©゙’doubtnut
 India's Number 1 Education App

CHEMISTRY

BOOKS - DISHA CHEMISTRY (HINGLISH)

CHEMICAL KINETICS

Chemistry

1. The dcecomposition of a substance follows first order kinatics. Its concentraction is reduced to $\frac{1}{8}$ th of its initial value in 24 minutes. The rate constant of the decomposition process is
A. $\frac{1}{4} \min ^{-1}$
B. $\frac{0.692}{24} \mathrm{~mol}^{-1}$
C. $\frac{2.303}{24} \log \left(\frac{1}{8}\right) \min ^{-1}$
D. $\frac{2.303}{24} \log \left(\frac{8}{1} \min ^{-1}\right.$

Answer: D

- View Text Solution

2. Consider the reaction, $\circ A+B \rightarrow$ products.

When concentration of B alone was doubled the half life did not change. When the concentraction
of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is
A. s^{-1}
B. $L \cdot M o l^{-1} \cdot s^{-}$
C. no units
D. $\mathrm{mol} \cdot L^{-} \cdot s^{-}$

Answer: B

D View Text Solution
3. A reaction involving two different reactants can never be
A. bimolecular reaction
B. second order reaction
C. first order reaction
D. unimolecular reaction

Answer: D

D View Text Solution
4. Select the rate law that corresponding to the shown for the following reaction : $A+B \rightarrow C$
A. Rate $=k[B]^{3}$
B. Rate $=k[B]^{4}$
C. Rate $=k[A][B]^{3}$
D. Rate $=k[A]^{2}[B]^{2}$

Answer: A

D View Text Solution
5. Consider the reaction,
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
The
equility
relationship
between
$\frac{d\left[N H_{3}\right]}{d t}$ and $-\frac{d\left[H_{2}\right]}{d t}$ is
A. $+\frac{d\left[N H_{3}\right]}{d t}=-\frac{2}{3} \frac{d\left[H_{2}\right]}{d t}$
B. $+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{3}{2} \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
C. $\frac{d\left[N H_{3}\right]}{d t}=\frac{d\left[H_{2}\right]}{d t}$
D. $+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{1}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}$

Answer: A
6. Diazonium salt decomposes as
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}$
At $0^{\circ} \mathrm{C}$, the evolution of N_{2} becomes two faster when the initial concentration of the salt is doubled. Therefore, it is
A. a first order reaction
B. a second order reaction
C. independent of the initial concentration of
the salt
D. a zero order reaction
7. $\mathrm{CHCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}_{4}+\mathrm{HCl}$

Rate law for above reactionl will be
Rate $=K\left[\mathrm{CHCl}_{3}\right] \frac{\left[\mathrm{Cl}_{2}\right]^{1}}{2}$
On the basis of information provided which of the following option will be correct?
A. Rate law for any chemical reaction can be predicted accurately by looking at balanced chemical equation.
B. Rate law for a chemical reaction has to determine experimentally.
C. Either determine experimentally or obtained
from balanced reaction rate will be same.
D. None of the above is correct

Answer: B

D View Text Solution

8. Which of the following statements is incorrect?
A. Activation energy for the forward reaction equals to activation energy for the reverse reaction.
B. For a reversible reaction, an increase in
temperature increase the reaction rate for both the forward and the backward reaction.
C. The larger the initial reactant concentration
for a second order reaction, the shorter is its
half-life.
D. When $\Delta \mathrm{t}$ is infinitesimally small, the averga
rate equals the intantaneous rate.

D View Text Solution

9. In a reaction $A \rightarrow$ products, when start is made from $8.0 \times 10^{-2} \mathrm{M}$ of A , half-life is found to be 120minute. For the initial concentration $4.0 \times 10^{-2} \mathrm{M}$, the half-life of the reaction becomes

240 minutes. The order of the reaction is :
A. zero
B. one
C. two
D. 0.5

Answer: C

- View Text Solution

10. During decomposition of an activated comples.
(i).energy is always releasing
(ii).energy is always absorbed
(iii).energy does not change
(iv).reactants may be formed
A. (i), (ii) and (ii)
B. (i) and (iv)
C. (ii) and (iii)
D. (ii), (iii) and (iv)

Answer: B

D View Text Solution

11. Which of the following statements is incorrect?
A. Energy is always released when activated complex decomposes to form products.
B. Peak of the energy distribution curve
corresponds to the most probable potential
energy.
C. Peak of the energy distribution curve corresponds to the most probable kinetic energy.
D. When the temperature is raised maximum of
energy curve moves to higher energy value and broadens out.

Answer: B

- View Text Solution

12. A catalyst increase rate of reaction by

A. decrease enthalpy.
B. decreasing internal energy .
C. decreasing activation energy.
D. increasing activation energy.

Answer: C

13. Consider a reaction $a G+b H \rightarrow$ products.

When concentration of both the reactants G and H
is doubled, the rate increase by eight times.
However, when concentration of G is doubled keeping the concentration of H fixed, the rate is doubled. The overall order of the reaction is
A. 0
B. 1
C. 2
D. 3
14. For a first order reaction $(A) \rightarrow$ products the concentration of A changes from 0.1 M to 0.025 M in 40 minutes.

The rate of reaction of when the concentration of A is 0.01 M is:
A. $1.73 \times 10^{-5} M \cdot \min ^{-1}$
B. $3.47 \times 10^{-4} M \cdot \mathrm{~min}^{-1}$
C. $3.47 \times 10^{-5} M \cdot \mathrm{~min}^{-1}$
D. $1.73 \times 10^{-4} M \cdot \mathrm{~min}^{-1}$

- View Text Solution

15. The given reaction
$\mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} \rightarrow 2 \mathrm{FeCl}_{2}+\mathrm{SnCl}_{4} \quad$ is an
example of
A. first order concentration
B. second order reaction
C. third order reaction
D. None of these

Answer: C

D View Text Solution

16. In a first order reaction, $A+B \rightarrow$, If K is rate constant and initial concentration of the reactant A is 0.5 M , then the half-life is
A. $(\log 2) /(k)$
B. $(\log 2) /(\mathrm{ksqrt}(0.5))$
C. $\frac{I n 2}{k}$
D. $\frac{0.693}{0.5 k}$

Answer: C

- View Text Solution

17. The integrated rate equations can be determined for
A. zero order reactions
B. first order reactions
C. second order reactions
D. Both (a) and (b)

D View Text Solution

18. The rate constant, the activation energy and the arrhenius paremeter of a chemical reaction at 25° are
$3.0 \times 10^{-4} s^{-}, 104.4 k J \cdot \mathrm{~mol}^{-1}$ and $6.0 \times 10^{14} s^{-1}$
respectively. The value of the rate constant as
$T \rightarrow \infty$ is
A. $2.0 \times 10^{18} s^{-1}$
B. $6.0 \times 10^{14} s^{-1}$
C. Infinity
D. $3.6 \times 10^{30} s^{-1}$

Answer: B

D View Text Solution

19. According to the adsorption theory of catalysis, the speed of the reaction increase because
A. in the process of adsorption, the activation energy of the molecules becomes large
B. adsorption produces heat which increase the
speed of the reaction.
C. adsorption lowers the activation energy of the reaction
D. the concentration of product molecules at
the active centres of the catalyst becomes
high due to adsorption.

Answer: C

D View Text Solution

20. Consider a general chemical change
$2 A+3 B \rightarrow$ products. The rate with respect to A is
r_{1} and that with respect to B is r_{2}. The rates
r_{1} and r_{2} are related as
A. $3 r_{1}=2 r_{2}$
B. $r_{1}=r_{2}$
C. $2 r_{1}=3 r_{2}$
D. $r_{1}^{2}=2 r_{2}^{2}$

Answer: A
21. In a first order reaction, the concentration of the reactant, decrease from 0.8 M to 0.4 M in 15minutes. The time taken for the concentration to changes from 0.1 M to 0.025 M is
A. 7.5 minutes
B. 15 minutes
C. 30 minutes
D. 60 minutes

Answer: C

D View Text Solution
22. Activation energy $\left(E_{a}\right)$ and rate constant (k_{1} and k_{2}) of chemical reaction at two different temperatures $\left(T_{1}\right.$ and $\left.T_{2}\right)$ are related by:

$$
\begin{aligned}
& \text { A. } \operatorname{In} \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right] \\
& \text { B. } \operatorname{In} \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right] \\
& \text { C. } \operatorname{In} \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left[\frac{1}{T_{2}}+\frac{1}{T_{1}}\right] \\
& \text { D. } \operatorname{In} \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left[\frac{1}{T_{1}}+\frac{1}{T_{2}}\right]
\end{aligned}
$$

Answer: A

- View Text Solution

23. $\frac{t_{1}}{4}$ can be taken as the time taken for the concentration of a reactant to drop to $\frac{3}{4}$ of its initial value. If the rate constant for a first order reaction is k, the $\frac{t_{1}}{4}$ can be writen as

$$
\begin{aligned}
& \text { A. } \frac{075}{k} \\
& \text { B. } \frac{0.69}{k} \\
& \text { C. } \frac{0.29}{k} \\
& \text { D. } \frac{0.10}{k}
\end{aligned}
$$

Answer: C
24. the decomposition of ammonia on tungsten surface at 500 K follows zero order kinetics. The

Half-life period of this reaction is 45 minutes when
the initial pressure is 4 bar. The half-life period (minutes) of the reaction when the initial pressure
is 16 bar at the same temperature is
A. 120
B. 60
C. 240
D. 180

Answer: D
25. In a 1st order reaction, reactant concentration C varies with times t as:
A. $\frac{1}{C}$ increase linearly with t
B. $\log C$ decrease linearly with t
C. C decrease with $\frac{1}{t}$
D. $\log C$ decrease with $\frac{1}{t}$

Answer: B

26. For a reactions $A \rightarrow$ Products, a plot of $\log t_{\frac{1}{2}}$
vesus $\log a_{o}$ is shown in the figure. If the initial
concentration A is represented by a_{0}, the order of
the reaction is
A. one
B. zero
C. two
D. three

Answer: B
27. The rate of a chemical reaction doulets for every
$10^{\circ} \mathrm{C}$ rise of temperature. If the temperature is raised by $50^{\circ} \mathrm{C}$, the rate of the reaction by about,
A. 10 times
B. 24 times
C. 32 times
D. 64times

Answer: C

D View Text Solution
28. For a first order reaction $t_{0.75}$ is 1368 seconds, therefore, the specific rate constant in sec^{-1} is
A. 10^{-3}
B. 10^{-2}
C. 10^{-9}
D. 10^{-5}

Answer: A

D View Text Solution
29. The integrated rate equations is
$R=\log C_{0}-\log C_{r}$
The straight line graph is obtained by plotting
A. timesVslog C_{t}
B. $\frac{1}{\text { time }} V s C_{t}$
C. timeVs C_{t}
D. $\frac{1}{\text { time }} V s \frac{1}{C_{t}}$

Answer: A

D View Text Solution
30. The energies of activation for forward and reverse reactions for $A_{2}+B_{2} \leftrightarrow 2 A B$ are $180 \mathrm{kJmol}^{-1}$ and $200 \mathrm{kJmol}^{-1}$ respectively. The presence of catalyst lowers the activation energy of both (forward and reverse) reactions by $100 \mathrm{kJmol}^{-1}$. The enthalpy change of the reaction $\left(A_{2}+B_{2} \rightarrow 2 A B\right)$ in the presence of a catalyst will be (in $k \mathrm{Kmol}^{-1}$)
A. 20
B. 300
C. 120
D. 280

D View Text Solution

31. The half-life period of a order reaction is 15
minutes. The amount of substance left after one
hour will be:
A. $\frac{1}{4}$ of the original amount
B. $\frac{1}{8}$ of the original amount
C. $\frac{1}{16}$ of the original amount
D. $\frac{1}{32}$ of the original amount

Answer: C

D View Text Solution

32. Reaction rate between two substance A and B is
expressed as following,
rate $=k[A]^{n}[B]^{m}$
If the concentration of A is doubled and concentration of B is made half of initial concentration, the ratio of the new rate to the earlier rate will be,
A. $m+n$
B. $n-m$
C. $\frac{1}{2^{n+m}}$
D. 2^{n-m}

Answer: D

- View Text Solution

33. The reaction of ozone with oxygen atoms in the presence of chlorine atoms can occur by two step process shown below,

$$
\begin{align*}
& O_{3}(g)+\mathrm{Cl}(g) \rightarrow \mathrm{O}_{2}(g)+\mathrm{ClO}(g) \tag{i}\\
& K_{i}=5.2 \times 10^{9} \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{ClO}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{O}_{2}(g)+\mathrm{Cl}(g) \ldots \tag{ii}
\end{equation*}
$$

$\left.K_{i i}=2.6 \times 10^{10} \mathrm{l} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~s}^{-1}\right]$

The closet rate constant for the overall reaction

$$
O_{3}(g)+O(g) \rightarrow 2 O_{2}(g) \text { is: }
$$

A. $1.4 \times 10^{20} l \cdot \mathrm{~mol}^{-1} \cdot s^{-1}$
B. $3.1 \times 10^{10} l \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$
C. $5.2 \times 10^{9} l \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$
D. $2.6 \times 10^{10} l \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$

Answer: A
34. The temperature dependence of rate constant(k) of a chemical reaction is written in terms of Arrenius equation, $k=A \cdot e^{-E_{a}}$

Activation energy $\left(E_{a}\right)$ of the reaction can be calculated by plotting
A. $k V s \frac{1}{\operatorname{lag} T}$
B. $\log k V s \frac{1}{T}$
C. $\log k V s \frac{1}{\log T}$
D. $k V s T$

Answer: B

35. For the reaction system,
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$ volume is suddenly reduced to half its value by increasing the pressure on it. If the reaction is of first order with respect to
O_{2} and second order with respect to No, the rate of reaction will
A. diminish to one-eighth of its initial value
B. increase to eighth times of its initial value
C. increase to fourth times of its initial value
D. diminish to one-fourth of its initial value

Answer: B

D View Text Solution

36. In the reaction of formation of sulphur trioxide by contact process $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{SO}_{3}$ the rate of reactionn
was
$\frac{d\left[O_{2}\right]}{d t}=2.5 \times 10^{-4} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}$. The rate of
reaction is terms of $\left[\mathrm{SO}_{2}\right]$ in $\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$ will be

$$
\begin{aligned}
& \text { A. }-1.25 \times 10^{-4} \\
& \text { B. }-2.50 \times 10^{-4}
\end{aligned}
$$

C. -3.75×10^{-4}
D. -5.00×10^{-4}

Answer: D

- View Text Solution

37. A reactant (A) froms two products,
$A \xrightarrow{k_{1}} B$, Activation Energy $E_{a_{1}}$
$A \xrightarrow{k_{2}} B$, Activation Energy $E_{a_{2}}$
If $E_{a_{1}}=2 E_{a_{2}}$, then k_{1} and k_{2} are related as:

$$
\text { A. } k_{2}=k_{1} e^{\frac{E_{a_{1}}}{R T}}
$$

B. $k_{2}=k_{1} e^{\frac{E a_{2}}{R T}}$
C. $k_{1}=A k_{2} e^{\frac{E a_{1}}{R T}}$
D. $k_{1}=2 k_{2} e^{\frac{E a_{1}}{R T}}$

Answer: C

- View Text Solution

38. Consider an endothermic reaction $X \rightarrow Y$ with the activation energies E_{b} and E_{i}, for the backward and forward reactions, respectively. In general
A. there is no definite relation between
E_{b} and E_{f}
B. $E_{b}=E_{f}$
C. $E_{b}>E_{f}$
D. $E_{b}<E_{f}$

Answer: D

D View Text Solution

39. Which of the following influences the rate of a chemical reactions performed in soution?
A. Temperature
B. Activation energy
C. Presence of a catalyst
D. All of the above influence the rate

Answer: D

D View Text Solution

40. The rate of a reaction quadruples when the tamperature changes from 300 to 310k. The activation energy of this reaction is : (Assume activation energy and pre-exponential factor are
independent of temperature , $\ln 2=0.693$,

$$
\left.R=8.314 J \cdot \mathrm{~mol}^{-1} \cdot K^{-1}\right)
$$

A. $107.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
B. $53.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
C. $26.8 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
D. $214.4 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

Answer: A
41. Consider the reaction :
$C l_{2}(a q)+H_{2} S(a q) \rightarrow S(s)+2 H^{+}(a q)+2 C l^{-}(a q)$
the rate equation for this reaction is rate= $k\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$

Which of these mechanism is/ are consistent with this rate equation?
A. $\mathrm{Cl}_{2}+\mathrm{H}_{2} S \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{HS}^{-}$(Slow)
$C l^{+}+\mathrm{HS}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+S$ (fast)
B. $H_{2} S \leftrightarrow H^{+}+H S^{-}$(fast equilibirium)
$C l_{2}+\mathrm{HS}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{H}^{+}+S$ (Slow)
A. B only
B. Both A and B

C. neither A nor B

D. A only

Answer: D

D View Text Solution

42. The slope in Arrhenius plot, is equal to,
A. $-\frac{E_{a}}{2.303 R}$
B. $\frac{E_{a}}{R}$
C. $\frac{R}{2.303 E_{2}}$
D. None of these

Answer: A

D View Text Solution

43. A schematic plot of $\operatorname{In} K_{e q}$ versus inverse of temperature for a reaction is shown below

The reaction must be
A. highly spontaneous at ordinaty temperature
B. one with nigligible enthalpy change
C. endothermic
D. exothermic

Answer: D

- View Text Solution

44. Plots showing the variation of the rate constant
(k) with temperature (T) are given below. The plot that follows Arrhenius equations is
A.
B.
C.
D.

Answer: A

D View Text Solution

45. The reaction $2 \mathrm{NO}_{2}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ follows first order kinetics. The pressure of a vessel containing only $\mathrm{N}_{2} \mathrm{O}_{5}$ was found to increase from

50 mm Hg to 87.5 mm Hg in 30 min . The pressure exerted by the gases after 60min will be (assume temperature remains constant):
A. 106.2 mm Hg
B. 150 mm Hg

C. 125 mm Hg

D. 116.5 mm Hg

Answer: A

D View Text Solution

