 9750 counts per minute at $t=0$ and as 975 counts per minute at $t=5$ minutes. The decay constant is approximately
A. 0.922 per minute
B. 0.691 per mintue
C. 0.461 per mintue
D. 0.230 per minute

## Answer:

## D Watch Video Solution

13. Actinium $231, .{ }^{231} A C_{89}$, emit in succession
two $\beta$ particles, four $\alpha$-particles, one $\beta$ and one $\alpha$ plus several $\lambda$ rays. What is the resItant isotope?
A. ${ }^{221} A u_{79}$
B..${ }^{211} A u_{79}$
C. ${ }^{221} P b_{82}$
D. ${ }^{211} P b_{82}$

Answer:

## D Watch Video Solution

14. Fusion reaction takes place at high temperature because
A. atoms are ionised at high temperature
B. molecules break up at high temperature
C. nuclei break up at high temperature
D. kinetic energy is high enough to
overcome repulsion between nuclei

## Answer:

## - Watch Video Solution

15. If $M_{O}$ is the mass of an oxygen is otpe - (8) $O^{17}, M_{p}$ and $M_{N}$ are the mases of a proton and a neutron respectively, the nuclear binding energy of the isotope is
A. $\left(M_{O}-17 M_{N}\right) c^{2}$
B. $\left(M_{O}-8 M_{p}\right) c^{2}$
C. $\left(M_{O}-8 M_{p}-9 M_{N}\right) c^{2}$
D. $M_{O} c^{2}$

## Answer:

16. Which of the following nuclear reaction is not possible?
A. ${ }_{6}^{12} \mathrm{C}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{.{ }_{10}^{20}} \mathrm{Ne}+{ }_{4}^{2} \mathrm{He}$
B. ${ }_{4}^{9} \mathrm{Be}+.{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{.}^{6} \mathrm{Li}+.{ }_{2}^{4} \mathrm{He}$
C. ${ }_{5}^{11} \mathrm{Be}+.{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{4}^{9} \mathrm{Be}+.{ }_{2}^{4} \mathrm{He}$
D. $.{ }_{3}^{7} \mathrm{Li}+{ }_{.}{ }_{2}^{4} \mathrm{He} \rightarrow \cdot{ }_{1}^{1} \mathrm{H}+{ }_{.}{ }_{4}^{0} \mathrm{~B}$

## Answer:

17. The ratio of half-life times of two elements
$A$ and $B$ is $\frac{T_{A}}{T_{B}}$. The ratio of respective decay constant $\frac{\lambda_{A}}{\lambda_{B}}$, is
A. $T_{B} / T_{A}$
B. $T_{A} / T_{B}$
C. $\frac{T_{A}+T_{B}}{T_{A}}$
D. $\frac{T_{A}-T_{B}}{T_{A}}$

Answer:
18. Two radioactive $X_{1}$ and $X_{2}$ have decay constants $10 \lambda$ and $\lambda$ respectively. If initially
they have the same number of nuclei, then the ratio of the number of nuclei of $X_{1}$ to that of $X_{2}$ will be $1 / e$ after a time.
A. $1 / 10 \lambda$
B. $1 / 11 \lambda$
C. $11 / 10 \lambda$
D. $1 / 9 \lambda$

## Answer:

## D Watch Video Solution

19. In a radioactive material the activity at time
$t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then
A. $R_{1}=R_{2} e^{\lambda\left(t_{1}-t_{2}\right)}$
B. $R_{1}=R_{2} e^{\left(t_{1} / t_{2}\right)}$
C. $R_{1}=R_{2}$
D. $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$

## Answer:

## - Watch Video Solution

20. The correct relation between $t_{a v}=$ average
life and $t_{1 / 2}=$ half life for a radioactive nuclei.
A. $t_{a v}=t_{1 / 2}$
B. $t_{a v}=\frac{1}{2} t_{1 / 2}$
C. $0.693 t_{a v}=t_{1 / 2}$
D. $t_{a v}=0.693 t_{1 / 2}$

## Answer:

## D Watch Video Solution

21. Assertion: Forces acting between protonproton $\left(f_{p p}\right)$, proton -neutron $\left(f_{p n}\right)$ and neutron -neutron $\left(f_{n n}\right)$ are such that
$f_{p p}<f_{p n}=f_{n n}$.
Reason: Electrostatic force of repulsion
between two proton reduces net nuclear forces between them.
A. $F_{p p} \approx F_{n n} \approx F_{p n}$
B. $F_{p p} \neq F_{n n}$ and $F_{p p}=F_{n n}$
C. $F_{p p}=F_{n n}=F_{p n}$
D. $F_{p p} \neq F_{n n} \neq F_{p n}$

Answer:

D Watch Video Solution
22. Which one is correct about fission?
A. Approx. $0.1 \%$ mass converts into
energy
B. Most of energy of fission is in the form
of heat
C. In a fission of $U^{235}$ about 200 eV energy
is released
D. On an average, one neutron is released
per fission of $U^{235}$

## Answer:

23. If 200 MeV energy is released in the fission of a single $U^{235}$ nucleus, the number of fissions required per second to produce 1 kilowatt power shall be (Given
$\left.1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$.
A. $3.125 \times 10^{13}$
B. $3.125 \times 10^{14}$
C. $3.125 \times 10^{15}$
D. $3.152 \times 10^{16}$

## Answer:

## - Watch Video Solution

24. In any fission the ratio mass of fission produts mass of parent nucleus is
A. equal to 1
B. greater than 1
C. less than 1
D. depends on the mass of the parent nucleus

## Answer:

## D Watch Video Solution

25. In an $\alpha$-decay, the kinetic energy of $\alpha$ particles is 48 MeV and $Q$ value of the reaction is 50 MeV . The mass number of the mother nucleus is (assume that daughter nucleus is in ground state)
A. 2
B. 4
C. 6
D. 8

Answer:

D Watch Video Solution
26. A sample of a radioactive element has a mass of $10 g$ at an instant $t=0$. The
approxiamte mass of this element in the sample after two mean lives is .
A. 6.30 gm
B. 1.35 gm
C. 2.50 gm
D. 3.70 gm

Answer:
( Watch Video Solution
27. Consider a radioactive material of half-life
1.0 minute. If one of the nuclei decays now, the next one will decay
A. after 1 minute
B. after $\frac{1}{\log _{e} 2}$ minute
C. after $\frac{1}{N}$ minute, where $N$ is the number of nuclei present at that moment D. after any time
28. The mass of an $\alpha$ - particle is.
A. less than the sum of masses of two
protons and two neutrons
B. equal to mass of four protons
C. equal to mass of four neutrons
D. equal to sum of masses of two protons and two neutron

## - Watch Video Solution

29. The decay constants of a radioactive substance for $\alpha$ and $\beta$ emission are $\lambda_{\alpha}$ and $\lambda_{\beta}$ respectively. If the substance emits $\alpha$ and $\beta$ simultaneously, then the average half life of the material will be
A. $\frac{2 T_{\alpha} T_{\beta}}{T_{\alpha}+T_{\beta}}$
B. $T_{\alpha}+T_{\beta}$
C. $\frac{T_{\alpha} T_{\beta}}{T_{\alpha}+T_{\beta}}$

$$
\text { D. } \frac{1}{2}\left(T_{\alpha}+T_{\beta}\right)
$$

## Answer:

## D Watch Video Solution

30. If the end $A$ of a wire is irradiated with $\alpha$ rays and the other end $B$ is irradiated with $\beta$ rays. Then
A. a current will flow from $A$ to $B$
B. a current will flow from $B$ to $A$

# C. there will be no current in the wire 

## D. a current will flow from each end to the

 mid-point of the wire
## Answer:

## D Watch Video Solution

31. A radioactive nucleus of mass $M$ emits a photon of frequency $v$ and the nucleus recoils.

The recoil energy will be
A. $M c^{2}-h v$
B. $h^{2} v^{2} / 2 M c^{2}$
C. zero
D. hv

Answer:

- Watch Video Solution

32. Radioactive element decays to form a stable nuclide, then the rate of decay of
reactant $\left(\frac{d N}{d t}\right)$ will vary with time $(t)$ as shown in figure.
A.


B.

C.
D.

## Answer:

33. A nuclear of mass $M+\delta m$ is at rest and
decay into two daughter nuclei of equal mass
$\frac{M}{2}$ each speed is $c$
The speed of daughter nuclei is

$$
\begin{aligned}
& \text { A. } c \frac{\Delta m}{M+\Delta m} \\
& \text { B. } c \sqrt{\frac{2 \Delta m}{M}} \\
& \text { C. } c \sqrt{\frac{\Delta m}{M}} \\
& \text { D. } c \sqrt{\frac{\Delta m}{M+\Delta m}}
\end{aligned}
$$

## - Watch Video Solution

34. Atomic weight of boron is 10.81 and it has
two isotopes ${ }_{5} B^{10}$ and ${ }_{5} B^{11}$. Then ratio of ${ }_{5} B^{10}$ in nature would be.
A. 19: 81
B. 10: 11
C. $15: 16$
D. $81: 19$

Answer:
35. A nucleus desintegrated into two nucleus which have their velocities in the ratio of $2: 1$.

The ratio of their nuiclear sizes will be
A. $2^{1 / 3}: 1$
B. $1: 2^{1 / 3}$
C. $3^{1 / 2}: 1$
D. $1: 3^{1 / 2}$
36. A nucleus of uranium decays at rest into nuclei of thorium and helium. Then :
A. the helium nucleus has less momentum
than the thorium nucleus.
B. the helium nucleus has more
momentum than the thorium nucleus.
C. the helium nucleus has less kinetic
energy than the thorium nucleus.
D. the helium nucleus has more kinetic energy than the thorium nucleus.

## Answer:

## D Watch Video Solution

37. If radius of the ${ }_{13}^{27} A 1$ nucleus is taken to be $R_{A 1}$ then the radius of ${ }_{\cdot 53}^{125} T e$ nucleus is nearly.

$$
\text { A. } \frac{5}{3} R_{A l}
$$

B. $\frac{3}{5} R_{A l}$
C. $\left(\frac{13}{53}\right)^{1 / 3} R_{A l}$
D. $\left(\frac{53}{13}\right)^{1 / 3} R_{A l}$

## Answer:

## D Watch Video Solution

38. $M_{n}$ and $M_{p}$ represent mass of neutron and proton respectively. If an element having atomic mass $M$ has $N$ - neutron and $Z$ proton, then the correct relation will be :
A. $M<\left[N M_{n}+Z M_{p}\right]$
B. $M>\left[N M_{n}+Z M_{p}\right]$
C. $M=\left[N M_{n}+Z M_{p}\right]$
D. $M=N\left[M_{n}+M_{p}\right]$

## Answer:

## - Watch Video Solution

39. After 300 days, the activity of a radioactive sample is 5000 dps (disintegrations per sec).

The activity becomes 2500 dps after another

150 days. The initial activity of the sample in dps is
A. 20,000
B. 10,000
C. 7,000
D. 25,000

Answer:

D Watch Video Solution
40. Order of magnitude of density of uranium nucleus is , $\left[m=1.67 \mathrm{xx} 10^{\wedge}(-27 \mathrm{~kg}]^{`}\right.$
A. $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
B. $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
C. $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
D. $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$

## Answer:

( Watch Video Solution
41. The electrons cannot exist inside the nucleus because
A. de-Broglie wavelength associated with
electron in $\beta$ - decay is much less than
the size of nucleus
B. de-Broglie wavelength associated with
electron in $\beta$ - decay is much greater
than the size of nucleus
C. de-Broglie wavelength associated with
electron in $\beta$-decay is equal to the size
of nucleus
D. negative charge cannot exist in the nucleus

## Answer:

## D Watch Video Solution

42. If the total binding energies of
${ }_{\cdot 1} H^{2},{ }_{.2} H e^{4},{ }_{26} F e^{56}$ and ${ }_{92} U^{235}$ nuclei are
$2.22,28.3,492$ and 1786 MeV respectively,
identify the most stable nucleus out of the

## following

A. ${ }_{26}^{56} \mathrm{Fe}$<br>B. . ${ }_{1}^{2} H$<br>C. ${ }_{92}^{235} U$<br>D. ${ }_{2}^{4} \mathrm{He}$

Answer:
( Watch Video Solution
43. At a specific instant emission of radioactive
compound is deflected in a magnetic field. The
compound cannot emit
A. electrons
B. protons
C. $\mathrm{He}^{2+}$
D. neutrons

## Answer:

D Watch Video Solution
44. A nuclear reaction given by
$1_{Z} X^{A} \rightarrow .(Z+1) Y^{A}+{ }_{-1} e^{0}+\vec{p}$
represents.
A. fission
B. $\beta$-decay
C. $\propto$-decay
D. fusion

Answer:

D Watch Video Solution
45. Radioactive material ' $A$ ' has decay constant
' $8 \lambda$ ' and material ' B ' has decay constant
'lamda'. Initial they have same number of nuclei. After what time, the ratio of number of nuclei of material 'B' to that 'A' will be $\frac{1}{e}$ ?

$$
\begin{aligned}
& \text { A. } \frac{1}{7 \lambda} \\
& \text { B. } \frac{1}{8 \lambda} \\
& \text { C. } \frac{1}{9 \lambda} \\
& \text { D. } \frac{1}{\lambda}
\end{aligned}
$$

Watch Video Solution

