

CHEMISTRY

BOOKS - DISHA CHEMISTRY (HINGLISH)

EQUILIBRIUM

Mcq

1. If 1.0 mole of I_2 is introduced into 1.0 litre flask at 1000 K, at quilibrium $(K_e = 10^{-6})$, which one is correct ?

A. $\left[I_2(g)
ight]>\left[1^{-1}(g)
ight]$

$$egin{aligned} &\mathsf{B}.\,[I_2(g)] < ig[1^-(g)ig] \ &\mathsf{C}.\,[I_2(g)] = ig[I^-(g)ig] \ &\mathsf{D}.\,[I_2(g)] = rac{1}{2}ig[I^-(g)ig] \end{aligned}$$

Answer: A

2. In a reaction, $A + 2B \Leftrightarrow 2C$, 2.0 mole of A, 3.0 mole of B and 2.0 mole of C are placed in a 2.0 L flask and the equilibrium concentration of C is 0.5 mol/L. The equilibrium constant (K) for the reaction is

A. 0.073

B. 0.147

C. 0.05

D. 0.026

Answer: C

3. K_e for the reaction

 $N_2(g) + O_2 \Leftrightarrow 2NO(g)$

at 300 K is $4.0 imes10^{-6}$. K_p for the above reaction will be $\left(R=2\ {
m cal}\ {
m mol}^{-1}K^{-1}
ight)$

A. $2.4 imes10^{-3}$

B.
$$4 imes 10^{-6}$$

C. $4 imes 10^{-6}(RT)$

2

D. $16 imes 10^{-12}$

Answer: B

4. ΔG° for the reaction $X+Y \Leftrightarrow Z$ is -4.606 kcal. The equilibrium constant for the reaction at $227^\circ C$ is

A. 100

B. 10

C. 2

D. 0.01

Answer: A

View Text Solution

5. The equilibrium constant for the reaction $SO_3(g) \Leftrightarrow SO_2(g) + rac{1}{2}O_2(g)$ is $K_e = 4.9 imes 10^{-2}$. The value of K_e for the reaction $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$ will be

A. $9.8 imes10^{-2}$

 $\texttt{B.}\,4.9\times10^{-2}$

C. 416

D. $2.40 imes10^{-3}$

Answer: C

6. Four species are listed below :

i. HCO_3^- *ii*. H_3O^+ *iii*. HSO_4^- *iv*. HSO_3F Which one of the following is the correct sequence of their acid strength ?

A. iv < ii < iii < i

 $\mathsf{B}.\,ii < iii < I < iv$

 $\mathsf{C}.\, I < iii < ii < iv$

D. iii < I < iv < ii

Answer: C

7. The degree of dissociation of dinitrogen tetroxide $N_2O_4(g) \rightarrow 2NO_2(g)$ at ature T and total pressure P is α . Which one of the following is the correct expression for the equilibrium constant (K_p) at this temperature ?

A.
$$rac{2lpha}{(1-lpha^2)}$$

B.
$$rac{lpha^2 P}{1-lpha}$$

C. $rac{4lpha^2}{(1-lpha^2)}$
D. $rac{4lpha^2 P}{(1-lpha^2)}$

Answer: D

8. The equilibrium constants K_{p1} and K_{p2} for the reactions $X \Leftrightarrow 2Y$ and $Z \Leftrightarrow P + Q$, respectively are in the ratio of the ratio of total pressures at these equilibria is

B. 1:36

C. 1: 3

D.1:9

Answer: B

9. The dissociation of a gas AB_2 at equilibrium can be

represented as :

 $2AB_2(g) \Leftrightarrow 2AB(g) + B_2(g)$

The degree of dissociation is x and is small compared to I. The expression relating the degree of dissociation (x) with equilibrium constant K_p and total pressure P is

A.
$$\left(2K_{1}\,/\,P
ight)$$

:

$$\mathsf{B.}\left(2K_p\,/\,P\right)^{1\,/\,3}$$

C.
$$\left(2K_p \,/\, P
ight)^{1 \,/\, 2}$$

 $\mathsf{D}.\left(K_{p}\left/P\right)\right.$

Answer: B

View Text Solution

10. The exothermic formation of ClF_3 is represented by

the equation :

 $Cl_2(g) + 3F_2(g) \Leftrightarrow 2ClF_3(g), \Delta H = -329kJ$ Which of the following will increase the quantity of ClF_3 in an equilibrium mixture of Cl_2, F_2 and ClF_3 ?

A. Adding F_2

B. Increasing the volume of the container

C. Removing Cl_2

D. Increasing the temperature

Answer: A

11. Which of the following statement(s) is /are correct ?

(i) ΔG is negative, then the reaction is spontaneous and proceeds in the forward direction.

(ii) ΔG is positive, then reaction is non-spontancous

(iii) ΔG is 0, then reaction is at equilibrium

A. I, ii and iii are correct

B. I and ii

C. ii and iii are correct

D. only iii is correct

Answer: A

12. On the basis of Lc Chatclier's principle, predict which of the following conditions would be unfavourable for the formation of SO_3 ? Given that

 $2SO_2+O_2 \Leftrightarrow 2SO_3, \Delta H=~-42$ kcal

A. Low pressure and low temperature

B. High pressure and low temperature

C. High temperature and low pressure

D. High concentration of SO_2

Answer: C

13. The standard Gibbs energy change at 300 K for the reaction $2A \Leftrightarrow B + C$ is 2494.2J. At a given time, the composition of the reaction mixture is $[A] = \frac{1}{2}, [B] = 2$ and $[C] = \frac{1}{2}$. The reaction proceeds in the : [R = 8.314J/K/mol, e = 2.718]

A. forward direction because $Q < K_e$

B. reverse direction because $Q < K_e$

C. forward direction because $Q>K_e$

D. reverse direction because $Q>K_e$

Answer: D

14. If the equilibrium constant for

$$N_2(g) + O_2(g) \Leftrightarrow 2NO(g)$$
 is K,

the equilibrium constant for

$$rac{1}{2}N_2(g)+rac{1}{2}O_2(g)\Leftrightarrow NO(g)$$
 will be :

A.
$$K^{rac{1}{2}}$$

$$\mathsf{B.}\;\frac{1}{2}K$$

D.
$$K^2$$

Answer: A

15. The following reaction is performed at 298 K.

$$2NO(g)+O_2(g) \Leftrightarrow 2NO_2(g)$$

The standard free energy of formation of NO(g) is 86.6 kJ/mol at 298 K. What is the standard free energy of formation of $NO_2(g)$ at 298 K ? $\left(K_p=1.6 imes10^{12}
ight)$

A.
$$86600 - \frac{\ln(1.6 \times 10^{12})}{R(298)}$$

B. $0.5[2 \times 86, 600 - R(298) \text{ In } (1.6 \times 10^{12})]$
C. R (298) In $(1.6 \times 10^{12}) - 86600$

D. 86600+R(298) In $\left(1.6 imes10^{12}
ight)$

Answer: B

16. Which of the following pairs constitutes a buffer ?

A. NaOH and NaCl

B. HNO_3 and NH_4NO_3

C. HCl and KCl

 $D. HNO_2$ and $NaNO_2$

Answer: D

O View Text Solution

17. For dibasic acid correct order is

A.
$$K_{a1} < K_{a2}$$

B. $K_{a1} > K_{a2}$

 $\mathsf{C}.\,K_{a1}=K_{a2}$

D. not certain

Answer: B

18.Considertheexpression $\Delta G = -RT$ In $K_p + RT$ In Q_p andselectthecorrect statement at equilibriumwhere Q_p and K_p term refer to reaction quotient andequilibriumconstanttermstantpressure

A. $\Delta G=0, Q_p>K_p$ the equilibrium reaction will

shift from left to right

B. $\Delta G=0, Q_p=K_p$ the equilibrium reaction will

shift from left to right

C. $\Delta G = \infty, Q_p < K_p$ the equilibrium reaction will

shift from right to left

D. $\Delta G < 0, Q_p > K_p$ the equilirbium reaction will

shift from right to left

Answer: B

19. K_e for $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$ is 0.04 at $250^{\circ}C$. How many moles of PCl_5 must be added to a 3L flask to obtain a Cl_2 concentration of 0.15 M

A. 4.2 moles

B. 2.1 moles

C. 5.5 moles

D. 6.3 moles

Answer: B

20. In the following hypothetical reaction

 $A + 3B \Leftrightarrow 2C + D$

initial moles of A are twice that of B. If at equilibrium

moles of B and C are equal. Percentage of B reacted is

A. 0.6

B. 0.4

C. 0.1

D. 0.2

Answer: A

21. Which of the following can act as both Bronsted

acid and Bronsted base ?

A. Na_2CO_3

 $\mathsf{B.}\,OH^{\,-}$

 $C.HCO_3^-$

D. NH_3

Answer: C

View Text Solution

22. Match the columns :

A. A-II, B-I, C-IV, D-III

B. A-I, B-II, C-III, D-IV

C. A-III, B-I, C-IV, D-II

D. A-IV, B-II, C-I, D-III

Answer: A

23. Which of the following statements are correct ?

(i) lonic product of water $(K_w) = \begin{bmatrix} H^+ \end{bmatrix} \begin{bmatrix} OH^- \end{bmatrix} = 10^{-14} M^2$ (ii) At $298K \begin{bmatrix} H^+ \end{bmatrix} = \begin{bmatrix} OH^- \end{bmatrix} = 10^{-7}$

(iii) K_w does not depend upon temperature

(iv) Molarity of pure water = 55.55 M

A. I, ii and iii

B. I, ii and iv

C. I and iv

D. ii and iii

Answer: C

View Text Solution

24. At a certain temperature the dissocation constants

of formic acid and acetic acid are

 1.8×10^{-4} and 1.8×10^{-6} respectively. The concentration of acetic acid solution in which the hydrogen ion has the same concentration as in 0.001 M formic acid solution is equal to

A. 0.001 M

B. 0.01 M

C. 0.1 M

D. 0.0001 M

Answer: B

25. The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be

A. $0.2 imes 10^5$

B. $5.0 imes 10^{-5}$

 ${\sf C}.\,5.0 imes10^{15}$

D. 5.0 imes 10 $^{-15}$

Answer: D

26. Equal volumes of three acid solutions of pH 3, 4 and 5 are mixed in a vessel. What will be the H^+ ion concentration in the mixture ?

A. $1.11 imes 10^{-4}M$

B. $3.7 imes 10^{-4}M$

C. $3.7 imes10^{-3}M$

D. $1.11 imes 10^{-3} M$

Answer: B

27. The solubility product of AgCl is $4.0 imes10^{-10}$ at 298 K. The solubility of AgCl in $0.04MCaCl_2$ will be

A.
$$2.0 imes 10^{-5}M$$

B. $1.0 imes 10^{-4}M$

C.
$$5.0 imes10^{-9}M$$

D.
$$2.2 imes 10^{-4}M$$

Answer: C

28. The pH of a buffer containing equal molar concentrations of a weak base and its chloride (K_b) forweak base $= 2 \times 10^{-5}$, log 2=0.3) is

B. 9

C. 4.7

D. 9.3

Answer: D

29. In a saturated solution of the sparingly soluble strong electrolyte $AglO_3(s) \Leftrightarrow Ag^+(aq) + IO_3^-(aq)$. If the solubility product constant K_{sp} of $AgIO_3$ at a given temperature is 1.0×10^{-8} , what is the mass of $AgIO_3$ contained in 100 ml of its saturated solution ?

A.
$$1.0 imes 10^{-4}g$$

B. $28.3 imes10^{-2}g$

C.
$$2.83 imes10^{-3}g$$

D.
$$1.0 imes10^{-7}g$$

Answer: C

30. What is $[H^+]$ is mol/ L of a solution that is 0.20 M in CH_3COONa and 0.10 M in CH_3COOH ? K_a for $CH_3COOH = 1.8 imes 10^{-5}$

A. $3.5 imes10^{-4}$

B. $1.1 imes 10^{-5}$

C. $1.8 imes 10^{-5}$

D. $9.0 imes 10^{-6}$

Answer: D

31. The K_{sp} for $Cr(OH)_3$ is 1.6×10^{-30} . The solubility of this compound in water is :

A.
$$\sqrt[4]{1.6 \times 10^{-30}}$$

B. $\sqrt[4]{1.6 \times 10^{-30}/27}$
C. $1.6 \times 10^{-30/27}$
D. $\sqrt{1.6 \times 10^{-30}}$

Answer: B

32. For the reaction $CO(g) + (1/2)O_2(g) = CO_2(g), K_p/k_e$ is A. RT B. $(RT)^{-1}$ C. $(RT)^{-1/2}$ D. $(RT)^{1/2}$

Answer: C

33. For the reaction : $2NO_{2(g)} \Leftrightarrow 2NO_g + O_2(g)$, $(K_e = 1.8 \times 10^{-6} \text{ at } 184^\circ C)(R = 0.0831kJ/(\text{mol}K))$ When K_P and K_e are compared at $184^\circ C$, it is found that

- A. Wheater K_p is greater than, less than or equal to
 - K_e depends upon the total gas pressure
- $\mathsf{B.}\,K_p=K_e$
- C. K_p is less than K_e
- D. K_p is greaterthan K_e

Answer: D

34. A monobasic weak acid solution has a molarity of 0.005 and pH of 5. What is the percentage ionization in this solution ?

 $\mathsf{A.}\,2.0$

 $\mathsf{B.}\,0.2$

 $\mathsf{C}.\,0.5$

 $\mathsf{D}.\,0.25$

Answer: B

35. Values of dissociation constant, K_a are given as follows :

Acid K_a

 $HCN6.2 imes 10^{-10}$

 $HF = 6.6 imes 10^{-4}$

 HNO_2 $7.2 imes 10^{-4}$

Correct order of increasing base strength of the base CN^-, F^- and NO_2^- will be :

A. $F^{\,-}\,< CN^{\,-}\,< NO_2^{\,-}$

 $\mathsf{B.}\,NO_2^{\,-} < CN^{\,-} < F^{\,-}$

C. $F^{\,-}\,<\,NO_2^{\,-}\,<\,CN^{\,-}$

D. $NO_2^{\,-}\,< F^{\,-}\,< CN^{\,-}$

36. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?

A. 0.1 L

B. 0.9 L

C. 2.0 L

D. 9.0 L

Answer: D

37. The pH of aqueous solution of 1M $HCOONH_4$, pK_a of HCO OH is 3.8 and pK_b of NH_3 is 4.8

A. 6.5

B. 4.8

C. 3.8

D. 8.6

Answer: A

38. Solid $Ba(NO_3)_2$ is gradually dissolved in a $1.0 \times 10^{-4} MNa_2CO_3$ solution. At what concentration of Ba^{2+} will a precipitate begin to form ? $(K_{sp} \text{ for for } BaCO_3 = 5.1 \times 10^{-9})$

A.
$$5.1 imes 10^{-5}M$$

B. $8.1 imes 10^{-8}M$

C.
$$8.1 imes 10^{-7}M$$

D.
$$4.1 imes 10^{-5}M$$

Answer: A

39. Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as $120g \text{ mol}^{-1}$) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is

A.
$$1.2 imes 10^{-10}g$$

B.
$$1.2 imes 10^{-9}g$$

C.
$$6.2 imes10^{-5}g$$

D.
$$5.0 imes10^{-8}g$$

Answer: B

40. Three reaction involving $H_2PO_4^-$ are given below : $(i)H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^ (ii)H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$ (iii) $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$ In which of the above does $H_2PO_4^-$ act as an acid ?

A. ii only

B. I and ii

C. iii only

D. I only

Answer: A

41. Which solution has pH equal to 10?

A. $10^{-4}MKOH$

B. $10^{-10} MKOH$

C. $10^{-10} MHCl$

D. $10^{-4} MHCl$

Answer: A

View Text Solution

42. Calculate the pH of 0.5 M aqueous solution of NaCN, the pK_b of CN^- is 4.70

A. 4.70

B. 11.5

C. 7

D. 6.5

Answer: B

43. For the following three reaction a, b and c, equilibrium constants are given :

(i) $CO(g) \cdot H_2O_g \Leftrightarrow CO_2(g) \cdot H_2(g), K_1$ (ii) $CH_4(g) \cdot H_2O(g) \Leftrightarrow CO(g) \cdot 3H_2(g), K_2$ $(iii) CH_4(g) + 2H_2O(g) \Leftrightarrow CO_2(g) + 4H_2(g), K_3$

A.
$$K_1\sqrt{K_2}=K_3$$

B.
$$K_2K_3 = K_1$$

$$\mathsf{C}.\,K_3=K_1K_2$$

D.
$$K_3$$
. $K_2^3 = K_1^2$

Answer: C

44. A vessel at 1000 K contains CO_2 with a pressure of 0.5 atm. Some of the CO_2 is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :

A. 1.8 atm

B. 3 atm

C. 0.3 atm

D. 0.18 atm

Answer: A

