©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

PHYSICAL WORLD, UNITS \&

MEASUREMENT

Physics

1. The dinesity of meterial in CGS system of mass is $4 \mathrm{gcm}^{3}$ in a system of unit in which
unit of length is 10 cm and unit of mass is

$100 g$ the value of density of meterial will be

A. 0.4 unit
B. 40 unit
C. 400 unit
D. 0.04 unit

Answer:

D Watch Video Solution

2. The period T of a soap bubble under $S H M$

is given by $T=P^{a} D^{b} S^{c}$, where P is pressure,
D, is density and S is surface tension. Then
the values of a, b and c are

$$
\begin{aligned}
& \text { А. }-\frac{3}{2}, \frac{1}{2}, 1 \\
& \text { B. }-1,-2,3 \\
& \text { C. } \frac{1}{2},-\frac{3}{2},-\frac{1}{2} \\
& \text { D. } 1,2, \frac{1}{3}
\end{aligned}
$$

Answer:

3. The respective number of signficant figures for the
23.023, 0.0003 and 2.1×10^{-3} are
A. 5,1,2
B. 5,1,5
C. 5,5,2
D. 4,4,2

Answer:
4. Young's modules of a material has the same unit as
A. pressure
B. strain
C. compressibility
D. force

Answer:

5. Of the following quantities, which one has
the dimensions different from the remaining
three?
A. Energy per unit volume
B. Force per unit area
C. Product of voltage and charge per unit

volume

D. Angular momentum

Answer:

D Watch Video Solution

6. The pressure on a square plate is measured by measuring the force on the plate and the
length of the sides of the plate by using the formula $p=\frac{F}{l^{2}}$. If the maximum errors in the measurment of force and length are 4% and
2% respectively. Then the maximum error in the measurment of pressure is
A. 0.01
B. 0.02
C. 0.08
D. 0.1

Answer:

- Watch Video Solution

7. Siemen is the $S . I$ unit of
A. resistivity
B. resistance
C. conductivity
D. conductance

Answer:

D Watch Video Solution

8. An object is moving through the liquid. The viscous damping force acting on it is proportional to the velocity. Then dimensions of constant of proportionality are
A. $\left[M L^{-1} T^{-1}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M^{0} L T^{-1}\right]$
D. $\left[M L^{0} T^{-1}\right]$

Answer:

D Watch Video Solution

9. The least count of a stop watch is $(1 / 5) s$.

The time 20 oscillations of a pendulum is
measured to be 25 s . The maximum percentage

error in this measurement is

A. 8%
B. 1.8%
C. 0.8%
D. 0.2%

Answer:

D Watch Video Solution

10. Weber is the unit of

A. magnetic susceptibility
B. intensity of magnetisation
C. magnetic flux
D. magnetic permeability

Answer:

11. The physical quantity which has the dimensional formula $\left[M^{1} T^{-3}\right]$ is
A. surface tension
B. solar constant
C. density

D. compressibility

Answer:

D Watch Video Solution
12. The dimensions of Wien's constant are

> A. $\left[M L^{0} T K\right]$
> B. $\left[M^{0} L T^{0} K\right]$
> C. $\left[M^{0} L^{0} T K\right]$
> D. $[M L T K]$

Answer:

D Watch Video Solution
13. If the capacitance of a nanocapacitor is
measured in terms of a unit u made by combining the electric charge e, Bohr radius a_{0}, Planck's constant ' h ' and speed of light ' c '
then

$$
\begin{aligned}
& \text { A. } u=\frac{e^{2} h}{a_{0}} \\
& \text { B. } u=\frac{h c}{e^{2} a_{0}} \\
& \text { C. } u=\frac{e^{2} c}{h a_{0}} \\
& \text { D. } u=\frac{e^{2} a_{0}}{h c}
\end{aligned}
$$

14. The dimensions of $\frac{1}{\varepsilon_{0}} \frac{e^{2}}{h c}$ are

$$
\text { A. } M^{-1} L^{-3} T^{4} A^{2}
$$

B. $M L^{3} T^{-4} A^{-2}$
C. $M^{0} L^{0} T^{0} A^{0}$
D. $M^{-1} L^{-3} T^{2} A$

Answer:
15. The density of a cube is measured by measuring its mass and length of its sides. If
the maximum error in the measurement of mass and length are 4% and 3% respectively,
the maximum error in the measurement of density will be
A. 0.07
B. 0.09
C. 0.12
D. 0.13

Answer:

D Watch Video Solution

16. Which is different from others by units ?
A. Phase difference
B. Mechanical equivalent
C. Loudness of sound
D. Poisson's ratio

- Watch Video Solution

17. a quantity X is given by $\varepsilon_{0} L \frac{\Delta V}{\Delta t}$ where
ϵ_{0} is the permittivity of the free space, L is a
length, ΔV is a potential difference and Δt is
a time interval. The dimensinal formula for X
is the same as that of
A. resistance
B. charge
C. voltage

D. current

Answer:

D Watch Video Solution

18. If error in measurement of radius of a sphere is 1%, what will be the error in measurement of volume?
A. 0.02
B. 0.03

C. 0.04

D. 0.075

Answer:

D Watch Video Solution

19. If velocity (V), force (F), and energy (E) are taken as fundamental units, then find the dimensional formula for mass.

$$
\text { A. } V^{-2} F^{0} E
$$

B. $V^{0} F E^{2}$
C. $V F^{-2} E^{0}$
D. $V^{-2} F^{0} E$

Answer:

D Watch Video Solution

20. ultiply 107.88 by 0.610 and express the result with correct number of significant figures.
A. 65.8068
B. 65.807
C. 65.81
D. 65.8

Answer:

D Watch Video Solution

21. Which of the following is a dimensional constant?
A. Refractive index
B. Poissons ratio
C. Strain
D. Gravitational constant

Answer:

D Watch Video Solution
22. If E, M, J, and G, respectively, denote
energy , mass , angular momentum , and
gravitational constant, then $E J^{2} / M^{5} G^{2}$ has
the dimensions of
A. angle
B. length
C. mass
D. time

Answer:
(Watch Video Solution
23. The refractive index of water measured by the relation $m=\frac{\text { realdepth }}{\text { apparentdepth }}$ is found to have values of $1.34,1.38,1.32$ and 1.36 , the mean value of refractive index with percentage error is
A. $1.35 \pm 1.48 \%$
B. $1.35 \pm 0 \%$
C. $1.36 \pm 6 \%$
D. $1.36 \pm 0 \%$
24. If e is the charge, v the potential difference, T the temperature, then the units of $\frac{e V}{T}$ are the same as that of
A. Planck's constant
B. Stefan's constant
C. Boltzmann's constant
D. gravitational constant

25. The dimensions of mobility are

A. $M^{-2} T^{2} A$
B. $M^{-1} T^{2} A$
C. $M^{-2} T^{3} A$
D. $M^{-1} T^{3} A$

Answer:

26. Two quantities A and B have different dimensions. Which mathematical operation given below is physically meaningful?
A. A / B
B. $A+B$
C. $A-B$
D. $A=B$

Answer:

D Watch Video Solution
27. The velocity of water wave v may depend on their wavelength λ, the density of water ρ and the acceleration due to gravity g. The method of dimensions gives the relation between these quantities as
A. v
B. $v^{2} \propto g \lambda$
C. $v^{2} \propto g \lambda^{2}$
D. $v^{2} \propto g^{-1} \lambda^{2}$

Answer:

D Watch Video Solution

28. The physical quantities not having same dimensions are
A. torque and work
B. momentum and Planck's constant
C. stress and Young's modulus
D. speed and (m_(0)e_(0))^-1/2

Answer:

D Watch Video Solution

29. A physical energy of the dimension of
length that can be formula cut of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}}$ is [c is velocity of light G is universal constant of gravilation e is change
A. $c^{2}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$
B. $\frac{1}{c^{2}}\left[\frac{e^{2}}{G 4 \pi \varepsilon_{0}}\right]^{1 / 2}$
C. $\frac{1}{c} G \frac{e^{2}}{4 \pi \varepsilon_{0}}$
D. $\frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$

Answer:

D Watch Video Solution

30. The unit of impulse is the same as that of

A. energy
B. power
C. momentum
D. velocity

Answer:

D Watch Video Solution

31. $f \mathrm{Q}$ denote the charge on the plate of a capacitor of capacitance C then the dimensional formula for $\frac{Q^{2}}{(\mathbb{C}}$ is
A. $\left[L^{2} M^{2} T\right]$
B. $\left[L M T^{2}\right]$
C. $\left[L^{2} M T^{-2}\right]$

$$
\text { D. }\left[L^{2} M^{2} T^{2}\right]
$$

Answer:

D Watch Video Solution

32. The mass of the liquid flowing per second per unit area of cross-section of the tube is proportional to (pressure difference across the ends) ${ }^{\wedge}(\mathrm{n})$ and (average velocity of the liquid $)^{\wedge}(m)$. Which of the following relations between m and n is correct?
A. $m=n$
B. $m=-n$
C. $m^{2}=n$
D. $m=-n^{2}$

Answer:

D Watch Video Solution

33. The richardson equaction is given by
$I=A T^{2} e^{-B / k T}$. The dimensional formula for
$A B^{2}$ is
A. $I T^{2}$
B. $k T$
C. $I k^{2}$
D. $I k^{2} / T$

Answer:

D Watch Video Solution

34. Turpentine oil is flowing through a tube of length L and radius r. The pressure difference between the two ends of the tube is p, the
viscosity of the coil is given by
$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v L}$, where v is the velocity of oil
at a distance x from the axis of the tube. From
this relation, the dimensions of viscosity η are

> A. $\left[M L^{-1} T^{-1}\right]$
> B. $\left[M L T^{-1}\right]$
> C. $\left[M L^{2} T^{-2}\right]$
> D. $\left[M^{0} L^{0} T^{0}\right]$

Answer:

35. Given that $y=A \sin \left[\left(\frac{2 \pi}{\lambda}(c t-x)\right)\right]$
where y and x are measured in metres ,Which of the following statements is true?
A. The unit of I is same as that of x and A
B. he unit of I is same as that of x but not
of A
C. The unit of c is same as that of $\frac{2 \pi}{\lambda}$
D. The unit of $(\mathrm{ct}-\mathrm{x})$ is same as that of $\frac{2 \pi}{\lambda}$

- Watch Video Solution

36. If $L=2.331 \mathrm{~cm}, B=2.1 \mathrm{~cm}$, then ${ }^{~} \mathrm{~L}+\mathrm{B}=$
A. 4.431 cm
B. 4.43 cm
C. 4.4 cm
D. 4 cm

Answer:
37. In the relation $x=\cos (\omega t+k x)$, the dimension(s) of ω is/are
A. $\left[M^{0} L T\right]$
B. $\left[M^{0} L^{-1} T^{0}\right]$
C. $\left[M^{0} L^{0} T^{-1}\right]$
D. $\left[M^{0} L T^{-1}\right]$

Answer:
38. In a vernier callipers, ten smallest divisions
of the vernier scale are equal to nine smallest
division on the main scale. If the smallest division on the main scale is half millimeter, then the vernier constant is
A. 0.5 mm
B. 0.1 mm
C. 0.05 mm
D. 0.005 mm
39. Which two of the following five physical parameters have the same dimensions?

Energy density
Refractive index
Dielectric constant

Young's modulus
Magnetic field
A. (B) and(D)
B. (C) and €
C. (A) and (D)
D. (A) and (e)

Answer:

- Watch Video Solution

40.

In
the
eqn.
$\left(p+\frac{a}{V^{2}}\right)(V-b)=$ constant constant, the unit of a is
A. dyne cm^{5}
B. dyne cm^{4}
C. dyne/ cm^{3}
D. dyne $/ \mathrm{cm}^{2}$

Answer:

D Watch Video Solution

41. The dimensions of Reynold's constant are
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M L^{-1} T^{-1}\right]$
C. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L^{-2} T^{-2}\right]$

Answer:

- Watch Video Solution

42. Which of the following does not have the dimensions of velocity ? (Given ε_{0} is the permittivity of free space , μ_{0} is the permittivity of free space , visequency, λ is wavelength , P is the pressure , and ρ is
density , k is wave number,ω is the the angular frequency)
A. $1 / \sqrt{\mu_{0} \varepsilon_{0}}$
B. n 1
C. $\sqrt{P / \rho}$
D. ωk

Answer:
(Watch Video Solution

43. Unit of magnetic moment is

A. ampere - metre ${ }^{2}$
B. ampere - metre
C. weber - metre ${ }^{2}$
D. weber / metre

Answer:

44. An experiment is performed to obtain the value of acceleration due to gravity g by using
a simple pendulum of length L. In this experiment time for 100 oscillations is measured by using a watch of 1 second least count and the value is 90.0 seconds. The length L is measured by using a meter scale of least count 1 mm and the value is 20.0 cm . The error in the determination of g would be:
A. 0.017
B. 0.027
C. 0.044
D. 0.0227

Answer:

D Watch Video Solution

45. The dimensional formula for magnetic flux is

$$
\text { A. }\left[M L^{2} T^{-2} A^{-1}\right]
$$

B. $\left[M L^{3} T^{-2} A^{-2}\right]$

$$
\text { C. }\left[M^{0} L^{-2} T^{2} A^{-2}\right]
$$

D. $\left[M L^{2} T^{-1} A^{2}\right]$

Answer:

(Watch Video Solution

