©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

WAVE OPTICS

Physics

1. In Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is λ is I, λ being
the wavelength of light used. The intensity at
a point where the path difference is $\lambda / 4$ will
be

> A. $\frac{I}{4}$
> B. $\frac{I}{2}$
> C. I
> D. zero

Answer:

D Watch Video Solution
2. A beam of light is incident on a glass slab
($\mu=1.54$) in a direction as shown in the
figure. The reflected light is analysed by a polaroid prism. On rotating the polaroid, $\left(\tan 57^{\circ}=1.54\right)$

A. the intensity remains unchanged
B. the intensity is reduced to zero and remains at zero
C. the intensity gradually reduces to zero and then again increase
D. the intensity increases continuously

Answer:

D Watch Video Solution

3. Two sources of light of wavelengths $2500 \AA$ and $3500 \AA$ are used in Young's double slit expt. simultaneously. Which orders of fringes of two wavelength patterns coincide?
A. 3rd order of 1st source and 5th of the

2nd
B. 7th order of 1st and 5th order of 2nd
C. 5th order of 1st and 3th order of 2nd
D. 5th order of 1st and 7th order of 2nd

Answer:

- Watch Video Solution

4. Figure shows behavior of a wavefront when
it passes through a prism.

Which of the following statements is/are

correct ?

A. Lower portion of wavefront (B^{\prime}) is delayed resulting in a tilt.
B. Time taken by light to reach A ' is equal to the time taken to reach B^{\prime} from B.
C. Speed of wavefront is same everywhere.
D. A particle on wavefront $A^{\prime} B^{\prime}$ is in phase
with a particle on wavefront $A B$.

Answer:

5. When the angle of incidence is 60° on the surface of a glass slab, it is found that the reflected ray is completely polarised. The velocity of light in glass is
A. $\sqrt{2} \times 10^{8} m s^{-1}$
B. $\sqrt{3} \times 10^{8} m s^{-1}$
C. $2 \times 10^{8} m s^{-1}$

$$
\text { D. } 3 \times 10^{8} \mathrm{~ms}^{-1}
$$

Answer:

6. Figure shows two coherent sources S_{1} and
S_{2} vibrating in same phase. AB in an irregular wire lying at a far distance from the sources S_{1} and S_{2}. Let $\frac{\lambda}{d}=10^{-3} \angle B O A=0.12^{\circ}$. How many bright spots will be seen on the wire, including points A and B ?

A. 5
B. 4
C. 2
D. 7

Answer:

- Watch Video Solution

7. Two identical light waves, propagating in the same direction, have a phase difference δ.

After they superpose, the intensity of the resulting wave will be proportional to
A. $\cos \delta$
B. $\cos (\delta / 2)$
C. $\cos ^{2}(\delta / 2)$
D. $\cos ^{2} \delta$

Answer:

D Watch Video Solution

8. In YSDE, both slits are covered by transparent slab. Upper slit is covered by slab of R.I. 1.5 and thickness t and lower is
covered by R.I. $\frac{4}{3}$ and thickness 2 t , then central maxima

A. shifts in +ve y-axis direction
B. shifts in -ve y-axis direction
C. remains at same position

D. remains at same position

or downward depending upon
wavelength of light

Answer:

D Watch Video Solution

9. A beam of light of wavelength 600 nm from a distant source
falls on a single slit 1.0 mm wide and the resulting diffraction pattern is
observed on a screen 2 m away. What is the distance between the first dark
fringe on either side of the central bright fringe?
A. 1.2 cm
B. 1.2 mm
C. 2.4 cm
D. 2.4 mm

Answer:

10. A parallel beam of light of wavelength I is incident normally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of the incident beam. At the second minimum of the diffraction pattern, the phase difference between the rays coming from the two edges of slit is
A. $\pi \lambda$
B. 2π
C. 3π
D. 4π

Answer:

(D) Watch Video Solution
11. The diffraction effects in a microscopic specimen become important when the separation between two points is
A. much greater than the wavelength of light used.
B. much less than the wavelength of light used.
C. comparable to the wavelength of light used.
D. independent of the wavelength of light
used

Answer:

12. On a rainy day, if there is an oil drop on tar road coloured rings are seen around this drop. This is due to
A. total internal reflection of light
B. polarisation
C. diffraction pattern
D. interference pattern produced due to oil
film

Answer:

D Watch Video Solution

13. In a Young's double slit experiment the intensity at a point where tha path difference is $\frac{\lambda}{6}$ (λ being the wavelength of light used) is
I. If I_{0} denotes the maximum intensity, $\frac{I}{I_{0}}$ is equal to
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$

C. $\frac{1}{\sqrt{2}}$
 D. $\frac{3}{4}$

Answer:

D Watch Video Solution

14. According to Huygens, medium through which light waves travel is
A. vacuum only
B. luminiferous ether

C. liquid only

D. solid only

Answer:

- Watch Video Solution

15. If we observe the single slit Fraunhofer diffraction with wavelength λ and slit width d , the width of the central maxima is 2θ. On decreasing the slit width for the same λ
A. θ increases
B. θ remains unchanged
C. θ decreases
D. θ increases or decreases depending on
the intensity of light

Answer:

- Watch Video Solution

16. Aperture of the human eye is 2 mm .

Assuming the mean wavelength of light to be $5000 \AA$, the angular resolution limit of the eye is nearly
A. 2 minute
B. 1 minute
C. 0.5 minute
D. 1.5 minute

Answer:
17. Unpolarised light is incident on a dielectric of refractive indexspt $\sqrt{3}$. What is the angle of incidence if the reflected beam is completely polarised?
A. 30°
B. 45°
C. 60°
D. 75°

Answer:

- Watch Video Solution

18.

The figure shows the interfernece pattern
obtained in double slit experiment using light of wavelength 600 nm .
Q. The third order bright fringe is
A. 2
B. 3
C. 4
D. 5

Answer:

D Watch Video Solution

19. Which of the following diagrams represent the veriation of electric field vector with time for a circularly polarised light

(b)
B.

(c)
C.

D.
(d)

Answer:

D Watch Video Solution
20. With a monochromatic light, the fringewidth obtained in a Young's double slit experiment is 0.133 cm . The whole set- up is immersed in water of refractive index 1.33, then the new fringe-width is
A. 0.133 cm
B. 0.1 cm
C. 1.33 cm
D. 0.2 cm
21. The condition for obtaining secondary maxima in the diffraction pattern due to single slit is
A. $a \sin \theta=n \lambda$
B. $a \sin \theta=(2 n-1) \frac{\lambda}{2}$
C. $a \sin \theta=(2 n-1) \lambda$
D. $a \sin \theta=\frac{n \lambda}{2}$

- Watch Video Solution

22. In double slit experiment, the angular width of the fringes is 0.20° for the sodium light $(\lambda=5890 \AA)$. In order to increase the angular width of the fringes by 10%, the necessary change in the wavelength is
A. zero
B. increased by $6479 \AA$
C. decreased by $589 \AA$

D. increased by $589 \AA$

Answer:

D Watch Video Solution

23. n Young's double slit experiment with sodium vapour lamp of wavelength 589 nm
and the slits 0.589 mm apart, the half angular width of the central maximum is

$$
\text { A. } \sin ^{-1}(0.01)
$$

B. $\sin ^{-1}(0.0001)$
 C. $\sin ^{-1}(0.001)$
 D. $\sin ^{-1}(0.1)$

Answer:

D Watch Video Solution

24. The adjacent figure shows Fraunhoffer's diffraction due to a single slit. If first minimum is obtained in the direction shown, then the
path difference between rays 1 and 3 is

A. 0
B. $\lambda / 4$
C. $\lambda / 2$
D. λ

- Watch Video Solution

25. Young's double-slit experiment is
conducted in water $\left(\mu_{1}\right)$ as shown in figure and a glass plate of thickness t and refractive index μ_{2} is placed in the path of S_{2}. Find the magnitude of the optical path difference at ' O '.

A. $\left(\mu_{2}-1\right) t$
B. $\left(\mu_{1}-1\right) t$
C. $\left(\frac{\mu_{2}}{\mu_{1}}-1\right) t$
D. $\left(\mu_{2}-\mu_{1}\right) t$

Answer:

D Watch Video Solution

26. In a Fresnel biprism experiment, the two positions of lens give separation between the
slits as 16 cm and 9 cm respectively. What is the actual distance of separation?
A. 12.5 cm
B. 12 cm
C. 13 cm
D. 14 cm

Answer:
(Watch Video Solution
27. If two waves represented by $y_{1}=4 \sin \omega t$
and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point, the amplitude of the resulting wave will be about
A. 7
B. 6
C. 5
D. 3.5

Answer:
28. In Young's double-slit experiment, the separation between the slits is halved and the distance between the slits and the screen in doubled. The fringe width is
A. be halved
B. be doubled
C. be quadrupled
D. remain unchanged

Answer:

D Watch Video Solution

29. At the first minimum adjacent to the central maximum of a single-slit diffraction pattern the phase difference between the Huygens wavelet from the edge of the slit and the wavelet from the mid-point of the slit is
A. $\frac{\pi}{2}$ radian
B. $\pi r a d i a n$
C. $\frac{\pi}{8}$ radian
D. $\frac{\pi}{4}$ radian

Answer:

D Watch Video Solution

30. The central fringe of the interference pattern produced by the light of wavelength $6000 \AA$ is found to shift to the position of 4 th dark fringe after a glass sheet of refractive
index 1.5 is introduced. The thickness of glass

sheet would be

A. $4.8 \mu \mathrm{~m}$
B. $8.23 \mu \mathrm{~m}$
C. $14.98 \mu \mathrm{~m}$
D. $3.78 \mu \mathrm{~m}$

Answer:
(Watch Video Solution
31. Sodium light $\left(\lambda=6 \times 10^{-7} m\right)$ is used to produce interference pattern. The observed fringe width is 0.12 mm . The angle between two interfering wave trains, is
A. $1 \times 10^{-3} \mathrm{rad}$
B. $1 \times 10^{-2} \mathrm{rad}$
C. $5 \times 10^{-3} \mathrm{rad}$
D. $5 \times 10^{-2} \mathrm{rad}$

Answer:

32. The Young's double slit experiment is performed with blue light and green light of wavelength $4360 \AA$ and $5460 \AA$ respectively. If y is the distance of 4 th maxima from the central one, then
A. $\times($ blue $)=\times($ green $)$
B. $\times($ blue $)>\times($ green $)$
C. $\times($ blue $)<\times($ green $)$
D. $\times \frac{(\text { blue })}{(\text { green })}=\frac{5460}{4360}$

Answer:

D Watch Video Solution

33. Yellow light emitted by sodium lamp in

Young's double slit experiment is replaced by monochromatic blue light of the same intensity:
A. fringe width will decrease
B. finge width will increase
C. fringe width will remain unchanged

D. fringes will become less intense

Answer:

D Watch Video Solution

34. When unpolarised light is incident on a plane glass plate at Brewster's angle, then which of the following statements is correct?
A. Reflected and refracted rays are
completely polarised with their planes of
polarization parallel to each other
B. Reflected and refracted rays are
completely polarised with their planes of
polarization perpendicular to each other
C. Reflected light is plane polarised but
transmitted light is partially polarised
D. Reflected light is partially polarised but refracted light is plane polarised

Answer:

35. The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double-slit experiment is
A. infinite
B. five
C. three
D. zero

Answer:

36. In figure, if a parallel beam of white light is incident on the plane of the slit, then the distance of the nearest white spot on the screen form

0
is
[assume
$d \ll D, \lambda \ll D]$

A. 3
B. 5
C. 6
D. 4

Answer:

D Watch Video Solution

37. Two light waves superimposing at the midpoint of the screen are coming from coherent sources of light with phase difference 3p rad.

Their amplitudes are 1 cm each. The resultant amplitude at the given point will be.
A. 5 cm
B. 3 cm

C. 2 cm

D. zero

Answer:

D Watch Video Solution

38. Spherical wavefronts, emanating from a point source, strike a plane reflecting surface.

What will happen to these wave fronts, immediately after reflection?
A. They will remain spherical with the same
curvature, both in magnitude and sign.
B. They will become plane wave fronts.
C. They will remain spherical, with the same
curvature, but sign of curvature
reversed.
D. They will remain spherical, but with
different curvature, both in magnitude
and sign.
39. Two coherent point sources S_{1} and S_{2} are separated by a small distance d as shown. The fringes obtained on the screen will be

A. points
B. straight bands
C. concentric circles
D. semicircles

Answer:

- Watch Video Solution

40. On a hot summer night, the refractive index of air is smallest near the ground and increases with height from the ground. When
a light beam is directed horizontally, the

Huygens` principal leads us to conclude that as it travels, the light beam:
A. bends downwards
B. bends upwards
C. becomes narrower

D. goes horizontally without any deflection

Answer:

D Watch Video Solution

41. If I_{0} is the intensity of the principal maximum in the single slit diffraction pattern.

Then what will be its intensity when the slit width is doubled?
A. $4 I_{0}$
B. $2 I_{0}$
C. $\frac{I_{0}}{2}$
D. I_{0}

Answer:

42. Conditions of diffraction is

$$
\begin{aligned}
& \text { А. } \frac{a}{\lambda}=1 \\
& \text { B. } \frac{a}{\lambda}=1 \\
& \text { C. } \frac{a}{\lambda}=1
\end{aligned}
$$

D. none of these

Answer:

43. In Fresnel's biprism experiment a mica sheet of refractive index 1.5 and thickness
$6 \times 10^{-6} m$ is palced in the path of one of interfering beams as a result of which the central fringe gets shifted through five fringe widths. Then calculate the wavelength of light.
A. $6000 \AA$
B. $8000 \AA$
C. $4000 \AA$
D. $2000 \AA$

Answer:

D Watch Video Solution

44. Two Nicols are oriented with their principal
planes making an angle of 60°. The percentage of incident unpolarised light which passes through the system is
A. 100
B. 50
C. 12.5
D. 37.5

Answer:

D Watch Video Solution

