©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - DISHA CHEMISTRY
 (HINGLISH)

STATES OF MATTER

Mcqs

1. A compound exists in the gaseous state both as monomer A and dimer A_{2}. The M wt of
monomer is 48. in an experiment 96 g of the compound was confiermed in vessel of 33.6 L and heated to $273^{\circ} C$. Calculate the pressure developed, if compound exists as a dimer to
the extent of 50% by weight under the conditions
A. 0.9 atm
B. 4.0 atm
C. 2.0 atm
D. 1.0 atm
2. The moleclar velocities of two gases at the same temprature are u_{1} and u_{2} and their masses are m_{1} and m_{2} respectively. Which of the following expressions are correct?

$$
\begin{aligned}
& \text { A. } \frac{m_{1}}{u_{1}^{2}}=\frac{m_{2}}{u_{2}^{2}} \\
& \text { B. } m_{1} u_{1}=m_{2} u_{2} \\
& \text { C. } \frac{m_{1}}{u_{1}}=\frac{m_{2}}{u_{2}} \\
& \text { D. } m_{1} u_{1}^{2}=m_{2} u_{2}^{2}
\end{aligned}
$$

Answer: D

D View Text Solution

3. A container contains certain gas of mas 'm'
at high pressure. Some of the gas has been allowed to escape from the container and after some time the pressure of the gas becomes half and its absolute temperature
$2 / 3 r d$. The amount of the gas escaped is
A. $2 / 3 \mathrm{~m}$
B. $1 / 2 m$
C. $1 / 4 \mathrm{~m}$
D. $1 / 6 \mathrm{~m}$

Answer: C

D View Text Solution

4. Let the most probable velocity of hydrogen molecules at a temperature of $t^{\circ} C$ be V_{0}.

When the temperaure is raised to
$(2 t+273)^{\circ} C$ the new rms velocity is
(suppose all the molecules dissociate into atoms at latter temperature
A. $2 \sqrt{3} V_{0}$
B. $\sqrt{6} V_{0}$
C. $\sqrt{3\left(2+\frac{273}{t}\right)} V_{0}$
D. $\sqrt{\frac{2}{3}} V_{0}$

Answer: B

D View Text Solution
5. By what factor does the average velocity of a gaseous molecule in
temperature (in Kelvin) is
A. doubled?
B. 2
C. 2.8
D. 4

Answer: D

D View Text Solution
6. The correct value of the gas constant ' R ' is close to:
A. 0.082 litre-atmosphere K
B. 0.082 litre-atmosphere $e K^{-1} \mathrm{~mol}^{-1}$
C. 0.082 litre $^{-1}$ atmosphere $^{-1} \mathrm{Kmol}^{-1}$
D. 0.082 litre $^{-1}$ atmosphere $^{-1} \mathrm{Kmol}^{-1}$

Answer: B

D View Text Solution
7. If $10^{4} \mathrm{dm}^{3}$ of water is introduced into a 1.0
$d m^{3}$ flast at 300 K , how many moles of water are in the vapour phase when equilibrium is
established? (Given: Vapour pressure of $\mathrm{H}_{2} \mathrm{O}$
at 300 K is $3170 \mathrm{~Pa}, R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
A. $5.56 \times 10^{-3} \mathrm{~mol}$
B. 1.53×10^{-2}
C. 4.46×10^{-2} mole
D. 1.27×10^{-3} mole

Answer: D
8. A vessel is filled with a mixture of O_{2} and N_{2}
. At what ratio of partial pressures will be the mass of gases be identical

$$
\begin{aligned}
& \text { A. } P_{\left(O_{2}\right)}=8.75 P_{\left(N_{2}\right)} \\
& \text { B. } P_{\left(O_{2}\right)}=0.78 P_{\left(N_{2}\right)} \\
& \text { C. } P_{\left(O_{2}\right)}=0.875 P_{\left(N_{2}\right)} \\
& \text { D. } P_{\left(O_{2}\right)}=11.4 P_{\left(N_{2}\right)}
\end{aligned}
$$

- View Text Solution

9. Helium has the van der waals constant $b=24$ $\mathrm{mL} . \mathrm{mol}^{-1}$ the molecular diameter of helium will be
A. 267 pm
B. 133.5 pm
C. 26.7 pm
D. Data not suffucient for calculation the
diameter

Answer: A

D View Text Solution

10. A bubble of the gas released at the bottom
of a lake increases to eight times the original
volume when it reaches at the surface.

Assuming that the atmospheric pressure is
equivalent to pressure exerted by a column of
water 10 m high, what is the depth of the lake

B. 90 m

C. 10 m

D. 70 m

Answer: D

D View Text Solution
11. Air at sea level is dense. This is a practical application of
A. Boyle's law
B. Charle's law
C. kelvin's law
D. Brown's law

Answer: A

D View Text Solution

12. Which of the following represents Gay
lussac's law?
I. $\frac{P}{T}=$ constant

II $P_{1} T_{2}=P_{2} T_{1}$
III. $P_{1} V_{1}=P_{2} V_{2}$

Choose the correct option.
A. I, II and III
B. II and III
C. I and III
D. I and II

Answer: D

D View Text Solution

13. A bubble of air is underwater at temperature $15^{\circ} \mathrm{C}$ and the pressure 1.5 bar. If
the bubble rises to the surface where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0
bar, what will happen to the volume of the bubble?
A. Volume will become greater by a factor of 1.6
B. Volume will become will become greater
by a factor 1.1
C. volume will become smaller by a factor of 0.70
D. volume will become greater by a factor of 2.5.

Answer: A

D View Text Solution

14. When r, P and M represent rate of diffusion, pressure and molecular mass, respectively,
then the ratio of the rates of diffusion $\left(r_{A} / r_{B}\right)$ of two gases A and B , is given as:

$$
\begin{aligned}
& \text { A. }\left(P_{A} / P_{B}\right)\left(M_{B} / M_{A}\right)^{1 / 2} \\
& \text { B. }\left(P_{A} / P_{B}\right)^{1 / 2}\left(M_{B} / M_{A}\right) \\
& \text { C. }\left(P_{A} / P_{B}\right)\left(M_{A} / M_{B}\right)^{1 / 2} \\
& \text { D. }\left(P_{A} / P_{B}\right)^{1 / 2}\left(M_{A} / M_{B}\right)
\end{aligned}
$$

Answer: A

D View Text Solution

15. Longest mean free path stands for:

A. H_{2}
B. N_{2}
C. O_{2}
D. $C l_{2}$

Answer: A
16. The root mean square velocity of an ideal gas at constant pressure varies with density (d) as
A. d^{2}
B. d
C. \sqrt{d}
D. $1 / \sqrt{d}$

Answer: D

D View Text Solution
17. The correct order of viscosity of the following liquids will be
A. Water $<$ Methyl \quad alcohol $<$ dimethyl
ether < glycerol
B. methyl ether < methyl alcohol < water
< glycerol
C. glycerol < dimethyl ether $<$ water $<$
methyl alcohol
D.

D View Text Solution

18. The molecular velocity of any gas is
A. inversely proportional to absolute
temperature
B. directly proportional to square of temperature

C. directly proportional to square rooot of

temperature
D. directly proportional to square root of

temperature

Answer: C

D View Text Solution

19. Which of the following volume (V)temperature (T) plots represents the
behaviour of one mole of an ideal gas at one atmoshperic pressure?
A.
B.
C.
D.

Answer: C

D View Text Solution
20. The rms velocity of hydrogen is $\sqrt{7}$ times
the rms velocity of nitrogen. If T is the temperature of the gas, then

$$
\begin{aligned}
& \text { A. } T\left(H_{2}\right)=T\left(N_{2}\right) \\
& \text { B. } T\left(H_{2}\right)>T\left(N_{2}\right) \\
& \text { C. } T\left(H_{2}\right)<T\left(N_{2}\right) \\
& \text { D. } T\left(H_{2}\right)=\sqrt{7} T\left(N_{2}\right)
\end{aligned}
$$

Answer: C

- View Text Solution

21. If Z is a compressibility factor, van der waals

 equation at low pressure can be written as$$
\begin{aligned}
& \text { А. } Z=1+\frac{R T}{P b} \\
& \text { в. } Z=1-\frac{a}{V R T} \\
& \text { С. } Z=-\frac{R b}{R T} \\
& \text { D. } Z=1+\frac{P b}{R T}
\end{aligned}
$$

Answer: B

D View Text Solution

22. Refer to the figure given:

Which of the following statements is wrong?
A. For gas $A, a=0$ and Z will linearly depend
on pressure
B. For gas $B, b=0$ and Z will linearly depend
on pressure
C. Gas C is a real gas and wc can find 'a' and
'b' if inctersection data is given
D. all van der waals gases will behave like gas C and give positive slope at high pressure

Answer: B

D View Text Solution

23. Equalmasses of $\mathrm{H}_{2} \mathrm{O}_{2}$ and methane have
been taken in a container of volume V at temperature $27^{\circ} \mathrm{C}$ in identical conditions. The
ratio of the volumes of gases $\mathrm{H}_{2}: \mathrm{O}_{2}$ methane would be:
A. $8: 16: 1$
B. $16: 8: 1$
C. $16: 1: 2$
D. $8: 1: 2$

Answer: C

D View Text Solution
24. Which one of the following statement is

NOT true about the effect of an increase in temperature on the distribution of molecular speed in a gas?
A. The area under the distribution curve remains the same as under the lower temperature
B. The distribution becomes broader
C. The fraction of the molecules with the most probable speed increases
D. The most probable speed increases

Answer: C

D View Text Solution

25. As the temperature is raised from $20^{\circ} C$ to
$40^{\circ} C$, the average kinetic energy of neon atoms changes by a factor of which of the following?
A. 313/293
B. $\sqrt{(313 / 293)}$
C. $1 / 2$
D. 2

Answer: A

D View Text Solution

26. The ratio between the root mean square speed of H_{2} at 50 K and that of O_{2} at 800 K is,
A. 4
B. 2
C. 1
D. 43834

Answer: C

D View Text Solution

27. Positive deviation from ideal behaviour takes place because of
A. molecular interaction between atoms and PV/nRT > 1
B. Molecular interaction between atoms and PV/nRT <1
C. Finite size of atoms and PV/NRT >1
D. Finite size of atoms and PV/NRT <1

Answer: C

D View Text Solution
28. Equal masses of methane and oxyge are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen as
A. 43832
B. 43864
C. $\frac{1}{3} \times \frac{273}{298}$
D. $1 / 3$

Answer: D

29. The rate of diffusion of $\mathrm{SO}_{2}, \mathrm{CO}_{2}, \mathrm{PCl}_{3}$ and SO_{3} are in the following order
A. $\mathrm{PCl}_{3}>\mathrm{SO}_{3}>\mathrm{SO}_{2}>\mathrm{CO}_{2}$
B. $\mathrm{CO}_{2}>\mathrm{SO}_{2}>\mathrm{PCl}_{3}>\mathrm{SO}_{3}$
C. $\mathrm{SO}_{2}>\mathrm{SO}_{3}>\mathrm{PCl}_{3}>\mathrm{CO}_{2}$
D. $\mathrm{CO}_{2}>\mathrm{SO}_{2}>\mathrm{SO}_{3}>\mathrm{PCl}_{3}$

Answer: D

30. The van der waal's equation for $\mathrm{n}=1$ mole

$$
\begin{array}{cc}
\text { may } & \text { be } \\
V^{3}-\left(b+\frac{R T}{P}\right) V^{2}+\frac{a V}{P}-\frac{a b}{P}=0
\end{array}
$$

as

Where V is the molar volume of the gas, which of the following is correct?
A. For a temperature less than T_{c}, V has
three real roots
B. For a temperature more than $T_{c}, \mathrm{~V}$ has
one real and two imaginary roots
C. For a temperature equal to T_{c} all three
roots of V are real and identical
D. All of these

Answer: D

D View Text Solution

31. By how many folds the temperaure of a gas
would increase when the root mean square
velocity of the gas molecules in a container of
fixed volume is increased from $5 \times 10^{4} \mathrm{~cm} / \mathrm{s}$
to $10 \times 10^{4} \mathrm{~cm} / \mathrm{s}$?
A. Two
B. three
C. Six
D. four

Answer: D

D View Text Solution

32. The density of neon will be highest at

A. S.T.P.
B. $0^{\circ} C, 2 \mathrm{~atm}$
C. $273{ }^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
D. $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$

Answer: B
33. Above Boyle point, real gases show
(X)___from ideality and Z values are
(Y)___ tha one
A. $X=$ negative deviation, $Y=$ Less
B. $X=$ Negative deviation, $Y=$ greater
C. $X=$ Positive deviation, $Y=$ Less
D. $X=$ Positive deviation, $Y=$ greater

Answer: D

D View Text Solution
34. Induced dipole moment depend upon the
I. dipole moment present in the permanent dipole
II. Polarisability of the electrically neutral molecules.

Identify the correct option.
A. I is correct but II is wrong
B. I is wrong and II is correct
C. Both I and II are wrong
D. Both I and II are correct

Answer: D

D View Text Solution

35. Following table represents critical temperature of some gases. Arrange these gases in their increasing order of liquification.
A. $\mathrm{He}<\mathrm{N}_{2}<\mathrm{H}_{2}<\mathrm{O}_{2}$
B. $\mathrm{H}_{2}<\mathrm{He}<\mathrm{N}_{2}<\mathrm{O}_{2}$
C. $\mathrm{He}<\mathrm{H}_{2}<\mathrm{N}_{2}<\mathrm{O}_{2}$

D. $\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{H}_{2}<\mathrm{He}$

Answer: C

D View Text Solution

36. Which of the following liquid will exhibit highest vapour pressure?
A. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}(l)$
B. $\mathrm{NH}_{3}(l)$
C. $H F(l)$

D. $\mathrm{H}_{2} \mathrm{O}(l)$

Answer: B

D View Text Solution

37. Generally, liquid drops assume spherical shape because
A. a sphere has maximum surface area
B. a sphere has miimum surface area
C. sphere is symmetrical in shape

D. none of these

Answer: B

D View Text Solution

38. Internal energy and pressure of a gas per unit volume are related as

$$
\begin{aligned}
& \text { A. } P=\frac{2}{3} E \\
& \text { В. } P=\frac{3}{2} E \\
& \text { С. } P=\frac{1}{2} E
\end{aligned}
$$

D. $P=2 E$

Answer: A

D View Text Solution

39. Two vessels containing gases A and B are interconnected as shown in the figure. The stopper is opened, the gases are allowed to mix homogeneously. The partial pressures of A and B in the mixture will be, respectively.
A. 8 and 5 atom
B. 9.6 and 4 atm
C. 4.8 and 2 atm
D. 4 and 4 atm

Answer: C

D View Text Solution

40. Match the following graphs of ideal gas

(column-I) with their co-ordinates (column-II)
A. A-III,B-I,C-II
B. A-III:B-II,C-I
C. A-II,B-III,C-I
D. A-I,B-III,C-II

Answer: C
41. Which of the following statement(s) is/are true for London force
(i) These forcea are always attractive
(ii) these forces are important for long distance too.
(iii) the ir magnitude depends on the polarisability of the particle.
A. (i) and (ii)
B. (i) only
C. (iii) only
D. (i) and (iii)

Answer: D

D View Text Solution

42. Kinetic theory of gases presuems that the collisions between the molecules to the perfectly elastic because
A. the gas molecules are tiny particles and ot rigid in nature
B. the temperature remains constant irrespective of collision
C. collision will not split the molecules
D. the molecules are larger particle and
rigid in nature

Answer: A

43. Which of the following statement is correct?
(i) Real gases show deviations from ideal gas law because molecules interact with each other.
(ii) Due to interaction of molecules the pressure exerted by the gas is given as:
$p_{\text {real }}=p_{\text {ideal }}+\frac{a n^{2}}{V^{2}}$
(iii) Value of 'a' is measure of magnitude of intermolecular attractive forces within the gas and depends on temperature and pressure of gas.
(iv) At high pressure volume occupied instead of moving in volume V , these are not restricted to volume (V-nb)
A. (i) and (iv)
B. (i), (ii) and (iii)
C. (i), (iii) and (iv)
D. (i) and (iii)

Answer: A

D View Text Solution
44. The units of constant in van der waals' equation is
A. $d m^{6}$ atm mol^{-2}
B. $d m^{3}$ atm mol^{-1}
C. dm atm mol $^{-1}$
D. atm mol^{-1}

Answer: A

D View Text Solution

