

CHEMISTRY

BOOKS - DISHA CHEMISTRY (HINGLISH)

ELECTROCHEMISTRY

Chemistry

- 1. A gas X at 1 atm is bubbled through a soluution containing a mixture of $1MY^-$ and $1MZ^-at25^\circ C$. If the reduction potential tial of Z>Y>X, then,
 - A. Y will oxidize X and not Z
 - B. Y will oxidize Z and not X
 - C. Y will oxidize both X and Z

D. Y will reduce both X and Z

Answer: A

View Text Solution

2. On the basis of the following E° values, the strongest oxidizing agent is:

$$\left[{Fe(CN)}_6
ight]^{4-} \,
ightarrow \left[{Fe(CH)}_6 j
ight]^3 + \, + e^-, E^\circ \, = \, -0.35 V$$

$$Fe^{32\,+}\,+e^{\,-}, \qquad E^{\,\circ}\,=\,-\,0.77V$$

A. ,
$$Fe(CN)_6ig]^4$$

C. Fe^{3+}

B. Fe^{2+}

D.
$$igl[Fc(CN)_6 igr]^{3\,+}$$

Answer: C

3. Resistance of a conductivity cell filed with a solution of an cleetrolyto of concentration 0.1M is 100Ω . The conductivity of this solution is $1.29Sm^{-1}$. Resistance of the same cell when filled with 0.2M of the same solution is 520Ω . The molar coonductivity of 0.2M solution os electrolyte will be

A.
$$1.24 imes10^{-4} Sm^2 mol^{-1}$$

B.
$$12.4 imes10^{-4} Sm^2 mol^{-1}$$

C.
$$124 imes10^{-4} Sm^2 mol^{-1}$$

D.
$$1240 imes 10^{-4} Sm^2 mol^{-1}$$

Answer: B

4. Fortbcclcctrochcmical

$$M|M^{\,+}\,||X^{\,-}\,|X,E^{\,\circ}\,\,|\,\left(M^4\,/M
ight)=0.44\, ext{ and }\,E^{\,\circ}\,\,|\,\left(X\,/X
ight)=0.33V.$$

cell,

From this data one can deduce that

A. $M+X o M^++X$ is the spontaneous reaction

B. $M^+ + X o M + X$ is the spontaneous reaction

C. $E_{cell}\,=\,0.77V$

D. $E_{cell}=0.77V$

Answer: B

5. What will be the cmffor the given cell
$$P1ig|H_2(P_1)H^+(aq)ig|\mid H_2(P_2)P1$$

A.
$$\frac{RT}{F}\mathrm{log}_{e}~rac{P_{1}}{P_{2}}$$

B.
$$\frac{RT}{2F} \mathrm{log}_e \, \frac{P_1}{P_2}$$
C. $\frac{RT}{F} \mathrm{log}_e \, \frac{P_2}{P_1}$

D. None of these

Answer: B

View Text Solution

6. What is the standard cell potential E° for an electrochemical cell in which the following reaction takes place spontaneously?

in which the following reaction takes place spontaneously?

 $Cl_1(g)+2Br^ightarrow Br_2(aq)+2Cl^-$, $\Delta G^\circ=-50.6kJ$

A. 1.2V

 $\mathsf{B.}\ 0.53V$

 $\mathsf{C.}\ 0.26V$

 $\mathsf{D.}-0.53V$

Answer: C

View Text Solution

- 7. The unit of equivalent conductivity is
 - A. ohmcm
 - B. $ohm^{-1}cm^2$ (g equivalent) $^{-1}$
 - C. ohm cm^2 (g equivalent)
 - D. Scm^{-2}

Answer: B

View Text Solution

8. The variation of equivalent conductance of strong electrolyte with $(concentration)^{1/2}$ is represented by

- A. 📄
- В. 🔀
- C. 🔀
- D. 📝

Answer: A

- **9.** Consider the following cell reaction:
- 2. consider the following centreaction.

At $\left[Fe^{2+}
ight]=10^{-3}M, p(O_2)=0.1$ atm and pH =3, the cell poteintial at $25\,^{\circ}\,C$ is

 $2Fc(s) + O_2(g) + 4H^+(aq) o 2Fe^{2+}(aq) + 2H_2O(l)E^\circ = 1.67V$

- A. 1.47V
- B. 1.77V
- $\mathsf{C.}\ 1.87V$

Answer: D

View Text Solution

10. The electrical properties and their respective SI units are given below. Identify the wrongly matched pair.

- $\begin{array}{ccc} & \text{Electrical property} & & \text{SI unit} \end{array}$
- A. Specilic conductance Sm^{-1}
- Electrical property SI unit
- $\dot{}$ Conductance S
- Electrical property SI unit
- C. Equivalent conductance Sm^2g equiv⁻¹
- Electrical property SI unit
- Cell constant m

Answer: D

11. Limiting molar conductivity of $NH_4OH(i.\ e.\ \wedge_m^\circ\ (NH_4OH)$ is equal to:

A.
$$\wedge_{m(NH_4Cl)}^{\circ} + \wedge_{m(NaCl)}^{\circ} - \wedge_{m(NaOH)}^{\circ}$$

B.
$$\wedge_{m(NaOH)}^{\circ} + \wedge_{m(NaCl)}^{\circ} - \wedge_{m(NII_4Cl)}$$

C.
$$\wedge_{m(NH_4OH)}^{\circ} + \wedge_{m(NH_4Cl)}^{\circ} - \wedge_{m(HCl)}^{\circ}$$

D.
$$\wedge_{m(NH_4Cl)}^{\circ} + \wedge_{m(NaOH)}^{\circ} - \wedge_{m(NaCl)}^{\circ}$$

Answer: D

12. A lead storage battery containing 5.01. of $(IN)H_2SO_4$ solution is operated for 9.65×10^5 s with a steady current jof 100 mA. Assuming volume of the soution remaining constant, normality of H_2SO_4 will

A. remain tmchanged

B. increases by 0.20

C. increase by unity

D. decrease by 0.40

Answer: D

View Text Solution

13. The electrode potential $E_{(zn^2+/ze)}$ of a zinc electrode at $25^{\circ}C$ with an aqueous solution of $0.1MZnSO_4$ is

$$igg[E^{\,\circ}_{\,(\,Zn^{2+}\,/\,Zn\,)} \ = \ -\,0.73 V. \ ext{Assume} rac{2.30.0 RT}{F} \, = \, 0.06 at 298 K igg].$$

A. + 0.73

 $\mathsf{B.}-0.79$

C.0.82

D. -0.70

Answer: B

14. A bettery is constructed of Cr and $Na_2Cr_2O_7$. The unbalanced chemical equation when such a battery discharges is following:

$$Na_2Cr_2O_7+Cr+H^+
ightarrow Cr^{3\,+}+H_2O+Na^+$$

If one Faraday of electricity is passed through the battery during the charging, the number of moles of $Cr^{3\,+}$ removed from the solution is

- A. $\frac{4}{3}$
 - 3. $\frac{1}{3}$
- $\mathsf{C.}\,\frac{3}{3}$
- D. $\frac{2}{3}$

Answer: C

15. Which of the fo llowing reaction is possible at anode?

A.
$$2Cr^{3\,+}\,+7H_2O
ightarrow\,Cr_2O_7^{2\,-}\,+14H^{\,+}$$

B.
$$F_2
ightarrow 2F$$
 $^-$

C.
$$(1/2)O_2 + 2H^+
ightarrow H_2O$$

D. None of these

Answer: A

View Text Solution

16. In a hydrogen-oxygen fuel cell, combustion of hydrogen occurs to

A. produce high purity water

B. create potential difference between two electrodes

C. generte heat

D. remove adsorbed oxygen from electron surfaces

Answer: B

View Text Solution

17. E° of the cell,

 $znig|Zn^{2+}(aq)ig|ig|Cu^{2+}(aq)ig|Cu$ is $1.10Vat25^{\circ}C.$ The equilibrium

constant for the cell reaction

 $Zn+Cu^{2+}(aq)\Leftrightarrow Cu+Zn^{2+}(aq)$ is of the order of

A. 10^{-37}

B. 10^{37}

 $c. 10^{-17}$

D. 10^{17}

Answer: B

18. The correct order of $E_{m^{2+}\,/\,M}^{\,\circ}$ values of which gnegative sign for the four sucessive elements Cr, Mn, Fe and Co is

A.
$$Mn>Cr>Fe>Co$$

B.
$$Cr > Fe > Mn > Co$$

$$\mathsf{C.}\, Fe > Mn > Cr > Co$$

$$\mathrm{D.}\,Cr>Mn>Fe>Co$$

Answer: A

19. For a spontaneous reaction the ΔG) equilibrium constnat (K) and $E_{\mathrm{Cell}}^{\circ}$ eill be respectively

$$\mathsf{A.}-ve>1,\;-ve$$

$$B.-ve, < 1, -ve$$

$$C. + ve, > 1, -ve$$

$$D.-ve, 1, +ve$$

Answer: D

20. If the $E_{
m cell}^{\circ}$ for a given reaction has a negative value, then which of the following gives the correct relationships for the values of ΔG° and K_{eg} ,

A.
$$\Delta G^{\circ} > 0, k_{aq} > 1$$

B.
$$\Delta G^{\circ} < 0, K_{eq} > 1$$

C.
$$\Delta G^{\circ} < 0, K_{eq} < 1$$

D.
$$\Delta G^{\circ} > 0, K_{aq} < 1$$

Answer: D

View Text Solution

21. Which or the rollowing expressions correctly represents the equivalent conductance at infinite dilution of $Al_2(SO_4)_3$, Given that $\wedge_{Al^{3+}}^{\circ}$ and $\wedge_{SO_4^{2-}}^{\circ}$ are the equivalent conductances at infinite dilution of the respective ions?

A.
$$rac{1}{3} \wedge_{Al^{3+}}^{\circ} + rac{1}{2} \wedge_{SO_4^{2-}}^{\circ}$$

B.
$$2 \wedge_{Al^{3+}}^{\circ} + 3 \wedge_{SO_4^{2-}}^{\circ}$$

C.
$$\wedge_{Al^{3+}}^{\circ} + \wedge_{SO_4^{2-}}^{\circ}$$

D.
$$\Big(\wedge_{Al^3}^{\circ} \ + \ \wedge_{SO_4^{2-}}^{\circ} \Big) imes 6$$

Answer: C

View Text Solution

22. Given: $E_{Cr^{3+}\ /\ Cr}^{\,\circ}=1.33V, E_{Cl\ /\ Cl^{\,-}}^{\,\circ}=1.36V$

CIBased on the data given above, strongest oxidising agent will be:

A. Cl

B. Cr^{3+}

C. Mn^+

D. MnO_4^-

Answer: D

23. The standard electrode potentials $\left(E_{M^+/M}^{\circ}\right)$ of four metals A,B,C and D are $-1.2v,\,0.6V,\,0.85V\,$ and -0.76 V, respectively. The sequence of deposition of metals on applying potential is:

- A. A,C,B,D
- B. B,D,C,A
- C. C,B,D,A
- D. D,A,B,C

Answer: C

View Text Solution

24. Which of the fo llowing statements is correct?

A. Oxidation numberofoxygen in KO_2 is +1

B. The specific conductance of an electrolyte solution decreases

with increase in dilution

C. Sn^{2+} oxidises Fe^{3+}

D. $Zn/ZnSO_4$ is a reference electrode

Answer: B

25. Molar ionic conductivities of a two-bivalent electrolytes x^{2+} and y^{2-} are 57 and 73 respectively. The molar conductivity of the solution formed by them will be

A. 130 S $cm^2 mol^{-1}$

B. $65 Scm^2 mol^{-1}$

C. $260 Scm^2 mol^{-1}$

D. $1875 Scm^2 mol^{-1}$

Answer: A

26. Thecell, $Zn \big| Zn^{2+} (1M) \big| \big| Cu^{2+} (1M) \big| Cu \big(E_{\mathrm{cell}}^{\circ} = 1.10V \big)$ was allowed to be completely discharged at 298 K. The relative concentration of Zn^{2+} to $Cu^{2+} \left(\frac{\big[Zn^{2+} \big]}{\big[Cu^{2+} \big]} \right)$ is

A.
$$9.65 imes 10^4$$

- B. antilog (24.08)
- C. 37.3
- D. $10^{37.3}$

Answer: D

27. Which of the following statements is true for an electrochemical cell?

A. Reduction occurs at H_2 electrode

B. H_2 is cathode and Cu is anode

C. H_2 is anode and Cu is cathode

D. Oxidation occurs at Cu electrode

Answer: C

28. Given

$$Fe^{3\,+}(aq)+e^{-}\,
ightarrow Fe^{2\,+}(aq), E^{\,\circ}\,=\,+\,0.77V$$

$$Al^{3\,+}(aq) + 3e^- o Al(s), E^\circ = \,-\, 1.66 V$$

$$Br_2(aq)+2e^-
ightarrow 2Br, E^\circ = \,+\,1.09V$$

Considering the electrode potentials, which of the following represents the correct order of reducing power?

A.
$$Fe^{2+} < Al < Br^-$$

B.
$$Br^- < Fe^{2+} < Al$$

C.
$$Al < Br < Fe^{2+}$$

D.
$$Al < Fe^{2+} < Br$$

Answer: D

29. Standard free energies of formation (in kJ/mol) at 298 K are $-237.2, -394.4 \ {\rm and} \ -8.2 \ {\rm for} \ H_2O(l), CO_2(g) \ {\rm and} \ {\rm pentance} \ ({\rm g})$

respectively. The value $E_{cell}^{\,\circ}$ for the pentance-oxygen fuel cell is:

$$\mathsf{A.}\ 1.968V$$

 $\mathtt{B.}\ 2.0968V$

 $\mathsf{C.}\,1.0968V$

D. 0.0968V

Answer: C

View Text Solution

30. Given $E_{Cr^{3+}\ /Cr}^{\circ}=\ -0.72V, E_{Fe^{2+}\ /Fe}^{\circ}=\ -0.42V.$ The potential for the cell

 $Cr ig| Cr^{3l}(0.1M) ig| ig| Fr^{2l}(0.01M) ig| Fe$ is

- $\mathsf{A.}\ 0.26V$
- $\mathsf{B.}\ 0.336V$
- $\mathsf{C.}-0.339V$
- $D.\,0.26V$

Answer: D

31. Electrolysis of dilute aqueous NaCl solution was carried out by passing 10 rnilli ampere current. The time required to liberate 0.01 mole of H_2 gas at the cathode is

(1 Faraday
$$=96500Cmol^{-1}$$
)

- A. $9.65\times10^4\,\mathrm{sec}$
- B. $19.3XX10^4 \sec$
- C. 28. $95 \times 10^4 \,\mathrm{sec}$
- D. $38.6 imes 10^4\,\mathrm{sec}$

Answer: B

View Text Solution

32. Which of the following reaction occurs at the cathode during the charging oflead storage battery?

A.
$$Pb^2 + 2e^-
ightarrow Pb$$

B.
$$Pb^{2+}SO_4^{2-}
ightarrow PbSO_4$$

C.
$$PB
ightarrow Pb^{2+} + 2c^-$$

D.

$$PbSO_4 + 2H_2O
ightarrow 2PbO_2
ightarrow 2PbO_2 + 4H^+ + SO_4^{2-} + 2e^-$$

Answer: D

33. Conductance of 0.1MKCl (condiuctivity = X $ohm^{-1}cm^{-1}$) filled in a condictivity cell is Y ohm^{-1} . If the conductance of 0.1 Mno OH filled in the csamecell is Z ohm^{-1} , them olar conductance of NaOH will be

A.
$$10^3 \frac{XZ}{Y}$$

$$B. 10^4 \frac{XZ}{Y}$$

C.
$$10\frac{XZ}{Y}$$
D. $0.1\frac{XZ}{Y}$

Answer: B

View Text Solution

34. How much charge is required, when 1 mole of $Cr_2O_7^{2-}$ reduce to form I mole of Cr^{3+} ?

A. 6F

B. 3F

C. 1F

D. 2F

Answer: B

35. In electrolysis of dilute H_2SO_4 using platinum electrodes

- A. H_2 is evolved at cathode
- B. NH_2 is produced at anode
- C. Cl_2 is obtained at cathode
- D. O_2 is produced

Answer: A

View Text Solution

36. The resistance of 0.1 N solution of a salt is found to be $2.5 imes 10^3 ohm$. The equivalent conductance of the solution is (cell constnat $=1.15cm^{-1}$)

A.4.6

- $\mathsf{B.}\ 5.6$
- $\mathsf{C.}\ 6.6$
 - D. 7.6

Answer: A

View Text Solution

- **37.** The highest electrical conductivity of the following aqueous solutions is of
 - A. 0.1 M difluoroacetic acid
 - B. 0.1 M fluoroacetic acid
 - C. 0.1 M chloroacetic acid
 - D. 0.1 Maceticacid

Answer: A

38. When during electrolysis of a solution of $AgNO_39650$ coulombs of charge pass through the electroplating bath, the mass of silver deposited on the cathode will be

- $\mathsf{A.}\ 10.8g$
- $\mathsf{B.}\,21.6g$
- $\mathsf{C.}\ 108g$
- D. 1.08g

Answer: A

View Text Solution

39. The reduction potential ofhydrogen half-cell will be negative if:

A.
$$p(H_2)=1$$
 atm and $\left\lceil H^+
ight
ceil=2.0M$

B.
$$p(H_2)=1$$
 atmand $\left[H^+
ight]=1.01M$

C.
$$p(H_2)=2$$
 atm and $\left[H^2
ight]=1.0M$

D.
$$p(H_3)=2$$
 atm and $\left[H^+
ight]=2.0M$

Answer: C

40. When electric current is passed through acidified water, 1 12 mL of hydrogen gas at STP collected at the cathode in 965 seconds. The current passed in amperes is

A. 1.0

B. 0.5

C.0.1

D.2.0

Answer: A

41. An electrolytic cell contains a solution of Ag_2SO_4 and platinum electrodes. A current is passed until 1.6g of O_2 has been liberated at anode. The amount of silver deposited at cathode would be

- $\mathsf{A.}\ 107.88g$
- B. 1.6g
- C. 0.8g
- D. 21.60g

Answer: D

42. Which of the following pair(s) is/are incorrectly matched?

- (i) R (resistance) -ohm (Ω)
- (ii) ho (resistivity)-ohm metre (Ωm)
- (iii) G (conductance)- seim ens or ohm (S)
- (iv) k (conducjtivity)-scimens $metre^{-1}(SM^{-1})$
 - A.(i),(ii) and (ii)
 - B.(ii) and (iii)
 - $\mathsf{C}.\left(i\right),\left(ii\right) \text{ and } \left(iv\right)$
 - D. (iii) only

Answer: D

View Text Solution

43. One Faraday of electricity is passed through molten $Al_2O_3,$ aqueous solution of $CuSO_4$ and molten NaCl taken in three

different electrolytic cells connected in series. The mole ratio of Al,

Cu and Na deposited at the respective cathode is

- A. 2:3:6
- B. 6:2:3
- C. 6: 3: 2
- D. 1:2:3

Answer: A

44. If ρ pis the resistance in ohm of a centimeter cube, generally called the specific resistance of the substance constituting the conductor, the resistance r of the layer containing "a" cubes is given by

A.
$$\frac{1}{r}=\frac{1}{
ho}+\frac{1}{
ho}+\ldots$$

B.
$$\frac{1}{r}=rac{1}{
ho a}+rac{1}{
ho a}+\ldots$$

C.
$$r=a/
ho$$

D.
$$r=
ho+
ho+\ldots$$

Answer: A

View Text Solution

- **45.** Which of the following statements is wrong?
 - A. Electrolysis of an aqueous sodium hydroxide solution liberates

 H_2 gas at the cathode and O_2 gas at the anode.

- B. Electolysis of dil H_2SO_4 liberates $H_2(g)$ at cathode $\,$ and $\,$ O_2
 - (g) at the anode
- C. $\Delta G^{\circ} = nFE^{\circ}f$ or a spontancous reaction

D.
$$E=E^{\circ}-rac{0.059}{n}{
m log}\,Q,\,$$
 where Q= reaction quotient.

Answer: C

