đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

WAVES

Physics

1. Where should the two bridges be set in a

110 cm long wire so that it is divided into three
parts and the ratio of the frequencies are $3: 2: 1$?
A. 20 cm from one end and 60 cm from other end
B. 30 cm from one end and 70 cm from other end
C. 10 cm from one end and 50 cm from other
end
D. 50 cm from one end and 40 cm from
other end

Answer:

D Watch Video Solution

2. When a wave travels in a medium, the particle displacement is given by the equation $y=a \sin 2 \pi(b t-c x)$, where a, b and c are constants. The maximum particle velocity will be twice the wave velocity. If

$$
\text { A. } c=\frac{1}{\pi a}
$$

$$
\text { B. } c=\pi a
$$

C. $b=a c$

$$
\text { D. } b=\frac{1}{a c}
$$

Answer:

D Watch Video Solution

3. The wave described by
$y=0.25 \sin (10 \pi x-2 \pi t)$, where x and y are
in metres and t in seconds, is a wave travelling along the:
A. $-v e x$ direction with frequency 1 Hz .
B. $+v e \times$ direction with frequency $\pi \mathrm{Hz}$ and
wavelength $\lambda=0.2 m$
C. $+v e x$ direction with frequency 1 Hz and
wavelength $\lambda=0.2 m$
D. $-v e \times$ direction with amplitude 0.25 m
and wavelength $\lambda=0.2 m$

Answer: C

D Watch Video Solution

4. The equation of a plane progressive wave is
$y=0.9 \sin 4 \pi\left[t-\frac{\mathrm{x}}{2}\right]$. When it is reflected at a rigid support, its amplitude becomes $\frac{2}{3}$ of its previous value. The equation of the reflected wave is

$$
\begin{aligned}
& \text { A. } y=0.6 \sin 4 \pi\left[t+\frac{x}{2}\right] \\
& \text { B. } y=-0.6 \sin 4 \pi\left[t+\frac{x}{2}\right] \\
& \text { C. } y=0.9 \sin 8 \pi\left[t-\frac{x}{2}\right] \\
& \text { D. } y=-0.6 \sin 4 \pi\left[t+\frac{x}{2}\right]
\end{aligned}
$$

- Watch Video Solution

5. A person carrying a whistle emitting continuously a note of 272 Hz is runnig towards a reflecting surface with a speed of $18 \mathrm{~km} / \mathrm{h}$. The speed of sound in air is $345 \mathrm{~ms}^{-1}$ The number of beats heard by him is
A. 4
B. 6
C. 8

D. zero

Answer:

D Watch Video Solution

6. A closed organ pipe (closed at one end) is excited to support the third overtone. It is found that air in the pipe has
A. three nodes and three antinodes
B. three nodes and four antinodes
C. four nodes and three antinodes
D. four nodes and four antinodes

Answer:

D Watch Video Solution

7. A wave disturbance in a medium is described
by $\quad y(x, t)=0.02 \cos \left(50 \pi t+\frac{\pi}{2}\right) \cos (10 \pi x)$ where x and y are in metre and t is in second.

Which of the following is correct ?
A. A node occurs at $x=0.15 \mathrm{~m}$
B. An antinode occurs $x=0.3 \mathrm{~m}$
C. The speed wave is $5 m s^{1}$
D. The wavelength is 0.3 m

Answer:

D Watch Video Solution
8. In a resonance column, first and second resonance are obtained at depths 22.7 cm and
70.2 cm . The third resonance will be obtained at a depth
A. 117.7 cm
B. 92.9 cm
C. 115.5 cm
D. 113.5 cm

Answer:

D Watch Video Solution
9. An engine approaches a hill with a constant
speed. When it is at a distance of 0.9 km , it blows a whistle whose echo is heard by the driver after 5 seconds. If the speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$, then the speed of the engine is :
A. $32 \mathrm{~m} / \mathrm{s}$
B. $27.5 \mathrm{~m} / \mathrm{s}$
C. $60 \mathrm{~m} / \mathrm{s}$
D. $30 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

10. The identical piano wires kept under the same tension T have a fundamental frequency of 600 Hz . The fractional increase in the tension of one of the wires which will lead to occurrence of 6 beats $/ / \mathrm{s}$ when both the wires oscillate together would be
A. 0.02
B. 0.03
C. 0.04

D. 0.01

Answer:

D Watch Video Solution

11. Two sound sources emitting sound each of wavelength λ are fixed at a given distance apart. A listener moves with a velocity u along
the line joining the two suorces. The number of beats heard by him per second is

$$
\text { A. } \frac{u}{2 \lambda}
$$

B. $\frac{2 u}{\lambda}$
C. $\frac{u}{\lambda}$
D. $\frac{u}{3 \lambda}$

Answer:

D Watch Video Solution

12. An observer moves towards a stationary source of sound, with a velocity one-fifth of the velocity of sound. What is the percentage increase in the apparent frequency?
A. 0.5%
B. zero
C. 20%
D. 5%

Answer:

D Watch Video Solution

13. Velocity of sound in air is $320 \mathrm{~ms}^{-1}$. A pipe closed at one end has a length of 1 m .

Neglecting end correction, the air column in
the pipe cannot resonate with sound of frequency
A. 80 Hz
B. 240 Hz
C. 320 Hz
D. 400 Hz

Answer:

D Watch Video Solution
14. The driver of a car travelling with speed $30 \mathrm{~ms}^{-1}$ towards a hill sounds a horn of
frequency 600 Hz . If the velocity of sound in air is $330 \mathrm{~ms}^{-1}$, the frequency of reflected sound as heard by driver is
A. 555.5 Hz
B. 720 Hz
C. 500 Hz
D. 550 Hz
15. What will be the frequency of beats formed from the superposition of two harmonic waves shown below?

A. 20 Hz
B. 11 Hz
C. 9 Hz
D. 2 Hz

Answer:

- Watch Video Solution

16. What is the effect of increase in
temperature on the frequency of sound produced by an organ pipe?
A. increase
B. decreases

C. no effect

D. erratic change

Answer:

- Watch Video Solution

17. A cylinderical tube open at both ends, has a
fundamental frequency f in air. The tube is
dipped vertically in water so that half of it is in
water. The fundamental frequency of air column is now
A. $\mathrm{f} / 2$
B. f
C. $3 \mathrm{f} / 4$
D. $2 f$

Answer:

D Watch Video Solution
18. The transverse displacement $y(x, t)$ of a
wave on a string is given by
$y(x, t)=e^{-\left(a x^{2}+b t^{2}+2 \sqrt{(a b)} x t\right)}$.
represents a :
A. wave moving in $-x$ direction with speed

$$
\sqrt{\frac{b}{a}}
$$

B. standing wave of frequency \sqrt{b}
C. standing wave of frequency $\frac{1}{\sqrt{b}}$
D. wave moving in $+x$ direction with speed

$$
\sqrt{\frac{a}{b}}
$$

Answer:

D Watch Video Solution

19. A longitudinal wave is represented by
$x=x_{0} \sin 2 \pi\left(\mathrm{nt}-\frac{\mathrm{x}}{\lambda}\right)$
The maximum particle velocity will be four times the wave velocity if
A. $\lambda=\frac{\pi x_{0}}{4}$
B. $\lambda=2 \pi x_{0}$
C. $\lambda=\frac{\pi x_{0}}{2}$

$$
\text { D. } \lambda=4 \pi x_{0}
$$

Answer:

D Watch Video Solution

20. Two tones of frequencies n_{1} and n_{2} are sounded together. The beats can be heard distinctly when

$$
\text { A. } 10<\left(n_{1}-n_{2}\right)<20
$$

$$
\text { B. } 5<\left(n_{1}-n_{2}\right)>20
$$

$$
\begin{aligned}
& \text { C. } 5<\left(n_{1}-n_{2}\right)<20 \\
& \text { D. } 0<\left(n_{1}-n_{2}\right)<10
\end{aligned}
$$

Answer:

D Watch Video Solution

21. A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air column in the pipe whose frequencies lie below 1250 Hz . The velocity of sound in air is $34 m / s$.
A. 12
B. 8
C. 6
D. 4

Answer:

D Watch Video Solution

22. A vehicle, with a horn of frequency n is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction perpendicular to the straight line joining the
observer and the vehicle. The observer perceives the sound to have a frequency $n+n_{1}$. Then (if the sound velocity in air is 300 m / s)
A. $n_{1}=10 n$
B. $n_{1}=0$
C. $n_{1}=0.1 n$
D. $n_{1}=-0.1 n$

Answer:

23. A source of sound gives five beats per second when sounded with another source of
frequency $100 s^{-1}$. The second harmonic of
the source together with a source of frequency $205 s^{-1}$ gives five beats per second.

What is the ferquency of the source?
A. $95 \mathrm{sec}^{-1}$
B. $100 \mathrm{sec}^{-1}$
C. $105 \mathrm{sec}^{-1}$
D. $205 \mathrm{sec}^{-1}$

Answer:

- Watch Video Solution

24. If we study the vibration of a pipe open at both ends, then the following statements is not true
A. Odd harmonics of the fundamental
frequency will be generated
B. All harmonics of the fundamental
frequency will be generated
C. Pressure change will be maximum at both ends
D. Antinode will be at open end

Answer:

D Watch Video Solution

25. Forty - one forks are so arranged that each products 5beat / s when sounded with its near
fork. If the frequency of last fork is double the
frequency of first and last fork, respectively are
A. 200,400
B. 205,410
C. 195,390
D. 100,200

Answer:

D Watch Video Solution
26. Two points are located at a distance of $10 m$ and $15 m$ from the source of oscillation.

The period of oscillation is 0.05 s and the velocity of the wave is $300 \mathrm{~m} / \mathrm{s}$. What is the phase difference between the oscillation of two points?
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. π
D. $\frac{\pi}{6}$

Answer:

- Watch Video Solution

27. A sound absorber attenuates the sound
level by $20 d B$. The intensity decreases by a factor of
A. 100
B. 1000
C. 10000
D. 10

Answer:

D Watch Video Solution

28. A wave travelling along the x-axis is described by the equation
$v(x, t)=0.005 \cos (\alpha x-\beta t) . \quad$ If the wavelength and the time period of the wave are $0.08 m$ and $2.0 s$, respectively, then α and β in appropriate units are

$$
\text { A. } \alpha=25.00 \pi, \beta=\pi
$$

$$
\begin{aligned}
& \text { B. } \alpha=\frac{0.08}{\pi}, \beta=\frac{2.0}{\pi} \\
& \text { C. } \alpha=\frac{0.04}{\pi}, \beta=\frac{1.0}{\pi} \\
& \text { D. } \alpha=12.50 \pi, \beta=\frac{\pi}{2.0}
\end{aligned}
$$

Answer:

D Watch Video Solution

29. Which of the following statements is/are incorrect about waves ?
A. Waves are patterns of disturbance which move without the actual physical transfer of flow of matter as a whole.
B. Waves cannot transport energy.
C. The pattern of disturbance in the form
of waves carry information that propagate from one point to another.
D. All our communications essentially
depend on transmission of signals
through waves.

Answer:

D Watch Video Solution

30. An organ pipe P_{1} open at one end vibrating in its first harmonic and another pipe P_{2} open at ends vibrating in its third harmonic are in resonance with a given tuning fork. The ratio of the length of P_{1} to that P_{2} is
A. $\frac{8}{3}$
B. $\frac{1}{6}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer:

D Watch Video Solution

31. Two vibrating tuning forks producing waves given by $y_{1}=27 \sin 600 \pi t \operatorname{tand} y_{2}=27 \sin 604 \pi t$ are held near the ear of a person, how many beats will be heard in three seconds by him?
A. 4
B. 2
C. 6
D. 12

Answer:

D Watch Video Solution

32. Consider the three waves z_{1}, z_{2} and z_{3} as
$z_{1}=A \sin (k x-\omega t)$
$z_{2}=A \sin (k x+\omega t)$
$z_{3}=A \sin (k y-\omega t)$

Which of the following represents a standing wave?
A. $z_{1}+z_{2}$
B. $z_{2}+z_{3}$
C. $z_{3}+z_{1}$
D. $z_{1}+z_{2}+z_{3}$

Answer:

D Watch Video Solution
33. A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tunig fork of frequency 416 Hz . The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to
A. 1 kg
B. 2 kg
C. 4 kg
D. 16 kg

Answer:

- Watch Video Solution

34. The vibrations of a string of length 60 cm fixed at both the ends are represented by the equation $y=2 \sin \left(\frac{4 \pi x}{15}\right) \cos (96 \pi t)$ where x and y are in cm . The maximum number of loops that can be formed in it is
A. 4
B. 16
C. 5
D. 15

Answer:

D Watch Video Solution

35. If n_{1}, n_{2} and n_{3} are the fundamental frequencies of three segments into which a string is divided, then the original
fundamental frequency n of the string is given by
A. $n=n_{1}+n_{2}+n_{3}$
B. $\frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$
C. $\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}_{1}}+\frac{1}{\sqrt{n}_{2}}+\frac{1}{\sqrt{n}_{3}}$
D. $\sqrt{n}=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}}$

Answer:

D Watch Video Solution

36. If the ratio of maximum to minimum intensity in beats is 49 , then the ratio of amplitudes of two progressive wave trains is
A. $7: 1$
B. $4: 3$
C. $49: 1$
D. 16: 9

Answer:

D Watch Video Solution

37. The transverse wave represented by the equation $y=4 \sin \left(\frac{\pi}{6}\right) \sin (3 x-15 t)$ has
A. amplitude $=4$
B. wavelength $=4 \frac{\pi}{3}$
C. speed of propagation $=5$
D. period $=\frac{\pi}{15}$

Answer:

D Watch Video Solution

38. The fundamental frequency of a closed organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at
both the ends. The length of organ pipe open
at both the ends is
A. 100 cm
B. 120 cm
C. 140 cm
D. 80 cm

Answer:

D Watch Video Solution
39. The equation of a travelling wave is
$y=60 \cos (1800 t-6 x)$
where y is in microns, t in seconds and x in
metres. The ratio of maximum particle velocity
to velocity of wave propagation is

> A. 3.6×10^{-2}
> В. 3.6×10^{-4}
> C. 3.6×10^{-6}
> D. 3.6×10^{-11}

Answer: B

Watch Video Solution

