©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

SYSTEM OF PARTICLES AND

ROTATIONAL MOTION

Physics

1. From a solid sphere of M and radius R a
cube of maximum possible volume is cut.

Moment of inertia of cube about an axis passing through its centre and perpendiular to one of its faces is:

$$
\begin{aligned}
& \text { A. } \frac{4 M R^{2}}{9 \sqrt{3 \pi}} \\
& \text { B. } \frac{4 M R^{2}}{3 \sqrt{3 \pi}} \\
& \text { C. } \frac{M R^{2}}{32 \sqrt{2 \pi}} \\
& \text { D. } \frac{M R^{2}}{16 \sqrt{2 \pi}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

2. A hollow sphere is held suspended. Sand is

 now poured into it in stages. The centre of mass of the sphere with the sand
A. rises continuously
B. remains unchanged in the process
C. first rises and then falls to the original
position
D. first falls and then rises to the original
position

Answer: D

- Watch Video Solution

3. A body A of mass M while falling wertically downwards under gravity brakes into two parts, a body B of mass $\frac{1}{3} M$ and a body C of mass $\frac{2}{3} M$. The center of mass of bodies B and

C taken together shifts compared to that of body A towards
A. does not shift
B. depends on height of breaking
C. body B
D. body C

Answer:

D Watch Video Solution

4. From a uniform wire, two circular loops are made (i) P of radius r and (ii) Q of radius $n r$.

If the moment of inertia of Q about an axis passing through its center and perpendicular to tis plane is 8 times that of P about a similar axis, the value of n is (diameter of the wire is very much smaller than r or $n r$)
A. 8
B. 6
C. 4
D. 2

Answer:

D Watch Video Solution

5. A billiard ball of mass m and radius r, when
hit in a horizontal direction by a cue at a
height h above its centre, acquired a linear
velocity v_{0}. The angular velocity ω_{0} acquired by the ball is

$$
\begin{aligned}
& \text { A. } \frac{5 v_{0} r^{2}}{2 h} \\
& \text { B. } \frac{2 v_{0} r^{2}}{5 h} \\
& \text { C. } \frac{2 v_{0} r h}{5 r^{2}} \\
& \text { D. } \frac{5 v_{0} h}{2 r^{2}}
\end{aligned}
$$

Answer:

6. Three bricks each of length L and mass M are arranged as shown from the wall. The distance of the centre of mass of the system from the wall is
A. $L / 4$
B. $L / 2$
C. $(3 / 2) L$
D. $(11 / 12) L$

Answer:
7. Four point masses, each of value m, are placed at the corners of square $A B C D$ of side l. The moment of inertia of this system about an axis passing through A and parallel to $B D$
is -
A. $2 m l^{2}$
B. $\sqrt{3} m l^{2}$
C. $3 m l^{2}$

D. $m l^{2}$

Answer:

D Watch Video Solution

8. A hoop of radius r and mass m rotating with
an angular velocity ω_{0} is placed on a rough
horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases ot slip?
A. $\frac{r \omega_{0}}{4}$
B. $\frac{r \omega_{0}}{3}$
C. $\frac{r \omega_{0}}{2}$
D. $r \omega_{0}$

Answer:

D Watch Video Solution

9. Two masses m_{1} and m_{2} are connected by a massless spring of spring constant k and unstretched length I. The masses are placed
on a frictionless straight channel, which are consider our x-axis. They are initially at $x=0$ and $x=l$ respectively. At $t=0$, a velocity v_{0} is suddenly imparted to the first particle. At a later time t , the centre of mass of the two masses is at :

$$
\begin{aligned}
& \text { А. } x=\frac{m_{2} l}{m_{1}+m_{2}} \\
& \text { В. } x=\frac{m_{1} l}{m_{1}+m_{2}}+\frac{m_{2} v_{0} t}{m_{1}+m_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } x=\frac{m_{2} l}{m_{1}+m_{1}}+\frac{m_{2} v_{0} t}{m_{1}+m_{2}} \\
& \text { D. } x=\frac{m_{2} l}{m_{1}+m_{2}}+\frac{m_{1} v_{0} t}{m_{1}+m_{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution

10. A body of mass 1.5 kgrotating about an axis
with angular velocity of0.3rads ${ }^{-1}$ has the angular momentum of $1.8 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$. The radius of gyration of the body about an axis is
A. $2 m$
B. $1.2 m$
C. $0.2 m$
D. $1.6 m$

Answer:

D Watch Video Solution

11. If \vec{F} is the force acting in a particle having position vector \vec{r} and $\vec{\tau}$ be the torque of
this force about the origin, then
A. $\vec{r} \cdot \tau>0$ and $\vec{F} \cdot \tau<0$
B. $\vec{r} \cdot \tau=0$ and $\vec{F} \cdot \tau=0$
C. $\vec{r} \cdot \tau=0$ amd $\vec{F} \cdot \tau \neq 0$
D. $\vec{r} . \tau \neq 0$ and $\vec{F} \cdot \tau=0$

Answer:

D Watch Video Solution

12. A thin uniform rod of length I and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular
speed is ω. Its cenre of mass rises to a maximum height of :
A. $\frac{1}{6} \frac{l \omega}{g}$
B. $\frac{1}{2} \frac{l^{2} \omega^{2}}{g}$
C. $\frac{1}{6} \frac{l^{2} \omega^{2}}{g}$
D. $\frac{1}{3} \frac{l^{2} \omega^{2}}{g}$

Answer:

13. A wheel is rolling straight on ground without slipping. If the axis of the wheel has
speed v, the instantenous velocity of a point P on the rim, defined by angle θ, relative to the ground will be

A. $v \cos \left(\frac{1}{2} \theta\right)$
B. $2 v \cos \left(\frac{1}{2} \theta\right)$
C. $v(1+\sin \theta)$
D. $v(1+\cos \theta)$

Answer:

D Watch Video Solution

14. A solid sphere having mass m and radius r rolls down an inclined plane. Then its kinetic energy is
A. $\frac{5}{7}$ rotational and $\frac{2}{7}$ translational
B. $\frac{2}{7}$ rotational and $\frac{5}{7}$ translational
C. $\frac{2}{5}$ rotational and $\frac{3}{5}$ translational
D. $\frac{1}{2}$ rotational and $\frac{1}{2}$ translational

Answer:

D Watch Video Solution

15. A ring of mass M and radius R is rotating about its axis with angular velocity ω. Two identical bodies each of mass m are now
gently attached at the two ends of a diameter of the ring. Because of this, the kinetic energy

loss will be :

$$
\begin{aligned}
& \text { A. } \frac{m(M+2 m)}{M} \omega^{2} R^{2} \\
& \text { B. } \frac{M m}{(M+m)} \omega^{2} R^{2} \\
& \text { C. } \frac{M m}{(M+2 m)} \omega^{2} R^{2} \\
& \text { D. } \frac{(M+m) M}{(M+2 m)} \omega^{2} R^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

16. A certain bicycle can go up a gentle incline with constant speed when the frictional force of ground pushing the rear wheel is $F_{2}=4 N$.

With what force F_{1} must the chain pull on the sprocket wheel if $R_{1}=5 \mathrm{~m}$ and $R_{2}=30 \mathrm{~m}$?

A. $4 N$
B. $24 N$
C. $140 N$

$$
\text { D. } \frac{35}{4} N
$$

Answer:

D Watch Video Solution

17. A wooden cube is placed on a rough horizontal table, a force is applied to the cube.

Gradually the force is increased. Whether the cube slides before toppling or topples before sliding is independent of :
A. the position of point of application of the force
B. the length of the edge of the cube
C. mass of the cube
D. Coefficient of friction between the cube and the table

Answer:

D Watch Video Solution
18. From a circular ring of mass M and radius

R , an arc corresponding to a 90° sector is removed. The moment of inertia of the ramaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is k times $M R^{2}$. Then the value of k is
A. $3 / 4$
B. $7 / 8$
C. $1 / 4$

D. 1

Answer:

D Watch Video Solution

19. A mass m moves in a circles on a smooth
horizontal plane with velocity v_{0} at a radius
R_{0}. The mass is atteched to string which passes through a smooth hole in the plane as shown.

The tension in string is increased gradually
and finally m moves in a cricle of radius $\frac{R_{0}}{2}$.
the final value of the kinetic energy is

A. $\frac{1}{4} m v_{0}{ }^{2}$
B. $2 m v_{0}^{2}$
C. $\frac{1}{2} 2 m v_{0}^{2}$
D. $m v_{0}^{2}$

Answer:

D Watch Video Solution

20. A rod $P Q$ of length L revolves in a horizontal plane about the axis YY^{\prime}. The angular velocity of the rod is w . If A is the area of cross-section of the rod and r be its density,
its rotational kinetic energy is
A. $\frac{1}{3} A L^{3} \rho \omega^{2}$,
B. $\frac{1}{2} A L^{3} \rho \omega^{2}$,

$$
\begin{aligned}
& \text { C. } \frac{1}{24} A L^{3} \rho \omega^{2}, \\
& \text { D. } \frac{1}{18} A L^{3} \rho \omega^{2},
\end{aligned}
$$

Answer:

D Watch Video Solution

21. A solid sphere rolls on a smooth horizontal
surface at $10 \mathrm{~m} / \mathrm{s}$ and then rolls up a smooth
inclined plane of inclination 30° with horizontal. The mass of the sphere is $2 k g$. Find
the height attained by the sphere before it stops (in m).
A. 700 cm
B. 701 cm
C. 7.1 cm
D. 70 cm

Answer:

D Watch Video Solution
22. A hollow smooth uniform A of mass 'm' rolls without sliding on a smooth horizontal
surface collides head to elastically with another stationary smooth solid sphere B of the same mass m and same radius. The ratio of kinetic energy of ' B ' to that of 'A' just after the collision is -

A. $1: 1$
B. $2: 3$
C. $3: 2$
D. $4: 3$

Answer:

D Watch Video Solution

23. Two discs of same thickness but of different radii are made of two different materials such that their masses are same. The densities of the materials are in the ratio of
$1: 3$. The moments of inertia of these discs about the respective axes passing through their centres and perpendicular to their planes will be in the ratio of
A. 1:3
B. 3:1
C. 1:9
D. 9:1

Answer:

24. A pulley fixed to the ceiling carries a string with blocks of mass m and $3 m$ attached to its ends. The masses of string and pulley are negligible .When the system is released, its center of mass moves with what acceleration
A. 0
B. $-g / 4$
C. $g / 2$
D. $-g / 2$

Answer:

D Watch Video Solution

25. A ring of mass m and radius R has four particles each of mass m attached to the ring as shown in figure. The centre of ring has a
speed v_{0}. The kinetic energy of the system is

A. $m v_{0}{ }^{2}$
B. $3 m v_{0}{ }^{2}$
C. $5 m v_{0}{ }^{2}$
D. $6 m v_{0}{ }^{2}$

Answer:

D Watch Video Solution

26. Consider a uniform square plate of of side and mass m. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its corners is -
A. $\frac{5}{6} M a^{2}$
B. $\frac{1}{12} M a^{2}$
C. $\frac{7}{12} M a^{2}$

$$
\text { D. } \frac{2}{3} M a^{2}
$$

Answer:

D Watch Video Solution

27. A dancer is standing on a stool rotating about the vertical axis passing through its centre. She pulls her arms towards the body reducing her moment of inertia by a factor of n . The new angular speed of turn table is proportional to
A. n
B. n^{-1}
C. n^{0}
D. n^{2}

Answer:

D Watch Video Solution

28. A unifrom square plate has a small piece Q
of an irregular shape removed and glued to
the centre of the plate leaving a hole behind
[Fig.] The moment of inertia about the z-axis is
than

A. increases
B. decreases
C. remains same
D. changed in unpredicted manner.

Answer:

29. A circular turn table has a block of ice placed at its centre. The system rotates with
an angular speed w about an axis passing
through the centre of the table. If the ice melts on its own without any evaporation, the speed of rotation of the system
A. becomes zero
B. remains constant at the same value ω
C. increases to a value greater than ω

D. decreases to a value less than ω

Answer:

D Watch Video Solution

30. Seven identical disc are arranged in a hexagonal, planar pattern so as to touch each neighbour, as shown in the figure. Each disc has mass m and radius r. What is the moment of inertia of the system of seven disks about an axis passing through the centre of central

disk and normal to plane of all disks ?

A. $\frac{55}{2} m r^{2}$
B. $\frac{127}{2} m r^{2}$
C. $\frac{111}{2} m r^{2}$
D. $55 m r^{2}$

Answer:

D Watch Video Solution

31. Considering a system having two masses
m_{1} and m_{2} in which first mass is pushed towards centre of mass by a distance d, the distance required to be moved for second mass to keep centre of mass at same position
is :-

A. $\frac{m_{2} d}{m_{1}}$
B. d
C. $\frac{m_{1} d}{\left(m_{1}+m_{2}\right)}$
D. $\frac{m_{1} d}{\left(m_{2}\right)}$

Answer: D

32. A uniform bar of mass M and length L is
horizontally suspended from the ceiling by two vertical light cables as shown. Cable A is connected $\frac{1}{4}$ th distance from the left end of the bar. Cable B is attached at the far right end of the bar. What is the tension in cable A?

A. $1 / 4 M g$
B. $1 / 3 M g$

C. $2 / 3 M g$

D. $3 / 4 M g$

Answer:

- Watch Video Solution

33. A couple produces.
A. purely linear motion
B. purely rotational motion
C. linear and rotational motion

D. no motion

Answer:

D Watch Video Solution

34. Point masses $1,2,3$ and 4 kg are lying at the
point $\quad(0,0,0),(2,0,0),(0,3,0) \quad$ and
$(-2,-2,0)$ respectively. The moment of inertia of this system about x-axis will be
A. $43 \mathrm{kgm}^{2}$
B. $34 \mathrm{kgm}^{2}$
C. $27 \mathrm{kgm}^{2}$
D. $72 \mathrm{kgm}^{2}$

Answer:

D Watch Video Solution

35. A solid sphere of mass M and radius R is pulled horizontally on a rough surface as shown in Fig. Choose the incorrect
alternatives.

A. The acceleration of the centre of mass is
$F / M^{`}$
B. The acceleration of the centre of mass is
$\frac{2}{3} \frac{M}{F}$
C. The friction force on the sphere acts

forward

D. The magnitude of the friction force is

$$
F / 3
$$

Answer:

D Watch Video Solution

36. The moment of inertia of a body about a given axis is $1.2 \mathrm{kgm}^{2}$. Initially, the body is at rest. In order to produce a rotational $K E$ of

1500 J , for how much duration, an acceleration of $25 \mathrm{rads}^{-2}$ must be applied about that axis ?
A. 4 sec
B. 2 sec
C. 8 sec
D. 10 sec

Answer:

37. A gymnast takes turns with her arms and
legs stretched. When she pulls her arms and legs in
A. the angular velocity decreases
B. the moment of inertia decreases
C. the angular velocity stays constant
D. the angular momentum increases

Answer:

- Watch Video Solution

38. A equilaterial triangle $A B C$ formed from a uniform wire has two small identical beads initially located at A. The triangle is set rotating about the vertical axis $A O$. Then the beads are released from rest simultaneously and allowed to slide down. one long. $A B$ and
the other along $A C$ as shown. Neglecting frictional effects, the quantities that are
conserved as the beads slide down, are.

A. angular velocity and total energy (kinetic and potential)
B.total angular momentum and total energy
C. angular velocity and moment of inertia
about the axis of rotation
D. total angular momentum and moment
of inertia about the axis of rotation

Answer:

D Watch Video Solution
39. The moment of inertia of a uniform semicircular wire of mass m and radius r, about an axis passing through its centre of mass and perpendicular to its plane is $m r^{2}\left(-\frac{k}{\pi^{2}}\right)$. Find the value of k .
A. 2
B. 3
C. 4
D. 5

- Watch Video Solution

40. Initial angular velocity of a circular disc of mass M is ω_{1}. Then two small spheres of mass m are attached gently to two diametrically opposite points on the edge of the disc. What is the final angular velocity of the disc -
A. $\left(\frac{M+m}{M}\right) \omega_{1}$
B. $\left(\frac{M+m}{m}\right) \omega_{1}$
c. $\left(\frac{M}{M+4 m}\right) \omega_{1}$
D. $\left(\frac{M}{M+2 m}\right) \omega_{1}$

Answer:

D Watch Video Solution

41. Two identical uniform discs of mass m and
radius r are arranged as shown in the figure. If
α is the angular acceleration of the lower disc
and $a_{c m}$ is acceleration of centre of mass of
the lower disc, then relation among $a_{c m}, \alpha$
and r is
A. $\alpha_{c m}=\alpha / r$

$$
\text { B. } a_{c m}=2 \alpha / r
$$

C. $a_{c m}=\alpha r$
D. None of these

Answer:

D Watch Video Solution
42. Five masses are placed in a plane as shown
in figure. The coordinates of the centre of
mass are nearest to

A. 1.2, 1.4
B. 1.3, 1.1
C. 1.1, 1.3
D. 1.0, 1.0

Answer:

D Watch Video Solution

43. Three particles, each of mass m grams situated at the vertices of an equilateral triangle $A b C$ of side $I \mathrm{~cm}$ (as shown in the figure). The moment of inertia of the system about a line $A X$ perpendicular to $A B$ and in
the plane of $A B C$, in gram- $\mathrm{cm}^{\wedge} 2$ units will be.

A. $\frac{3}{2} m l^{2}$
B. $\frac{3}{4} m l^{2}$
C. $2 m l^{2}$
D. $\frac{5}{4} m l^{2}$

Answer:

- Watch Video Solution

44. When a ceiling fan is switched on, it makes

10 rotations in the first 3 seconds. Assuming a
uniform angular acceleration, how many rotation it will make in the next 3 seconds?
A. 10
B. 20
C. 30
D. 40

Answer:

D Watch Video Solution

45. A solid sphere spinning about a horizontal axis with an angular velocity ω is placed on a horizontal surface. Subsequently it rolls without slipping with an angular velocity of :
A. $\frac{2 \omega}{5}$
B. $\frac{7 \omega}{5}$
C. $\frac{2 \omega}{5}$
D. ω

Answer:

- Watch Video Solution

