©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

RAY OPTICS AND OPTICAL INSTRUMNTS

Physics

1. The refracting angle of a prism is A and
refractive index of the material of the prism is
$\cos (A / 2)$. The angle of minimum deviation is
A. $\pi-2 A$
B. $\pi-A$
C. $\frac{\pi}{2}-2 A$
D. $\frac{\pi}{2}-A$

Answer:

2. If two lenses of +5 dioptres are mounted at
some distance apart, the equivalent power will
always be negative if the distance is
A. greater than 40 cm
B. equal to 40 cm
C. equal to 10 cm
D. less than 10 cm

Answer:

- Watch Video Solution

3. Fig. (a) and (b) show refraction of an incident ray in air at 60° with the normal to a glass-air and water-air interface respectively. Predict the angle of refraction of an incident ray in water at 45° with the normal to a water glass interface. Take . ${ }^{a} \mu_{g}=1.32$.

A. 30°
B. 35°
C. 60°

$$
\text { D. } 41^{\circ}
$$

Answer:

D Watch Video Solution

4. A fish looking up through the water sees the outside world contained in a circular horizon.

If the refractive index of water is $\frac{4}{3}$ and the fish is 12 cm below the surface, the radius of this circle is cm is
A. $36 \sqrt{5}$
B. $4 \sqrt{5}$
C. $36 \sqrt{7}$
D. $36 / \sqrt{7}$

Answer:

D Watch Video Solution

5. Let f_{v} and f_{r} are the focal lengths of a convex lens for violet and red lights respectively. If F_{v} and F_{r} are the focal lengths
of a concave lens for violet and red light respectively, then
A. $F_{v}<f_{R}$ and $F_{v}>F_{R}$
B. $F_{v}<f_{R}$ and $F_{v}<F_{R}$
C. $F_{v}>f_{R}$ and $F_{v}>F_{R}$
D. $F_{v}>f_{R}$ and $F_{v}<F_{R}$

Answer:

D Watch Video Solution

6. Spherical aberration in a lens
A. is minimum when most of the deviation
is at first surface
B. is minimum when most of the deviation
is at the second surface
C. is minimum when the total deviation is
equally distributed over the two surfaces
D. does not depend on the above
considerations

Answer:

D Watch Video Solution

7. A rod of length 10 cm lies along the principal axis of a concave mirror of focal length 10 cm
in such a way that the end closer to the pole is

20 cm away from it. Find the length of the image.
A. 10 cm
B. 15 cm
C. 2.5 cm
D. 5 cm

Answer:

D Watch Video Solution

8. A telescope consists of two lenses of focal lengths 0.3 m and 3 cm respectively. It is
fucussed on moon which subtends an angle of
0.5° at the obejctive. Calculate the angle
subtended at the eye by the final image in normal adjustment of the telescope.
A. 5°
B. 0.25°
C. 0.5°
D. 0.35°

Answer:
(Watch Video Solution
9. The layered lens as shown is made of two
types of transparent materials-one indicated
by horizontal lines and the other by vertical
lines. The number of images formed of an
object will be

A. 1
B. 2
C. 3
D. 6

Answer:

- Watch Video Solution

10. A person's near point is 50 cm and his far point 3 m . Power of the lenses he requires for
(i) reading and
(ii) for seeing distant stars are
A. -2 D and + 3 D
B. +2 D and -3 D
C. +2 D and -0.33 D
D. -2 D and +0.33 D

Answer:

- Watch Video Solution

11. A ray of light falls on a transparent glass slab of refractive index 1.62 . If the reflected ray
and the refracted rays are mutually perpendicular, what is the angle of refraction ?

> A. $\tan ^{-1}(1.62)$
> B. $\tan ^{-1}\left(\frac{1}{1.62}\right)$
> C. $\tan ^{-1}(1.33)$
> D. $\tan ^{-1}\left(\frac{1}{1.33}\right)$

Answer:

D Watch Video Solution

12. A telescope has an objective of focal length

100 cm and an eyepiece of focal length 5 cm .

What is the magnifying power of the telescope when the final image is formed at the least distance of distinct vision ?
A. 20
B. 24
C. 28
D. 32
13. Which light rays undergoes two internal reflection inside a raindrop, which of the rainbow is formed?
A. Primary rainbow
B. Secondary rainbow
C. Both (a) and (b)
D. Can't say

- Watch Video Solution

14. When a plane mirror is placed horizontally
on level ground at a distance of 60 m from the
foot of a tower, the top of the tower and its
image in the mirror subtend and angle of 90°
at the eye. The height of the tower is
A. 30 m
B. 60 m
C. 90 m

D. 120 m

Answer:

D Watch Video Solution

15. A parallel beam of light is incident on the
surface of a transparent hemisphere of radius
R and refractive index 2.0 as shown in figure.
The position of the image formed by

refraction at the first surface is :

A. $\mathrm{R} / 2$
B. R
C. 2 R
D. 3 R

Answer:
16. A lens made of glass whose index of refraction is 1.60 has a focal length of +20 cm in air. Its focal length in water, whose refractive index is 1.33 , will be
A. three times longer than in air
B. two times longer than in air
C. same as in air
D. None of these

Answer:

- Watch Video Solution

17. A compound microscope has an eye piece of focal length 10 cm and an objective of focal
length 4 cm . Calculate the magnifcation, if an object is kept at a distance of 5 cm from the objective so that final image is formed at the least distance vision (20cm)
A. 12
B. 11
C. 10
D. 13

Answer:

D Watch Video Solution

18. For a prism kept in air, it is found that for an angle of incidence 60°, the angle of refraction A , angle of deviation δ and anble of
emergence e become equal. Then, the refractive index of the prism is
A. 1.73
B. 1.15
C. 1.5
D. 1.33

Answer:
(Watch Video Solution
19. A person can see clearly only upto a distance of 25 cm . He wants to read a book placed at a distance of 50 cm . What kind of lens does he require for his spectacles and what must be its power?
A. -1.0 D
B. -1.33 D
C. -1.67 D
D. -2.0 D
20. An object is placed at a distance of 40 cm
in front of a concave mirror of focal length 20 cm . The image produced is
A. real, inverted and smaller in size
B. real, inverted and of same size
C. real and erect
D. virtual and inverted

- Watch Video Solution

21. A vessel of depth d is half filled with a liquid of refractive index μ_{1} and the other half is
filled with a liquid of refractive index μ_{2}. The apparent depth of the vessel, when looked at normally, is

$$
\begin{aligned}
& \text { A. } \frac{x\left(\mu_{1}+\mu_{2}\right)}{2 \mu_{1}+\mu_{2}} \\
& \text { B. } \frac{x \mu_{1}+\mu_{2}}{2\left(\mu_{1}+\mu_{2}\right)} \\
& \text { C. } \frac{x \mu_{1}+\mu_{2}}{\left(\mu_{1}+\mu_{2}\right)}
\end{aligned}
$$

D. $\frac{2 x\left(\mu_{1}+\mu_{2}\right)}{\mu_{1} \mu_{2}}$

Answer:

D Watch Video Solution

22. The following figure shows refraction of
light at the interface of three media Correct
the order of optical density (d) of the media is

A. $d_{1}>d_{2}>d_{3}$
B. $d_{2}>d_{1}>d_{3}$
C. $d_{3}>d_{3}>d_{2}$
D. $d_{2}>d_{3}>d_{1}$

Answer:

- Watch Video Solution

23. Light travels in two media A and B with
speeds $1.8 \times 10^{8} \mathrm{~ms}^{-1}$ and $2.4 \times 10^{8} \mathrm{~ms}^{-1}$
respectively. Then the critical angle between
them is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{2}{3}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{3}{4}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{2}{3}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

24. The refractive index of a glass is 1.520 for
red light and 1.525 for blue light. Let D_{1} and
D_{2} be angles of minimum deviation for red and blue light respectively in a prism of this glass. Then,
A. $D_{1}<D_{2}$
B. $D_{1}=D_{2}$

C. D_{1} can be less than or greater than D_{2}

 depending upon the angle of prismD. $D_{1}<D_{2}$

Answer:

D Watch Video Solution

25. Which of the following is not due to total internal reflection?
A. Working of optical fibre
B. Difference between apparent and real depth of pond
C. Mirage on hot summer days
D. Brilliance of diamond

Answer:

D Watch Video Solution

26. A body is located on a wall. Its image of equal size is to be obtained on a parallel wall with the help of a convex leng. The lens is
placed at a distance d ahead of second wall, then the required focal length will be:
A. only $\frac{D}{4}$
B. only $\frac{D}{2}$
C. more than $\frac{d}{4}$ but less than $\frac{d}{2}$
D. less than $\frac{d}{4}$

Answer:

D Watch Video Solution

27. A concave mirror forms the image of an
object on a screen. If the lower half of the mirror is covered with an opaque card, the effect would be
A. image less bright.
B. lower half of the image disappear.
C. upper half of the image disappear
D. image blurred.

Answer:

28. A ray of light passes through an equilateral prism (refractive index 1.5) such that angle of incidence is equal to angle of emergence and the latter is equal to $3 / 4$ th of the angle of prism. Calculate the angle of deviation.
A. 25°
B. 30°
C. 45°
D. 35°

Answer:

- Watch Video Solution

29. The power of a biconvex lens is 10 dioptre and the radius of curvature of each surface is

10 cm . Then the refractive index of the material of the lens is
A. $\frac{3}{2}$
B. $\frac{4}{3}$
C. $\frac{9}{8}$

5
 D. $\frac{5}{3}$

Answer:

D Watch Video Solution

30. A microscope is focused on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again?
A. 4.5 cm downward
B. 1 cm downward
C. 2 cm upward
D. 1 cm upward

Answer:

D Watch Video Solution
31. What causes chromatic aberration?
A. Marginal rays
B. Central rays
C. Difference in radii of curvature of its

surfaces

D. Variation of focal length of lens with
colour

Answer:

- Watch Video Solution

32. The graph between angle of deviation (δ)
and angle of incidence (i) for a triangular
prism is represented by

C.
(c) ${ }_{0}^{8} \underbrace{4}_{\mathrm{i}}$
D.
(d)

Answer:

- Watch Video Solution

33. The ratio of thickness of plates of two transparent medium A and B is $6: 4$. If light takes equal time in passing through them, then refractive index of A with respect to B will be
A. 1.33
B. 1.75
C. 1.4
D. 1.5

Answer:

D Watch Video Solution

34. A rectangular block of glass is placed on a mark made on the surface of the table and it is
viewed from the vertical position of eye. If refractive index of glass be μ and its thickness d, then the mark will appear to be raised up by
A. $\frac{(\mu+1) d}{\mu}$
B. $\frac{(\mu-1) d}{\mu}$
C. $\frac{(\mu+1)}{\mu d}$
D. $\frac{(\mu-1) \mu}{d}$

Answer:

D Watch Video Solution

35. If a glass prism is dipped in water, its
A. increases
B. decreases
C. does not change
D. may increase or decrease depending on
whether the angle of the prism is less
than or greater than 60°

Answer:

36. In the given figure a plano-concave lens is
placed on a paper on which a flower is drawn.
How far above its actual position does the flower appear to be ?

A. 10 cm
B. 15 cm
C. 50 cm

D. None of these

Answer:

D Watch Video Solution

37. To get three images of a single object, one
should have two plane mirrors at an angle of
A. 60°
B. 90°
C. 120°

D. 30°

Answer:

D Watch Video Solution

38. Light propagates with speed of
$2.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $\mathrm{m} / \mathrm{s}{ }^{`} 2.4 \mathrm{xx10}{ }^{\wedge}(8)^{\prime}$ in the media P and Q respectively. The critical angle of incidence for light undergoing reflection from P and Q is

$$
\text { A. } \sin ^{-1}\left(\frac{1}{11}\right)
$$

B. $\sin ^{-1}\left(\frac{11}{12}\right)$
C. $\sin ^{-1}\left(\frac{5}{12}\right)$
D. $\sin ^{-1}\left(\frac{5}{11}\right)$

Answer:

D Watch Video Solution

39. A thin convergent glass lens $\left(\mu_{g}=1.5\right)$ has a power of $+5.0 D$. When this lens is immersed in a liquid of refractive index μ_{1}, it
acts as a divergent lens of focal length

100 cm . The value of μ_{1} is
A. $4 / 3$
B. $5 / 3$
C. 5/4
D. 43621

Answer:
(Watch Video Solution
40. A ray of light travelling inside a rectangular glass block of refractive index $\sqrt{2}$ is incident on the glass-air surface at an angle of incidence of 45°. The refractive index of air is one. Under these conditions the ray will
A. emerge into the air without any deviation
B. be reflected back into the glass
C. be absorbed

D. emerge into the air with an angle of

 refraction equal to 90°
Answer:

D Watch Video Solution

41. A small coin is resting on the bottom of a beaker filled with a liquid. A ray of light from the coin travels up to the surface of the liquid and moves along its surface (see figure).

How fast is the light travelling in the liquid ?

A. $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer:
(Watch Video Solution
42. A ray $P Q$ incident on the refracting face $B A$ is refracted in the prism BAC as shown in the figure and emerges from the other refracting face $A C$ as $R S$ such that $A Q=A R$. If the angle of prism $A=60^{\circ}$ and the refractive index of the meterial of prism is $\sqrt{2}$, then the angle of deviation of the ray is

A. 60°
B. 45°
C. 30°
D. none of these

Answer:

- Watch Video Solution

43. When a biconvex lens of glass having refractive index 1.47 is dipped in a liquid, it
acts as a plane sheet of glass. This implies that
the liquid must have refractive index.
A. equal to that of glass
B. less then one
C. greater than that of glass
D. less then that of glass

Answer:

D Watch Video Solution

44. Show that the angle of deviation produced by a thin prism is reduced to one fourth (w.r.t. air) when it is immersed in water. Given

$$
.^{a} \mu_{g}=3 / 2 \text { and } .^{a} \mu_{g}=4 / 3
$$

A. $\frac{1}{5}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer:

