©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

THERMAL PROPERTIES OF MATTER

Others

1. The total radiant energy per unit area, normal to the direction of incidence, received at a distance R from the centre of a star of
radius r whose outer surface radiates as a
black body at a temperature $T K$ is given by
(where σ is Stefan's constant)

$$
\begin{aligned}
& \text { A. } \frac{\sigma r^{2} T^{4}}{R^{2}} \\
& \text { B. } \frac{\sigma r^{2} T^{4}}{4 \pi r^{2}} \\
& \text { C. } \frac{\sigma r^{4} T^{4}}{r^{4}} \\
& \text { D. } \frac{4 \pi \sigma r^{2} T^{4}}{R^{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution
2.

Three rods of same dimensions are arranged as shown in Fig. They have thermal conductivities K_{1}, K_{2} and K_{3}. The points P and

Q are maintained at different temeperature
for the heat to flow at the same rate along PRQ and PQ. Whi of the following options correct?

> А. $K_{3}=\frac{1}{2}\left(K_{1}+K_{2}\right)$
> В. $K_{3}=K_{1}+K_{2}$
> С. $K_{3}=\frac{K_{1} K_{2}}{K_{1}+K_{2}}$
> D. $K_{3}=-2\left(K_{1}+K_{2}\right)$

Answer:

D Watch Video Solution
3. The sprinkling of wate slightly reduces the temperature of a closed room because
A. temperature of water is less than that of the room
B. specific heat of water is high
C. water has large latent heat of
vaporisation

D. water is a bad conductor of heat

Answer:

D Watch Video Solution
4. The specific heat capacity of a metal at low temperature (T) is given as
$C_{p}\left(k J K^{-1} k g^{-1}\right)=32\left(\frac{T}{400}\right)^{3}$
A 100 gram vessel of this metal is to be cooled
from $20^{\circ} \mathrm{K}$ to $4^{\circ} \mathrm{K}$ by a special refrigerator operating at room temperaturte $\left(27^{\circ} \mathrm{C}\right)$. The amount of work required to cool the vessel is
A. grater than 0.148 kJ
B. between 0.148 kJ and 0.028 kJ
C. less than 0.028 kJ

D. equal to 0.002 kJ

Answer:

D Watch Video Solution

5. The emissive power of a black body at $T=300 \mathrm{~K}$ is $100 \mathrm{Wa} / \mathrm{m}^{2}$ consider a body B of area $A=10 m^{2}$ coefficient of reflectivity $r=0.3$ and coefficient of transmission
$t=0.5$ its temperature is 300 K . then which of the followin is correct:
A. The emissive power of B is $20 \mathrm{~W} / \mathrm{m}^{2}$
B. The emissive power of B is $200 \mathrm{~W} / \mathrm{m}^{2}$
C. The power emitted by B is 200 Watts
D. The emissivity of B is 0.2

Answer:

D Watch Video Solution

6. A solid cube and a solid sphere of the same material have equal surface area. Both are at the same temperature $120^{\circ} \mathrm{C}$, then
A. both the cube and the sphere cool down at the same rate
B. the cube cools down faster than the sphere
C. the sphere cools down faster than the cube

D. whichever is having more mass will cool

down faster

Answer:

7. The density of water at $20^{\circ} \mathrm{C}$ is $998 \mathrm{~kg} / \mathrm{m}^{3}$ and at $40^{\circ} \mathrm{C} 992 \mathrm{~kg} / \mathrm{m}^{3}$. The coefficient of volume expansion of water is
A. $10^{-4} /{ }^{\circ} \mathrm{C}$
B. $3 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
C. $2 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
D. $6 \times 10^{-4} /{ }^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution
8. A metallic rod lcm long, A square cm in cross-section is heated through $t^{\circ} \mathrm{C}$. If Young's modulus of elasticity of the metal is E and the mean coefficient of linear expansion is α per degree celsius, then the compressional force required to prevent the rod from expanding along its length is
A. $E A \alpha t$

$$
\text { B. } E A \alpha t /(1+\alpha t)
$$

C. $E A \alpha t /(1-\alpha t)$

D. $E l \alpha t$

Answer:

D Watch Video Solution

9. If liquefied oxygen at 1 atmospheric pressure
is heated from 50 K to 300 k by supplying heat
at constant rate. The graph of temperature vs
time will be
(a)

B.
(b)

C.

D.

Answer:

D Watch Video Solution

10. If a bar is made of copper whose coefficient
of linear expansion is one and a half times
that of iron, the ratio of force developed in the copper bar to the iron bar of identical lengths
and cross-sections, when heated through the
same temperature range (Young's modulus of
copper may be taken to be equal to that of iron) is
A. $3 / 2$
B. $2 / 3$
C. $9 / 4$

D. $4 / 9$

Answer:

- Watch Video Solution

11. A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absobed by the ice and all energy of ice gets converted into heat during its fall.

The value of h is
[Latent heat of ice is $3.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ and $g=10 \mathrm{~N} / \mathrm{kg}]$
A. 34 km
B. 544 km
C. 136 km
D. 68 km

Answer:
(Watch Video Solution
12. A body of mass 5 kg falls from a height of

20 metres on the ground and it rebounds to a
height of 0.2 m . If the loss in potential energy
is used up by the body, then what will be the
temperature
rise?
$\left(\right.$ specific heat of material $\left.=0.09 \mathrm{cal} \mathrm{gm}^{-1 \circ} \mathrm{C}^{-1}\right)$
A. $0^{\circ} \mathrm{C}$
B. $4^{\circ} \mathrm{C}$
C. $8^{\circ} \mathrm{C}$
D. none of these

Answer:

- Watch Video Solution

13. Two straight metallic strips each of
thickness t and length I are rivetted together.
Their coefficients of linear expansions are α_{1} and α_{2}. If they are heated through temperature ΔT, the bimetallic strip will bend to form an arc of radius

$$
\text { A. } t /\left\{\left(\alpha_{1}+\alpha_{2}\right) \Delta T\right\}
$$

B. $t /\left\{\left(\alpha_{2}-\alpha_{1}\right) \Delta T\right\}$
C. $t\left(\alpha_{1}-\alpha_{2}\right) \Delta T$
D. $t\left(\alpha_{2}+\alpha_{1}\right) \Delta T$

Answer:

D Watch Video Solution

14. The figure shows a system of two concentric spheres of radii r_{1} and r_{2} are kept at temperature T_{1} and T_{2}, respectively. The radial rate of flow of heat in a substance
between the two concentric spheres is
proportional to

A. $\ln \left(\frac{r_{2}}{r_{1}}\right)$
B. $\frac{\left(r_{2}-r_{1}\right)}{r_{2} r_{1}}$
C. $r_{2}-r_{1}$
D. $\frac{r_{1} r_{2}}{\left(r_{2}-r_{1}\right)}$

Answer:

D Watch Video Solution

15. A block of steel heated to $100^{\circ} C$ is left in a
room to cool Which of the curves shown in the represents the correct behaviour
A. A
B. B
C. C
D. none of these

Answer:

D Watch Video Solution
16. Which of the following will expand the most for same rise in temperature?
A. Aluminium
B. Glass
C. Wood
D. All will expand same

Answer:

D Watch Video Solution

17. The plots of intensity versus wavelength for three black bodies at temperatures T_{1}, T_{2} and T_{3} respectively are shown in Their
temperatures are shown in How their temperatures are related ?

A. $T_{1}>T_{2}>T_{3}$
B. $T_{1}>T_{3}>T_{2}$
C. $T_{2}>T_{3}>T_{1}$
D. $T_{3}>T_{2}>T_{1}$

Answer:

- Watch Video Solution

18. When the temperature of a rod increases
from t to $r+\Delta t$, its moment of inertia increases from I to $I+\Delta I$. If α is the value of
$\Delta I / I$ is
A. $2 \alpha \Delta t$
B. $\alpha \Delta t$
C. $\frac{\alpha \Delta t}{2}$
D. $\frac{\Delta t}{\alpha}$

Answer:

- Watch Video Solution

19. Two rods, one of aluminium and other made of steel, having initial lengths l_{1} and l_{2} are connected together to form a single rod of length $\left(l_{1}+l_{2}\right)$. The coefficient of linear expansions for aluminium and steel are α_{a} and α_{s} respectively. If length of each rod
increases by same amount when their tempertures are raised by $t^{\circ} C$, then find the ratio $l_{1}\left(l_{1}+l_{2}\right)$.
A. α_{s} / α_{a}
B. α_{a} / α_{s}
C. $\alpha_{s} /\left(\alpha_{a}+\alpha_{s}\right)$
D. $\alpha_{a} /\left(\alpha_{a}+\alpha_{s}\right)$

Answer:

D Watch Video Solution
20. A polished metal plate with a rough black spot on it is heated to about $1400 K$ and quickly taken into dark room Then.
A. The spot will appear brighter than the plate
B. The spot will appear darker than the plate
C. The spot and plate will appear equally
bright

D. The spot and the plate will not be visible

 in the dark room
Answer:

D Watch Video Solution

21. On observing light from three different stars P, Q and R, it was found that intensity of violet colour is maximum in the spectrum of
P, the intensity of green colour is maximum in the spectrum of R and the intensity of red
colour is maximum in the spectrum of Q. if T_{P},
T_{Q} and T_{R} are respective absolute temperature of P, Q and R. then it can be concluded from the above observation that
A. $T_{P}>T_{R}>T_{Q}$
B. $T_{P}<T_{R}<T_{Q}$
C. $T_{P}<T_{Q}<T_{R}$
D. $T_{P}>T_{Q}>T_{R}$

Answer:

22. A partition wall has two layers of different materials A and B in contact with each other.

They have the same thickness but the thermal conductivity of layer A is twice that of layer B.

At steady state the temperature difference across the layer B is 50 K , then the corresponding difference across the layer A is
A. 50 K
B. 12.5 K
C. 25 K

D. 60 K

Answer:

D Watch Video Solution

23. Which of the following statements is/are false about mode of heat transfer?
A. In radiation, heat is transfered from one medium to another without affecting
the intervening medium

B. Radiation and convection are possible in

 vaccum while conduction requires material medium.C. Conduction is possible in solids while convection occurs in liquids and gases.

D. All are correct

Answer:

D Watch Video Solution

24. In a vertical U-tube containing a luquid,
the two arms are maintained at different temperatures, t_{1} and t_{2}. The liquid coplumns in the two arms have heights l_{1} and l_{2} respectively. The coefficient of volume
expansion of the liquid is equal to

A. $\frac{l_{1}-l_{2}}{l_{2} t_{1}-l_{1} t_{2}}$
B. $\frac{l_{1}-l_{2}}{l_{1} t_{1}-l_{2} t_{2}}$
C. $\frac{l_{1}+l_{2}}{l_{2} t_{1}+l_{1} t_{2}}$
D. $\frac{l_{1}+l_{2}}{l_{1} t_{1}+l_{2} t_{2}}$

Answer:

- Watch Video Solution

25. The top of an insulated cylindrical container is covered by a disc having emissivity 0.6 and conductivity 0.167
$\mathrm{WK}^{-1} m^{-1}$ and thickness 1 cm . The
temperature is maintained by circulating oil as
shown in figure. Find the radiation loss to the
surrounding in $\mathrm{Jm}^{-2} s^{-1}$ if temperature of the upper surface of the disc is $27^{\circ} \mathrm{C}$ and temperature of the surrounding is $27^{\circ} \mathrm{C}$.

A. $595 \mathrm{Jm}^{-2} \mathrm{~S}^{-1}$
B. $5545 \mathrm{Jm}^{-2} \mathrm{~s}^{-1}$
C. $495 \mathrm{Jm}^{-2} \mathrm{~S}^{-1}$
D. none of these

Answer:

D Watch Video Solution

26. Wien's law is concerned with
A. relation between emissivity and absorptivity of a radiating surface
B. total radiation, emitted by a hot surface
C. an expression for spectral distribution of
energy of a radiation from any source

D. a relation between the temperature of a

black body and the wavelength at which
there is maximum radiant energy per unit wavelength

Answer:

- Watch Video Solution

27. If a piece of metal is heated to temperature
θ and the allowed to cool in a room which is at
temperature T of the metal and time t will be
closet to
(a)

(b)
B.

C.
(c)

(d)

Answer:

28. Two rods of same length and transfer a
given amount of heat 12 second, when they
are joined as shown in figure (i). But when they
are joined as shwon in figure (ii), then they will
transfer same heat in same conditions in

A. 24 s
B. 13s
C. 15s
D. 48 s

Answer:

- Watch Video Solution

29. Consider a compound slab consisting of two different material having equal thickness and thermal conductivities K and $2 K$
respectively. The equivalent thermal

conductivity of the slab is

A. $\frac{4}{3} K$
B. $\frac{2}{3} K$
C. $\sqrt{3} K$
D. $3 K$

Answer:

D Watch Video Solution

30. The coefficient of thermal conductivity of copper, mercury and glass are respectively K_{c}, K_{m} and K_{g} that $K_{c}>K_{m}>K_{g}$. If the same quantity of heat is to flow per second per unit of each and corresponding temperature gradients are X_{c}, X_{m} and X_{g}, then

$$
\begin{aligned}
& \text { A. } X_{c}=X_{m}=X_{g} \\
& \text { B. } X_{c}>X_{m}>X_{g} \\
& \text { C. } X_{c}<X_{m}<X_{g}
\end{aligned}
$$

$$
\text { D. } X_{m}<X_{c}<X_{g}
$$

Answer:

D Watch Video Solution

31. The radiation energy density per unit wavelength at a temperature T has a maximum at a wavelength λ_{0}. At temperature 2 T , it will have a maximum wavelength
A. $4 \lambda_{0}$
B. $2 \lambda_{0}$
C. $\frac{\lambda_{0}}{2}$
D. $\frac{\lambda_{0}}{4}$

Answer:

- Watch Video Solution

32. Assuming the Sun to be a spherical body of radius R at a temperature of $T K$, evaluate the total radiant powered incident of Earth at a distance r from the sun
where r_{0} is the radius of the Earth and σ is

Stefan's constant.

> A. $4 \pi r_{0}^{2} R^{2} \sigma \frac{T^{4}}{r^{2}}$
> B. $\pi r_{0}^{2} R^{2} \sigma \frac{T^{4}}{r^{2}}$
> C. $r_{0}^{2} R^{2} \sigma \frac{T^{4}}{4 \pi r^{2}}$
> D. $R^{2} \sigma \frac{T^{4}}{r^{2}}$

Answer:

D Watch Video Solution

33. A metal ball immersed in alcohol weights
W_{1} at $0^{\circ} \mathrm{C}$ and W_{2} at $50^{\circ} \mathrm{C}$. The coefficient of expansion of cubical the metal is less than that of the alcohol. Assuming that the density of the metal is large compared to that of alcohol, it can be shown that
A. $W_{1}>W_{2}$
B. $W_{1}=W_{2}$
c. $W_{1}<W_{2}$
D. $W_{1}=\left(W_{2} / 2\right)$

Answer:

D Watch Video Solution

34. One end of thermally insulated rod is kept
at a temperature T_{1} and the other at T_{2}. The
rod is composed of two section of length l_{1} and l_{2} thermal conductivities k_{1} and k_{2} respectively. The temerature at the interface of two section is

$$
\text { A. } \frac{\left(K_{1} l_{1} T_{1}+K_{2} l_{2} T_{2}\right)}{\left(K_{1} l_{1}+K_{2} l_{2}\right)}
$$

$$
\begin{aligned}
& \text { B. } \frac{\left(K_{2} l_{2} T_{1}+K_{1} l_{1} T_{2}\right)}{\left(K_{1} l_{1}+K_{2} l_{2}\right)} \\
& \text { C. } \frac{\left(K_{2} l_{1} T_{1}+K_{1} l_{2} T_{2}\right)}{\left(K_{2} l_{1}+K_{1} l_{2}\right)} \\
& \text { D. } \frac{\left(K_{1} l_{2} T_{1}+K_{2} l_{1} T_{2}\right)}{\left(K_{1} l_{2}+K_{2} l_{1}\right)}
\end{aligned}
$$

Answer:

D Watch Video Solution

35. Two spheres of different materials one with double the radius and one-fourth wall thickness of the other are filled with ice. If the time taken for complete melting of ice in the
larger sphere is 25 minutes and for smaller one is 16 minutes, the ratio of thermal conductivities of the materials of larger sphere to that of smaller sphere is:
A. $4: 5$
B. 5: 4
C. 25: 8
D. $8: 25$

Answer:

36. A black body has maximum wavelength λ_{m} at temperature $2000 K$. Its corresponding wavelength at temperature 3000 will be

> A. $\frac{3}{2} \lambda_{m}$
> B. $\frac{2}{3} \lambda_{m}$
> C. $\frac{4}{9} \lambda_{m}$
> D. $\frac{9}{4} \lambda_{m}$

Answer:

D Watch Video Solution
37. A solid material is supplied heat at a constant rate. The temperature of material is changing with heat input as shown in the figure. What does the slope of DE represent ?

$A . A B$ and $C D$ of the graph represent phase changes
B. $A B$ represents the change of state from
solid to liquid
C. latent heat of fusion is twice the latent
heat of vaporization
D. CD represents change of state from
liquid to vapour

Answer:

D Watch Video Solution

38. 10 gm of ice cubes at $0^{\circ} \mathrm{C}$ are released in a tumbler (water equivalent 55 g) at $40^{\circ} \mathrm{C}$.

Assuming that negligible heat is taken from
the surroundings, the temperature of water in
the tumbler becomes nearly $(\mathrm{L}=80 \mathrm{cal} / \mathrm{g})$
A. $31^{\circ} \mathrm{C}$
B. $22^{\circ} \mathrm{C}$
C. $19^{\circ} \mathrm{C}$
D. $15^{\circ} \mathrm{C}$

Answer:
39. In a surrounding medium of temperature
$10^{\circ} \mathrm{C}$, a body takes 7 min for a fall of temperature from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. In what time
the temperature of the body will fall from $40^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$
A. 7 min
B. 11 min
C. 14 min

D. 21 min

Answer:

D Watch Video Solution

40. Two rods of same length and area of crosssection A_{1} and A_{2} have their ends at the
same temperature. If K_{1} and K_{2} are their thermal conductivities, c_{1} and c_{2} are their specific heats and d_{1} and d_{2} are their
densities, then the rate of flow of heat is the same in both the rods if

$$
\begin{aligned}
& \text { A. } \frac{A_{1}}{A_{2}}=\frac{-k_{1}}{k_{2}} \\
& \text { B. } \frac{A_{1}}{A_{2}}=\frac{k_{1} c_{1} d_{1}}{k_{2} c_{2} d_{2}} \\
& \text { C. } \frac{A_{1}}{A_{2}}=\frac{k_{2} c_{1} d_{1}}{c_{2} d_{2} k_{1}} \\
& \text { D. } \frac{A_{1}}{A_{2}}=\frac{k_{2}}{k_{1}}
\end{aligned}
$$

Answer:

D Watch Video Solution

41.

Time (minute)

A student takes 50 g wax (specific heat $=0.6 \mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C}$) and heats it till it boils.

The graph between temperature and time is
as follows. Heat supplied to the wax per minute and boiling point are respectively.
A. $500 \mathrm{cal}, 50^{\circ} \mathrm{C}$
B. $1000 \mathrm{cal}, 100^{\circ} \mathrm{C}$
C. $1500 \mathrm{cal}, 200^{\circ} \mathrm{C}$
D. $1000 \mathrm{cal}, 200^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

42. Consider two identical iron spheres, one which lie on a thermally insulating plate, while the other hangs from an insulatory thread. Equal amount of heat is supplied to the two
spheres, then

A. temperature of A will be greater than B
B. temperature of B will be greater than A
C. their temperature will be equal
D. can't be predicted

- Watch Video Solution

43. Stream at $100^{\circ} \mathrm{C}$ is passed into 20 g of water at $10^{\circ} \mathrm{C}$. When water acquires a temperature of $80^{\circ} \mathrm{C}$, the mass of water present will be [Take specific heat of water $=1 \mathrm{calg}{ }^{-1} .{ }^{\circ} C^{-1}$ and latent heat of steam $=540 \mathrm{calg}^{-1} \mathrm{]}$
A. 24 g
B. 31.5 g
C. 42.5 g

D. 22.5 g

Answer:

- Watch Video Solution

44. Two solid spheres of radii R_{1} and R_{2} are made of the same material and have similar surfaces. These are raised to the same temperature and then allowed to cool under identical conditions. The ratio of their initial rates of loss of heat are
A. R_{1}^{2} / R_{2}^{2}
B. R_{1} / R_{2}
C. R_{2} / R_{1}
D. R_{2}^{2} / R_{1}^{2}

Answer:

- Watch Video Solution

