©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

WORK, ENERGY AND POWER

Physics

1. A spring of spring constant $5 \times 10^{3} \mathrm{~N} / \mathrm{m}$ is
stretched initially by 5 cm from the
unstretched position. The work required to
further stretch the spring by another 5 cm is .
A. 12.50 Nm
B. 18.75 Nm
C. 25.00 Nm
D. 6.25 Nm

Answer:
(Watch Video Solution
2. A paritcal of mass $10 g$ moves along a circle of radius 6.4 cm with a constant tangennitial
acceleration. What is the magnitude of this acceleration. What is the magnitude of this
acceleration if the kinetic energy of the partical becomes equal to $8 \times 10^{-4} J$ by the end of the second revolution after the beginning of the motion?
A. $0.1 m / s^{2}$
B. $0.15 \mathrm{~m} / \mathrm{s}^{2}$
C. $1.8 m / s^{2}$

D. $0.2 m / s^{2}$

Answer:

D Watch Video Solution

3. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body is time t is proptional to
A. $t^{3 / 4}$
B. $t^{3 / 2}$
C. $t^{1 / 4}$
D. $t^{1 / 2}$

Answer:

D Watch Video Solution

4. A ball is projected vertically down with an initial velocity from a height of 20 m onto a horizontal floor. During the impact it loses
50% of its energy and rebounds to the same height. The initial velocity of its projection is
A. $20 m s^{-1}$
B. $28 m s^{-1}$
C. $10 m s^{-1}$
D. $14 m s^{-1}$

Answer:
5. A cord is used to lower vertically a block of
mass M, a distance d at a constant downward
acceleration of $\frac{g}{4}$, then the work done by the cord on the block is

> A. $M g \cdot \frac{d}{4}$
> B. $3 M g \cdot \frac{d}{4}$
> C. $-3 M g \cdot \frac{d}{4}$
> D. $m g d$

Answer:

6. A rubber ball is dropped from a height of
$5 m$ on a plane, where the acceleration due to
gravity is not shown. On bouncing it rises to
1.8 m . The ball loses its velocity on bouncing
by a factor of
A. $\frac{16}{25}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{9}{25}$

Answer:

D Watch Video Solution

7. The first ball of mass m moving with the velocity v collides head on with the second ball of mass m at rest. If the coefficient of restitution is e, then the ratio of the velocities
of the first and the second ball after the collision is
A. $\frac{1-e}{1+e}$
B. $\frac{e-1}{e+1} \mathrm{~s}$
C. $\frac{1+e}{e+1}$
D. $\frac{2+e}{e-1}$

Answer:

- Watch Video Solution

8. A partical of mass m is driven by a machine that deleveres a constant power k watts. If the partical starts from rest the force on the partical at time t is
A. $\sqrt{m k} \quad t^{-1 / 2}$
B. $\sqrt{2 m k} \quad t^{-1 / 2}$
C. $\frac{1}{2} \sqrt{m k} \quad t^{-1 / 2}$
D. $\sqrt{\frac{m k}{2}} \quad t^{-1 / 2}$

Answer:

D Watch Video Solution

9. Under the action of a force, a $2 k g$ body moves such that its position x as a function of
time is given by $x=\frac{t^{3}}{3}$ where x is in metre and t in second. The work done by the force in the first two seconds is .
A. 1.6joule
B. 16joule
C. 160joule
D. 1600 joule

Answer:

10. A sphere of mass $8 m$ collides elastically (in one dimension) with a block of mass $2 m$. If the initial energy of sphere is E . What is the final energy of sphere?
A. $0.8 E$
B. $0.36 E$
C. $0.08 E$
D. $0.64 E$

Answer:

11. Two similar springs P and Q have spring constants K_{P} and $K_{Q}\left(K_{P}>K_{Q}\right)$. They are stretched first by the same amount (case a) ,then by the same force (case b). The work done by the spring W_{P} and W_{Q} are related as, in case (a) and case (b), respectively.
A. $W_{P}=W_{Q}, W_{P}=W_{Q}$
B. $W_{P}>W_{Q}, W_{P}>W_{Q}$
C. $W_{P}<W_{Q}, W_{P}<W_{Q}$
D. $W_{P}=W_{Q}, W_{P}>W_{Q}$

Answer:

- Watch Video Solution

12. In the figure the variation of potential energy of a particle of mass $m=2 k g$ is represented w.r.t. its x-coordinate. The particle moves under the effect of this conservative force along the x-axis.

If the particle is released at the origin then
A. it will move towards positive x-axis
B. it will move towards negative x-axis
C. it will remain stationary at the origin
D. its subsequent motion cannot be
decided due to lack of information

Answer:

- Watch Video Solution

13. The potential energy of a certain spring when stretched through a distance ' S ' is 10 joule. The amount of work (in joule) that must be done on this spring to stretch it through an additional distance ' S ' will be
A. 20
B. 10
C. 30
D. 40

Answer:

D Watch Video Solution

14. A force applied by an engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ changes its velocity from 5 m / s to $25 \mathrm{~m} / \mathrm{s}$ in 5 minutes. The power of the engine is
A. $1.025 M W$

B. $2.05 M W$

C. $5 M W$

D. $6 M W$

Answer:

D Watch Video Solution

15. The relationship between the force F and position x of body is as shown in figure. The work done in displacing the body in displacing
the body from ($x=1 m$ to $x=5 m$) will be

A. 30 J
B. 15 J
C. 25 J
D. 20 J
16. A body is allowed to fall freely under gravity
from a height of 10 m . If it looses 25% of its energy due to impact with the ground, then the maximum height it rises after one impact is
A. $2.5 m$
B. 5.0 m
C. $7.5 m$
D. $8.2 m$

Answer:

- Watch Video Solution

17.

Block
C of mass M is moving with velocity V_{0} and collides elastically with block A of mass M and connected to another block B of mass $2 M$ through a spring of spring constant K. What is

K if X_{0} is the compression of spring when velocity of A and B is same

$$
\begin{aligned}
& \text { A. } \frac{m v_{0}^{2}}{x_{0}^{2}} \\
& \text { B. } \frac{m v_{0}^{2}}{2 x_{0}^{2}} \\
& \text { C. } \frac{3}{2} \frac{m v_{0}^{2}}{x_{0}^{2}} \\
& \text { D. } \frac{2}{3} \frac{m v_{0}^{2}}{x_{0}^{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution
18. Two springs of force constants $300 \frac{\mathrm{~N}}{\mathrm{~m}}$ (Spring A) and $400 \frac{\mathrm{~N}}{\mathrm{~m}}$ (Spring B) are joined together in series. The combination is compressed by 8.75 cm . The ratio of energy stored in A and B is $\frac{E_{A}}{E_{B}} \operatorname{Then} \frac{E_{A}}{E_{B}}$ is equal to:

> A. $\frac{4}{3}$
> B. $\frac{16}{9}$
> C. $\frac{3}{4}$
> D. $\frac{9}{16}$

Answer:

- Watch Video Solution

19. A body of mass 1 kg begins to move under
the action of a time dependent force $\vec{F}=\left(2 t \hat{I}+3 t^{2} \hat{j}\right) N$, where \hat{i} and \hat{j} are unit vectors along x-and y-axes. What power will be developed by the force at the time t ?
A. $\left(2 t^{2}+3 t^{3}\right) W$
B. $\left(2 t^{2}+4 t^{4}\right) W$
C. $\left(2 t^{3}+3 t^{4}\right) W$

$$
\text { D. }\left(2 t^{3}+3 t^{5}\right) W
$$

Answer:

- Watch Video Solution

20. A bullet of mass $20 g$ and moving with $600 \frac{m}{s}$ collides with a block of mass $4 k g$ hanging with the string. What is the velocity of bullet when it comes out of block, if block rises to height $0.2 m$ after collision?
A. $200 m / s$
B. $150 \mathrm{~m} / \mathrm{s}$
C. $400 \mathrm{~m} / \mathrm{s}$
D. $300 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

21. A body of mass m kg is ascending on a smooth inclined plane of inclination $\theta\left(\sin \theta=\frac{1}{x}\right)$ with constant acceleration of a m / s^{2}. The final velocity of the body is v
m / s^{2}. The work done by the body during this
motion is (Initial velocity of the body = 0)

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m v^{2}(g+x a) \\
& \text { B. } \frac{m v^{2}}{2}\left(\frac{g}{2}+a\right) \\
& \text { C. } \frac{2 m v^{2}}{a}(a+g x) \\
& \text { D. } \frac{m v^{2}}{2 a x}(g+x a)
\end{aligned}
$$

Answer:

D Watch Video Solution

22. A glass marble dropped from a certain
height above the horizontal surface reaches
the surface in time t and then continues to bounce up and down. The time in which the marble finally comes to rest is
A. $e^{n} t$
B. $e^{2} t$
C. $t\left[\frac{1+e}{1-e}\right]$
D. $t\left[\frac{1-e}{1+e}\right]$

Answer:

- Watch Video Solution

23. The potential energy of a 1 kg particle free to move along the x - axis is given by
$V(x)=\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right) J$
The total mechainical energy of the particle is
$2 J$. Then , the maximum speed (in $\mathrm{m} / / \mathrm{s}$) is

$$
\begin{aligned}
& \text { A. } \frac{3}{\sqrt{2}} \\
& \text { B. }(\sqrt{2}) \\
& \text { C. } \frac{1}{\sqrt{2}}
\end{aligned}
$$

D. 2

Answer:

D Watch Video Solution

24. Water falls from a height of 60 m at the rate $15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to frictional forces are 10% of energy.

How much power is generated to by the turbine? $\left(g=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)^{\wedge}$.

$$
\text { A. } 8.1 \mathrm{~kW}
$$

B. $10.2 k W$
C. $12.3 k W$
D. 7.0 kW

Answer:

D Watch Video Solution

25. A car of mass m starta from rest and accelerates so that the instyantaneous power delivered to the car has a constant magnitude
P_{0}. The instaneous velocity of this car is proportional to
A. $t^{2} P_{0}$
B. $t^{1 / 2}$
C. $t^{-1 / 2}$
D. $\frac{t}{\sqrt{m}}$

Answer:

D Watch Video Solution
26. When a 1.0 kg mass hangs attached to a spring of length 50 cm , the spring stretches by 2 cm . The mass is pulled down until the length of the spring becomes 60 cm . What is the amount of elastic energy stored in the spring in this condition. if $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. 1.5 joule
B. 2.0joule
C. 2.5joule
D. 3.0joule

Answer:

D Watch Video Solution

27. A block of mass m rests on a rough horizontal surface (Coefficient of friction is μ).

When a bullet of mass $m / 2$ strikes horizontally, and get embedded in it, the block moves a distance d before coming to rest. The initial velocity of the bullet is $k \sqrt{2 \mu g d}$, then
the value of k is

A. 2
B. 3
C. 4
D. 5

Answer:

- Watch Video Solution

28. A force act on a 30 gm particle as a friction of the particle as a function as given by $x=3 t-4 t^{2}+t^{3}$, where x is in metros and t is in seconds. The work done during the first 4 second is
A. $576 m J$
B. 450 mJ
C. $490 m J$
D. 530 mJ

D Watch Video Solution

29. A body of mass M_{1} collides elastically with another mass M_{2} at rest. There is maximum transfer of energy when :
A. $m_{1} \gg m_{2}$
B. $m_{2} \gg m_{2}$
C. $m_{1}=m_{2}$
D. $m_{1}=2 m_{2}$

Answer:

- Watch Video Solution

30. A ball of mass ' m ' moving with a horizontal velocity 'v' strikes the bob of mass ' m ' of a pendulum at rest. During this collision, the ball sticks with the bob of the pendulum. The height to which the combined mass raises is ($\mathrm{g}=$ acceleration due to gravity).
A. $\frac{v^{2}}{8 g}$
B. $\frac{v^{2}}{4 g}$
C. $\frac{v^{2}}{2 g}$
D. $\frac{2 v^{2}}{g}$

Answer:

D Watch Video Solution

31. A 10 H.P. motor pumps out water from a well of depth 20 m and fills a water tank of volume 22380 litres at a height of 10 m from the ground. The running time of the motor to
fill the empty water tank is $\left(g=1=m s^{-2}\right)$
A. 5 minutes

B. 10 minutes

C. 15 minutes
D. 15 minutes

Answer:

D Watch Video Solution

32. A particle of mass m 1 is moving with a velocity v_{1} and another particle of mass m_{2} is moving with a velocity v 2 . Both of them have the same momentum but their different
kinetic energies are E1 and E2 respectively. If $m_{1}>m_{2}$ then
A. $E_{1}=E_{2}$
B. $E_{1}<E_{2}$
C. $\frac{E_{1}}{E_{2}}=\frac{m_{1}}{m_{2}}$
D. $E_{1}>E_{2}$

Answer:
(Watch Video Solution
33. A bolck of mass 10 kg is moving in x direction with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. it is subjected to a retardeng force $F=-0.1 x J / m$. During its travel from $x=20 m$ to $x=30 m$. Its final kinetic energy will be .
A. 450 J
B. 275 J
C. 250 J
D. 475 J

Answer:

D Watch Video Solution

34. Identify the false statement from the

following

A. Work-energy theorem is not
independent of Newton's second law.
B. Work-energy theorem holds in all inertial
frames.
C. Work done by friction over a closed path is zero.
D. No potential energy can be associated with friction.

Answer:

D Watch Video Solution

35. A one-ton car moves with a constant velocity of $15 \mathrm{~ms}^{-1}$ on a rough horizontal road. The total resistance to the motion of the
car is 12% of the weight of the car. The power
required to keep the car moving with the same constant velocity of $15 \mathrm{~ms}^{-1}$ is [Take $g=10 m s^{-2}$]
A. $9 k W$
B. 18 kW
C. $24 k W$
D. $36 k W$

Answer:

36. A ball is dropped from the top of a tower.

The ratio of work done by force of gravity in $1^{s t}, 2^{\text {nd }}$, and $3^{\text {rd }}$ second of the motion of ball is
A. $1: 2: 3$
B. $1: 4: 9$
C. 1:3:5
D. 1:5:3

Answer:

D Watch Video Solution
37. Two sphere A and B of masses m_{1} and m_{2} respectivelly colides. A is at rest initally and B is moving with velocity v along x-axis. After collision B has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction. The mass A moves after collision in the direction.
A. Same as that of B
B. Opposite to that of B
C. $\theta=\tan ^{-1}(1 / 2)$ " to the x-axis"

$$
\text { D. } \theta=\tan ^{-1}(-1 / 2) \text { " to the x-axis" }
$$

Answer:

D Watch Video Solution

38. A $2 k g$ block slides on a horizontal floor with the a speed of $4 m / s$ it strikes a uncompressed spring, and compresses it till
the block is motionless. The kinetic friction
force is compresses is $15 N$ and spring constant is $10000 \mathrm{~N} / \mathrm{m}$. The spring by
A. 8.5 cm
B. 5.5 cm
C. 2.5 cm
D. 11.0 cm

Answer:

- Watch Video Solution

39. A uniform chain of length $2 m$ is kept on a table such that a length of 60 cm hangas freely
from the adge of the table. The table. The
total mass of the chain ia $4 k g$ What is the work done in pulling the entire the chain the on the table?
A. $12 J$
B. 3.6 J
C. 7.2 J
D. 1200 J

Answer:

D Watch Video Solution
40. A mass ' m ' moves with a velocity ' v ' and collides inelastieally with another identical mass. After collision the $1^{\text {st }}$ mass moves with
velocity $\frac{v}{\sqrt{3}}$ in a direction perpendicular to
the initial direction of motion. Find the speed
of the $2^{n d}$ mass after collision.

A. $\sqrt{3} v$
B. v
C. $\frac{v}{\sqrt{3}}$

$$
\text { D. } \frac{2}{\sqrt{3}} v
$$

Answer:

D Watch Video Solution

41. A mass ' m ' moves with a velocity ' v ' and
collides inelastieally with another identical mass. After collision the $1^{\text {st }}$ mass moves with velocity $\frac{v}{\sqrt{3}}$ in a direction perpendicular to
the initial direction of motion. Find the speed

of the $2^{n d}$ mass after collision.

$\underset{\substack{\text { bef ore } \\ \text { colisison }}}{\rightarrow} \cdot \underset{m}{\rightarrow} \uparrow v / \sqrt{3} \underset{\text { after }}{\text { collision }}\rangle\rangle$
A. $\sqrt{3 v}$
B. v
C. $\frac{v}{\sqrt{3}}$
D. $\frac{2}{\sqrt{3}} v$

Answer:

D Watch Video Solution

42. A spherical ball of mass 20 kg is stationary
at the top of a hill of height 100 m , it rolls down a smooth surface to the ground, then
climbs up another bill of height of 30 m and
final rolls down to a horizontal base at a
height of 20 m about the ground. The velocity attained by the ball is
A. $20 m / s$
B. $40 \mathrm{~m} / \mathrm{s}$
C. $10 \sqrt{30} \mathrm{~m} / \mathrm{s}$

D. $10 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

43. A block of mass M is kept on a platform
which is accelerated upward with a constant
acceleration 'a' during the time interval T. The
work done by normal reaction between the
block and platform is

A. $-\frac{M g a T^{2}}{2}$
B. $\frac{1}{2} M(g+a) a T^{2}$
C. $\frac{1}{2} M a^{2} T$
D. Zero

Answer:
44. A srping lies along the x-axis attached to a wall at one end and a block at the other end.

The block rests on a friction less surface at $x=0$. A force of constant magnitude F is applied to the block that begins to compress
the spring, until the block comes to a maximum displacement $x_{\text {max }}$.

During the displacement, which of the curves
shown in the graph best represents the kinetic energy of the block?
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

45. The $K . E$. acquired by a mass m in travelling a certain distance d, starting from rest, under the action of a constant force is directly propotional to
A. m
B. \sqrt{m}
C. $\frac{1}{\sqrt{m}}$

D. independent of m

Answer:

- Watch Video Solution

46. A vertical spring with force constant k is
fixed on a table. A ball of mass m at a height h above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance d. The net work done in the process is

> A. $m g(h+d)-\frac{1}{2} k d^{2}$
> B. $m g(h-d)-\frac{1}{2} k d^{2}$
> C. $m g(h-d)+\frac{1}{2} k d^{2}$
> D. $m g(h+d)+\frac{1}{2} k d^{2}$

Answer:

- Watch Video Solution

