©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - DISHA CHEMISTRY (HINGLISH)

EQUILIBRIUM

1. If 1.0 mole of I_{2} is introduced into 1.0 litre flask at

1000 K , at quilibrium $\left(K_{e}=10^{-6}\right)$, which one is correct ?
A. $\left[I_{2}(g)\right]>\left[1^{-1}(g)\right]$
B. $\left[I_{2}(g)\right]<\left[1^{-}(g)\right]$
C. $\left[I_{2}(g)\right]=\left[I^{-}(g)\right]$
D. $\left[I_{2}(g)\right]=\frac{1}{2}\left[I^{-}(g)\right]$

Answer: A

D View Text Solution

2. In a reaction, $A+2 B \Leftrightarrow 2 C$, 2.0 mole of $\mathrm{A}, 3.0$ mole of B and 2.0 mole of C are placed in a 2.0 L flask and the equilibrium concentration of C is $0.5 \mathrm{~mol} / \mathrm{L}$. The equilibrium constant (K) for the reaction is
A. 0.073
B. 0.147
C. 0.05
D. 0.026

Answer: C

- View Text Solution

3. K_{e} for the reaction
$N_{2}(g)+O_{2} \Leftrightarrow 2 N O(g)$
at 300 K is $4.0 \times 10^{-6} . K_{p}$ for the above reaction will
be $\left(R=2 \mathrm{cal} \mathrm{mol}{ }^{-1} K^{-1}\right)$
A. 2.4×10^{-3}
B. 4×10^{-6}
C. $4 \times 10^{-6}(R T)^{2}$
D. 16×10^{-12}

Answer: B

D View Text Solution

4. ΔG° for the reaction $X+Y \Leftrightarrow Z$ is -4.606
kcal. The equilibrium constant for the reaction at $227^{\circ} C$ is
A. 100
B. 10
C. 2
D. 0.01

Answer: A

- View Text Solution

5. The equilibrium constant for the reaction
$\mathrm{SO}_{3}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
is $K_{e}=4.9 \times 10^{-2}$. The value of K_{e} for the reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ will be
A. 9.8×10^{-2}
B. 4.9×10^{-2}
C. 416
D. 2.40×10^{-3}

Answer: C

- View Text Solution

6. Four species are listed below :
i. HCO_{3}^{-}
ii. $\mathrm{H}_{3} \mathrm{O}^{+}$
iii. HSO_{4}^{-}
iv. $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength ?
A. $i v<i i<i i i<i$
B. $i i<i i i<I<i v$
C. $I<i i i<i i<i v$
D. $i i i<I<i v<i i$

Answer: C

- View Text Solution

7. The degree of dissociation of dinitrogen tetroxide
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ at ature T and total pressure P is α. Which one of the following is the correct expression for the equilibrium constant $\left(K_{p}\right)$ at this temperature?
A. $\frac{2 \alpha}{\left(1-\alpha^{2}\right)}$
B. $\frac{\alpha^{2} P}{1-\alpha}$
C. $\frac{4 \alpha^{2}}{\left(1-\alpha^{2}\right)}$
D. $\frac{4 \alpha^{2} P}{\left(1-\alpha^{2}\right)}$

Answer: D

D View Text Solution

8. The equilibrium constants $K_{p 1}$ and $K_{p 2}$ for the reactions $X \Leftrightarrow 2 Y$ and $Z \Leftrightarrow P+Q$, respectively are in the ratio of the ratio of total pressures at these equilibria is
A. 1:1
B. $1: 36$
C. 1:3
D. 1:9

Answer: B

D View Text Solution

9. The dissociation of a gas $A B_{2}$ at equilibrium can be represented as :
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
The degree of dissociation is x and is small compared to I. The expression relating the degree of dissociation
(x) with equilibrium constant K_{p} and total pressure P is
A. $\left(2 K_{1} / P\right)$
B. $\left(2 K_{p} / P\right)^{1 / 3}$
C. $\left(2 K_{p} / P\right)^{1 / 2}$
D. $\left(K_{p} / P\right)$

Answer: B

- View Text Solution

10. The exothermic formation of ClF_{3} is represented by the equation :

$C l_{2}(g)+3 F_{2}(g) \Leftrightarrow 2 C l F_{3}(g), \Delta H=-329 k J$

Which of the following will increase the quantity of
$C l F_{3}$ in an equilibrium mixture of $C l_{2}, F_{2}$ and $C l F_{3}$?
A. Adding F_{2}
B. Increasing the volume of the container
C. Removing Cl_{2}
D. Increasing the temperature

Answer: A

11. Which of the following statement(s) is /are correct ?
(i) ΔG is negative, then the reaction is spontaneous and proceeds in the forward direction.
(ii) ΔG is positive, then reaction is non-spontancous
(iii) ΔG is 0 , then reaction is at equilibrium
A. I, ii and iii are correct
B. I and ii
C. ii and iii are correct
D. only iii is correct

Answer: A

12. On the basis of Lc Chatclier's principle, predict which of the following conditions would be unfavourable for the formation of SO_{3} ? Given that
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}, \Delta \mathrm{H}=-42 \mathrm{kcal}$
A. Low pressure and low temperature
B. High pressure and low temperature
C. High temperature and low pressure
D. High concentration of SO_{2}

Answer: C

D View Text Solution

13. The standard Gibbs energy change at 300 K for the reaction $2 A \Leftrightarrow B+C$ is 2494.2J. At a given time, the composition of the reaction mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2} . \quad$ The \quad reaction proceeds in the : $[R=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, e=2.718]$
A. forward direction because $Q<K_{e}$
B. reverse direction because $Q<K_{e}$
C. forward direction because $Q>K_{e}$
D. reverse direction because $Q>K_{e}$

Answer: D

D View Text Solution

14. If the equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is K,
the equilibrium constant for
$\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$ will be :
A. $K^{\frac{1}{2}}$
B. $\frac{1}{2} K$
C. K
D. K^{2}

Answer: A

- View Text Solution

15. The following reaction is performed at 298 K .
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
The standard free energy of formation of $\mathrm{NO}(\mathrm{g})$ is 86.6
$\mathrm{kJ} / \mathrm{mol}$ at 298 K . What is the standard free energy of formation of $\mathrm{NO}_{2}(\mathrm{~g})$ at $298 \mathrm{~K} ?\left(K_{p}=1.6 \times 10^{12}\right)$
A. $86600-\frac{\ln \left(1.6 \times 10^{12}\right)}{R(298)}$
B. $0.5\left[2 \times 86,600-R(298)\right.$ In $\left.\left(1.6 \times 10^{12}\right)\right]$
C. $R(298) \ln \left(1.6 \times 10^{12}\right)-86600$
D. $86600+\mathrm{R}(298) \ln \left(1.6 \times 10^{12}\right)$

Answer: B

16. Which of the following pairs constitutes a buffer?
A. NaOH and NaCl
B. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
C. HCl and KCl
D. HNO_{2} and NaNO_{2}

Answer: D

- View Text Solution

17. For dibasic acid correct order is
A. $K_{a 1}<K_{a 2}$
B. $K_{a 1}>K_{a 2}$
C. $K_{a 1}=K_{a 2}$
D. not certain

Answer: B

D View Text Solution

18.

Consider
the
expression
$\Delta G=-R T$ In $K_{p}+R T$ In Q_{p} and select the correct statement at equilibrium
where Q_{p} and K_{p} term refer to reaction quotient and eq uilibrium constant at constant pressure respectively.
A. $\Delta G=0, Q_{p}>K_{p}$ the equilibrium reaction will
shift from left to right
B. $\Delta G=0, Q_{p}=K_{p}$ the equilibrium reaction will shift from left to right
C. $\Delta G=\infty, Q_{p}<K_{p}$ the equilibrium reaction will
shift from right to left
D. $\Delta G<0, Q_{p}>K_{p}$ the equilirbium reaction will shift from right to left

Answer: B

- View Text Solution

19. K_{e} for $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is 0.04 at
$250^{\circ} \mathrm{C}$. How many moles of PCl_{5} must be added to a
3 L flask to obtain a Cl_{2} concentration of 0.15 M
A. 4.2 moles
B. 2.1 moles
C. 5.5 moles
D. 6.3 moles

Answer: B
20. In the following hypothetical reaction
$A+3 B \Leftrightarrow 2 C+D$
initial moles of A are twice that of B. If at equilibrium moles of B and C are equal. Percentage of B reacted is
A. 0.6
B. 0.4
C. 0.1
D. 0.2

Answer: A
21. Which of the following can act as both Bronsted acid and Bronsted base ?
A. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. OH^{-}
c. HCO_{3}^{-}
D. NH_{3}

Answer: C

- View Text Solution

22. Match the columns :
A. A-II, B-I, C-IV, D-III
B. A-I, B-II, C-III, D-IV
C. A-III, B-I, C-IV, D-II
D. A-IV, B-II, C-I, D-III

Answer: A

- View Text Solution

23. Which of the following statements are correct ?
(i) Ionic product of water
$\left(K_{w}\right)=\left[H^{+}\right]\left[O H^{-}\right]=10^{-14} M^{2}$
(ii) At $298 K\left[H^{+}\right]=\left[O H^{-}\right]=10^{-7}$
(iii) K_{w} does not depend upon temperature
(iv) Molarity of pure water $=55.55 \mathrm{M}$
A. I, ii and iii
B. I, ii and iv
C. I and iv
D. ii and iii

Answer: C

- View Text Solution

24. At a certain temperature the dissocation constants of formic acid and acetic acid are
1.8×10^{-4} and 1.8×10^{-6}
concentration of acetic acid solution in which the hydrogen ion has the same concentration as in 0.001 M formic acid solution is equal to
A. 0.001 M
B. 0.01 M
C. 0.1 M
D. 0.0001 M

Answer: B
25. The first and second dissociation constants of an
acid $\quad H_{2} A$ are 1.0×10^{-5} and 5.0×10^{-10}
respectively. The overall dissociation constant of the acid will be
A. 0.2×10^{5}
B. 5.0×10^{-5}
C. 5.0×10^{15}
D. 5.0×10^{-15}

Answer: D

D View Text Solution
26. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
A. $1.11 \times 10^{-4} M$
B. $3.7 \times 10^{-4} M$
C. $3.7 \times 10^{-3} M$
D. $1.11 \times 10^{-3} M$

Answer: B

- View Text Solution

27. The solubility product of AgCl is 4.0×10^{-10} at 298 K . The solubility of AgCl in $0.04 \mathrm{MCaCl} l_{2}$ will be
A. $2.0 \times 10^{-5} M$
B. $1.0 \times 10^{-4} M$
C. $5.0 \times 10^{-9} \mathrm{M}$
D. $2.2 \times 10^{-4} M$

Answer: C

- View Text Solution

28. The pH of a buffer containing equal molar concentrations of a weak base and its chloride $\left(K_{b}\right)$ forweak base $\left.=2 \times 10^{-5}, \log 2=0.3\right)$ is
A. 5
B. 9
C. 4.7
D. 9.3

Answer: D
29. In a saturated solution of the sparingly soluble strong electrolyte $\mathrm{AglO}_{3}(s) \Leftrightarrow \mathrm{Ag}^{+}(a q)+\mathrm{IO}_{3}^{-}(a q)$.

If the solubility product constant $K_{s p}$ of AgIO_{3} at a given temperature is 1.0×10^{-8}, what is the mass of AgIO_{3} contained in 100 ml of its saturated solution?
A. $1.0 \times 10^{-4} g$
B. $28.3 \times 10^{-2} g$
C. $2.83 \times 10^{-3} g$
D. $1.0 \times 10^{-7} g$

Answer: C

30. What is $\left[\mathrm{H}^{+}\right]$is $\mathrm{mol} / \mathrm{L}$ of a solution that is 0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.10 M in $\mathrm{CH}_{3} \mathrm{COOH} ? \mathrm{~K}_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$
A. 3.5×10^{-4}
B. 1.1×10^{-5}
C. 1.8×10^{-5}
D. 9.0×10^{-6}

Answer: D
31. The $K_{s p}$ for $\mathrm{Cr}(\mathrm{OH})_{3}$ is 1.6×10^{-30}. The solubility of this compound in water is :
A. $\sqrt[4]{1.6 \times 10^{-30}}$
B. $\sqrt[4]{1.6 \times 10^{-30} / 27}$
C. $1.6 \times 10^{-30 / 27}$
D. $\sqrt{1.6 \times 10^{-30}}$

Answer: B

- View Text Solution

32.

$\mathrm{CO}(g)+(1 / 2) O_{2}(g)=\mathrm{CO}_{2}(g), K_{p} / k_{e}$ is
A. RT
B. $(R T)^{-1}$
C. $(R T)^{-1 / 2}$
D. $(R T)^{1 / 2}$

Answer: C

- View Text Solution

33. For the reaction : $2 \mathrm{NO}_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{g}+O_{2}(g)$,
$\left(K_{e}=1.8 \times 10^{-6}\right.$ at $\left.184^{\circ} C\right)(R=0.0831 \mathrm{~kJ} /(\mathrm{mol} K))$
When K_{P} and K_{e} are compared at $184^{\circ} C$, it is found that
A. Wheater K_{p} is greater than, less than or equal to
K_{e} depends upon the total gas pressure
B. $K_{p}=K_{e}$
C. K_{p} is less than K_{e}
D. K_{p} is greaterthan K_{e}

Answer: D

34. A monobasic weak acid solution has a molarity of
0.005 and pH of 5 . What is the percentage ionization in
this solution?
A. 2.0
B. 0.2
C. 0.5
D. 0.25

Answer: B
35. Values of dissociation constant, K_{a} are given as follows:

Acid K_{a}
$H C N 6.2 \times 10^{-10}$
$H F \quad 6.6 \times 10^{-4}$
$\mathrm{HNO}_{2} \quad 7.2 \times 10^{-4}$
Correct order of increasing base strength of the base $\mathrm{CN}^{-}, \mathrm{F}^{-}$and NO_{2}^{-}will be :
A. $\mathrm{F}^{-}<\mathrm{CN}^{-}<\mathrm{NO}_{2}^{-}$
B. $\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}<\mathrm{F}^{-}$
C. $F^{-}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}$
D. $\mathrm{NO}_{2}^{-}<\mathrm{F}^{-}<\mathrm{CN}^{-}$

- View Text Solution

36. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?
A. 0.1 L
B. 0.9 L
C. 2.0 L
D. 9.0 L

- View Text Solution

37. The pH of aqueous solution of 1 M $\mathrm{HCOONH}_{4}, p K_{a}$ of HCOOH is 3.8 and $p K_{b}$ of NH_{3} is 4.8
A. 6.5
B. 4.8
C. 3.8
D. 8.6

Answer: A

38. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_{2} \mathrm{CO}_{3}$ solution. At what concentration of Ba^{2+} will a precipitate begin to form ? $\left(K_{s p}\right.$ for for $\left.\mathrm{BaCO}_{3}=5.1 \times 10^{-9}\right)$
A. $5.1 \times 10^{-5} M$
B. $8.1 \times 10^{-8} M$
C. $8.1 \times 10^{-7} M$
D. $4.1 \times 10^{-5} \mathrm{M}$

Answer: A
39. Solubility product of silver bromide is 5.0×10^{-13}.

The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is
A. $1.2 \times 10^{-10} g$
B. $1.2 \times 10^{-9} g$
C. $6.2 \times 10^{-5} g$
D. $5.0 \times 10^{-8} g$

Answer: B

40. Three reaction involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below :
(i) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2-}$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
A. ii only
B. I and ii
C. iii only
D. I only

Answer: A

41. Which solution has pH equal to 10 ?

A. $10^{-4} \mathrm{MKOH}$
B. $10^{-10} \mathrm{MKOH}$

C. $10^{-10} \mathrm{MHCl}$
D. $10^{-4} \mathrm{MHCl}$

Answer: A

- View Text Solution

42. Calculate the pH of 0.5 M aqueous solution of

NaCN , the $p K_{b}$ of $C N^{-}$is 4.70
A. 4.70
B. 11.5
C. 7
D. 6.5

Answer: B

- View Text Solution

43. For the following three reaction a, b and c, equilibrium constants are given :
(i) $\mathrm{CO}(g) \cdot \mathrm{H}_{2} \mathrm{O}_{g} \Leftrightarrow \mathrm{CO}_{2}(g) \cdot \mathrm{H}_{2}(g), \mathrm{K}_{1}$
(ii) $\mathrm{CH}_{4}(g) \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g}) \cdot 3 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{2}$
$(i i i) \mathrm{CH}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2}(g), K_{3}$
A. $K_{1} \sqrt{K_{2}}=K_{3}$
B. $K_{2} K_{3}=K_{1}$
C. $K_{3}=K_{1} K_{2}$
D. $K_{3} \cdot K_{2}^{3}=K_{1}^{2}$

Answer: C

- View Text Solution

44. A vessel at 1000 K contains CO_{2} with a pressure of
0.5 atm. Some of the CO_{2} is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm , the value of K is :
A. 1.8 atm
B. 3 atm
C. 0.3 atm
D. 0.18 atm

Answer: A

- View Text Solution

