# © 'doubtnut 

## CHEMISTRY

# BOOKS - DISHA CHEMISTRY (HINGLISH) 

## THERMODYNAMICS

## Chemistry

1. In a closed container a liquid is stirred with a paddle to increase the temperature. Which of the following is true?
A. $\Delta E=W \neq 0$
B. $\Delta E=W, q=0$
C. $\Delta E=0, W=q \neq 0$
D. $\Delta E=W, q=0$

## - View Text Solution

2. One mole of a non-ideal gas undergoes a change of state (2.0 atm, 3.01, $95 \mathrm{~K}) \rightarrow(4.0 \mathrm{~atm}, 5.01,245 \mathrm{~K})$ with a change in internal energy, $\Delta U=30.0 \mathrm{~L}$ atm. The change in enthalpy $\Delta H$ of the process in L atm is.
A. 40
B. 42.3
C. 44
D. Not defined because pressure is not constant

## Answer: C

## - Watch Video Solution

3. Assuming that water vapour is an ideal gas, the internal energy change
( $\Delta U$ ) when 1 mol of water is vapourised at vapourisation of water at 1 bar and $373 \mathrm{~K}=41 \mathrm{kJmol}^{-1}$ and $\mathrm{R}=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ will be
A. $41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $4.100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $3.7904 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $37.904 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Answer: D

## - Watch Video Solution

4. A piston filled with 0.04 mole of an ideal gas expands reversible from 50.0 mL to 375 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs 208 J of heat. The values of q and w for the process will be: ( $\mathrm{R}=3.14 \mathrm{~J} / \mathrm{molK}$ ) (in $7.5=2.01$ )
A. $q=+208 \mathrm{~J}, \mathrm{w}=-208 \mathrm{~J}$
B. $q=-208 J, w=-208 J$
C. $q=-208 \mathrm{~J}, \mathrm{w}=++209 \mathrm{~J}$
D. $q=+208 J, w=+208 J$

## D Watch Video Solution

5. A mong the following the intensive property is (properties are)
A. molar conductivity
B. electromotive force
C. resistance
D. heat capacity

## Answer: B

## - View Text Solution

6. The variation of heat of reaction with temperature is given
A. Van't Hoff equation
B. Clausius-Clapeyron equation
C. Nernst equation
D. Kirchoff's equation

## Answer: D

## - View Text Solution

7. The difference between heats of reaction at constant pressure and constant volume for reaction:
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ in kJ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43
8. The enthalpy of vapourisation of water from the following two equations is:
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-286 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta H=-245 k J$
A. 6.02 kJ
B. 40.5 kJ
C. 62.3 kJ
D. 1.25 kJ

## Answer: B

## - View Text Solution

9. For complete combustion of ethaol,

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~L})
$$

the amount of heat produced as measured in bomb calorimeter, is $1364.47 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. Assuming ideality the enthalpy of combustion, $\Delta_{c} H$, for the reaction will be $\left(R=8.314 \mathrm{kJmol}^{-1}\right)$
A. $-1366.95 \mathrm{~kJ}_{\mathrm{mol}}{ }^{-1}$
B. $-1361.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-1460.95 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-1350.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Answer: A

## - Watch Video Solution

10. The direction conversion of $A$ to $B$ is difficult, hence it is carried out by the following shown path:

Given
$\Delta S_{(A \rightarrow C)}=50 c . u ., \Delta S_{(C \rightarrow D)}=30 e . u ., \Delta S_{(B \rightarrow D)}=20 c . u$,
where c.u. is the entropy unit then $\Delta S_{(A \rightarrow B)}$ is
A. $+60 e . u$
B. $+100 e . u$
C. $-60 e . u$
D. $-100 e . u$

## Answer: A

## - View Text Solution

11. The heat of combustion of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{C}$ (graphite), $\mathrm{H}_{2}(\mathrm{~g})$ are 20kcal, -40 kcal-10 kcal respectively. The heat of formation of methane is
A. -40 kcal
B. +40 kcal
C. -80.0 kcal
D. +80 kcal
12. From the following bond energies:

H-H bond enerwgy: $431.37 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}=\mathrm{C}$ bond energy: $606.10 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C-C bond energy: $336.49 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C-H bond energy: $410.50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy for the reaction,

A. $-243.6 \mathrm{~kJ}_{\mathrm{mol}}{ }^{-1}$
B. $-120.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $553.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $5123.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B
13. The favourable conditions for a spontaneous are
A. $T \Delta S>\Delta H, \Delta H=+v e, \Delta S=+v e$
B. $T \Delta S>\Delta H, \Delta H=+v e, \Delta S=-v e$
C. $T \Delta S=\Delta H, \Delta H=-v e, \Delta S=-v e$
D. $\Delta S=\Delta H, \Delta H=+v e, \Delta S=+v e$

## Answer: A

## - View Text Solution

14. For which change $\Delta H \neq \Delta E$ :
A. $H_{2}(g)+I_{2}(g) \rightarrow 2 H(g)$
B. $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}$
C. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
D. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$

## Answer: D

## D View Text Solution

15. The species which by definition has ZERO standard molar enthalpy of formation at 298 K is
A. $B r_{2}$
B. $C l_{2}(g)$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{CH}_{4}(\mathrm{~g})$

## Answer: B

## - View Text Solution

16. For which of the following process, $\Delta S$ is negative?
A. $H_{2}(g) \rightarrow 2 H(g)$
B. $N_{2}(g)(1 a t m) \rightarrow N_{2}(g)(8 a t m)$
C. $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
D. $C_{\text {(diamond) }} \rightarrow C_{\text {(graphite) }}$

## Answer: B

## - View Text Solution

17. Given the following entropy vlaues (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ) at 298 K ad 1 atm:
$H_{2}(g): 130.6, \mathrm{HCl}(\mathrm{g}): 186.7, \mathrm{Cl}_{2}(\mathrm{~g}): 223.0$
, $\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$ is
A. +540.3
B. 727.0
C. -166.9
D. 19.8

## Answer: D

## - View Text Solution

18. In conversion of lime-atone to lime,
$\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ the value of $\Delta H^{\circ}$ and $\Delta S^{\circ}$ are $+179.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $160.2 \mathrm{~J} / \mathrm{K}$ respectively at 298 K and 1 bar . Assuming that $\Delta H^{\circ}$ and $\Delta S^{\circ}$ do not change with temperature, temperature above which conversion of lime-stone to lime will be spontaneous is
A. 1118 K
B. 1008 K
C. 1200 K
D. 845 K

## Answer: A

19. $(\Delta H-\Delta U)$ for the formation of carbon monoxide (CO) from its elements at 298 K is $\left(R=8.314 \mathrm{~kJ}^{-1} \mathrm{~mol}^{-1}\right)$
A. $-2477.57 \mathrm{~J} \mathrm{~mol}^{-1}$
B. $2477.57 \mathrm{~J} \mathrm{~mol}^{-1}$
C. $1-1238.78 \mathrm{~J} \mathrm{~mol}^{-1}$
D. $1238.78 \mathrm{~J} \mathrm{~mol}^{-1}$

## Answer: D

## - Watch Video Solution

20. The incorrect expresion among the following is:
A. $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
B. In isothermal process, $w_{\text {reversible }}=-n R T \ln \frac{V_{f}}{V_{i}}$
C. $\ln K=\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}$
D. $K=e^{-\Delta G^{\circ} / R T}$

## D View Text Solution

21. The following two reactions are known:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g), \Delta H=-26.8 k J$
$F e O(s)+C O(g) \rightarrow F e(s)+\mathrm{CO}_{2}(g), \Delta H=-16.5 k J$
The value of $\Delta H$ for the following reaction

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO}(g) \rightarrow 2 \mathrm{FeO}(s)+\mathrm{CO}_{2}(g) \text { is }
$$

A. $+6.2 k J$
B. $+10.3 k J$
C. $-43.3 k J$
D. $-10.3 k J$

## Answer: A

22. For a particular reversible reaction at temperature T. $\Delta H$ and $\Delta S$ were found to be both +ve. If $T_{e}$ is the temperature at equilibrium, the reaction would be spontaneous when
A. $T_{e}>T$
B. $T>T_{e}$
C. $T_{e}$ is 5 times T
D. $T=T_{e}$

## Answer: B

## - View Text Solution

23. The standard enthalpy of formation of $\mathrm{NH}_{3}$ is $-46.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of $N_{2}$ is $-712 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the average bond enthalpy of $\mathrm{N}-\mathrm{H}$ bond in $\mathrm{NH}_{3}$ is
A. $-964 \mathrm{~kJ}_{\mathrm{Jol}}{ }^{-1}$
B. $+352 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+1056 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-1102 \mathrm{~kJ}_{\mathrm{mol}}{ }^{-1}$

## Answer: B

## - View Text Solution

24. Standard entropy of $X_{2}, Y_{2}$ and $X_{3}, Y_{3}$ are 60,40 and 50 $J K^{-1} \mathrm{~mol}^{-1}$, respectively for the reaction.
$\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 k J$, to be at equilibrium, the temperature will be
A. 1250 K
B. 500 K
C. 750 K
D. 1000 K

## Answer: C

25. A heat engine absorbs heat $Q_{1}$ at temperature $T_{1}$ and heat $Q_{2}$ at temperature $T_{2}$, work done by the engine is J $\left(Q_{1}+Q_{2}\right)$ this data
A. violatews 1st law of thermodynamics
B. violates 1st law of thermodynamics if $Q_{1}$ is -ve
C. violates 1st law of thermodynamics of $Q_{2}$ is -ve
D. doesnot violate 1st law of thermodynamics

## Answer: A

## - View Text Solution

26. The standard enthalpies of formation of $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and glucose(s) at $25^{\circ} C$ are $-400 \mathrm{~kJ} / \mathrm{mol}$. $-300 \mathrm{~kJ} / \mathrm{mol}$ and $-1300 \mathrm{~kJ} / \mathrm{mol}$, respectively. The standard enthalpy of cumbusion per gram of glucose at $25^{\circ} \mathrm{C}$ is
A. $+2900 k J$
B. $-2900 k J$
C. $-16.11 k J$
D. +16.11 kJ

## Answer: C

## - View Text Solution

27. Using the data provided, calculate the mutliple bond energy (kJ mol ${ }^{-1}$ ) of a $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. That energy is (take the bond energy of a C-H bond as $350 \mathrm{~kJ} \mathrm{~mol}^{-1}$ )
$2 C(s)+H_{2}(g) \rightarrow H C \equiv C H(g), \Delta H=225 \mathrm{kJmol}^{-1}$
$2 C(s) \rightarrow 2 C(g), \Delta=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 H(\mathrm{~g}), \Delta H=330 \mathrm{~kJ} \quad \mathrm{~mol}^{-1}$
A. 1165
B. 837
C. 865
D. 815

## Answer: D

## - View Text Solution

28. The enthalpy of neutralisation of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$ is -10.5 kcal $\mathrm{mol}^{-1}$ and enthalpy of neutralisation of $\mathrm{CH}_{3} \mathrm{COOH}$ with strong base is $-12.5 \mathrm{kcal} \mathrm{mol}^{-1}$. Enthalpy of ionistion of $\mathrm{NH}_{4} \mathrm{OH}$ will
A. $3.2 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
B. $2.0 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
C. $3.0 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
D. $4.0 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$

## Answer: B

29. The enthalpy change of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ is $-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy of combustion of one mole of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is -1360 . the enthalpy change for the formation of one mole of ethanol form its constituent elements is
A. -681 kJ
B. $-284 k J$
C. $+965 k J$
D. 1360 kJ

## Answer: B

## - View Text Solution

30. The lattice energy of solid NaCl is $180 \mathrm{kcal} \mathrm{mol}^{-1}$ and enthaly of solution is $1 \mathrm{kcal} \mathrm{mol}^{-1}$. If the hydration energies of $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$ions are in the ratio $3: 2$, what is the enthalpy of hydration of sodium ion?
A. -107.4 kcal $\mathrm{mol}^{-1}$
B. $107.4 \mathrm{kcal} \mathrm{mol}^{-1}$
C. 71.6 kcal $\mathrm{mol}^{-1}$
D. $-71.6 \mathrm{kcal} \mathrm{mol}^{-1}$

## Answer: A

## - View Text Solution

31. A certain reaction is non spontaneous at 298 K . The entropy change during the reaction is $121 \mathrm{~J} K^{-1}$. If the reaction is endothermic or exothermic, the minimum value of $\Delta H$ for the reaction is
A. endothermic, $\Delta H=36.06 \mathrm{~kJ}$
B. exothermic, $\Delta H=-36.06 \mathrm{~kJ}$
C. endothermic, $\Delta H=60.12 k J$
D. exothermic, $\Delta H=-60.12 \mathrm{~kJ}$

## Answer: A

## D View Text Solution

32. Which of the following statement is incorrect?
A. The standard enthalpy of reaction is the enthalpy change for a reaction when all the participating substnaces are in their standard states
B. The standard state of a substance at a specified temperatuer is its pure form at 1 bar.
C. The standard state of solid iron at 298 K is pure iron at 1 bar
D. standard conditions are denoted by adding the superscipt $\Theta$ to the
symbol $\Delta H e$. G., $-\Delta H^{\ominus}$

## Answer: C

33. The $\Delta H$ at 358 K for the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(l)$
Given that $\Delta H_{298}=-33.29 \mathrm{kJmol}^{-1}$ and $C_{p} \quad$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}), \mathrm{Fe}(\mathrm{s}), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{H}_{2}$ and 103.8, 25.1, 75.3 and $28.8 \mathrm{~kJ} / \mathrm{K}$ mol
A. $-28.136 \mathrm{kJmol}^{-1}$
B. $-38.3 \mathrm{kJmol}^{-1}$
C. $42.5 \mathrm{kJmol}^{-1}$
D. $56.2 \mathrm{kJmol}^{-1}$

## Answer: A

## - View Text Solution

34. The enthalpy of a neutralisation of a weak acid in 1 M solution with a strong base is $-56.1 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ if the enthalpy of ionisation of acid is 1.5
kcal $\mathrm{mol}^{-1}$. If the enthalpy of ionisation of acid is $1.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and enthalpy of neutralisation of the strong acid with a strong base is -57.3 kJ $e q^{-1}$. what is the \% ionistion of the weak acid in molar solution (assume the aciid is monobasic)
A. 25
B. 20
C. 15
D. 10

## Answer: B

## - View Text Solution

35. $\Delta H_{f}^{\circ}$ of $N F_{3}$ is $-113 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and N-F bond energy is $273.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If $N \equiv N$ and F-F bond energies are in the rates $6: 1$, their magnetudes will be
A. $780.0 \mathrm{~kJ} \mathrm{~mol}^{-1}, 130 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $840 \mathrm{~kJ} \mathrm{~mol}^{-1}, 140 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $950.0 \mathrm{~kJ} \mathrm{~mol}^{-1}, 158.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $941.3 \mathrm{~kJ} \mathrm{~mol}^{-1}, 156 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Answer: D

## - View Text Solution

36. Consider the following process?
$\Delta H(k J / m o l)$
$1 / 2 A \rightarrow \quad+150$
$3 B \rightarrow 2 C+D \quad-125$
$E+A \rightarrow 2 D \quad+350$
For $\mathrm{B}+\mathrm{D} \rightarrow \mathrm{E}+2 \mathrm{C}, \Delta E$ will be
A. $525 \mathrm{~kJ} / \mathrm{mol}$
B. $-175 \mathrm{~kJ} / \mathrm{mol}$
C. $-325 \mathrm{~kJ} / \mathrm{mol}$
D. $325 \mathrm{~kJ} / \mathrm{mol}$

## Answer: B

## - View Text Solution

37. For an isothermal reversible expansion process, the value of $q$ can be calculated by the expression
A. $q=2.303 n R T \log \frac{V_{2}}{V_{1}}$
B. $q=-2.303 n R T \log \frac{V_{2}}{V_{1}}$
C. $q=-P_{\exp } n R T \log \frac{V_{1}}{V_{2}}$
D. none of these

## Answer: A

## - View Text Solution

38. From the following data $\Delta H$ of the following reactions
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H=-110 k J$ and $C(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}($
Calculate the mole composition of the mixture of steam and oxygen on being passes over coke at 1273 K , keeping temperature constant.
A. $1: 0.6$
B. 0.6:1
C. 2:3
D. 3: 2

## Answer: A

## - View Text Solution

39. 

The
heats
of
neutralisation
of
$\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCOOH}, \mathrm{HCN}$ and $\mathrm{H}_{2} \mathrm{~S}$ are -13.2,-13.4-2.9 and -3.8 kcal per equivalent respectively. Arrange the acids in increasing order of strength
A. $\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{HCN}$
B. $\mathrm{CH}_{-}(3) \mathrm{COOH}$ gt HCOOH gt $\mathrm{H}_{-}\left(20 \mathrm{Sgt} \mathrm{HCN}^{`}\right.$
C. $\mathrm{H}_{2 \mathrm{SOS}}>\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCN}$
D. $\mathrm{HCOOH}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCN}$

## Answer: A

## - View Text Solution

40. Which of the following salts should cause maximum cooling when 1 mole of it is dissolved in the same volume of water?
A. $\mathrm{NaCl}, e<a H^{\circ}=5.35 \mathrm{kmol}^{-1}$
B. $K N O_{30,} \Delta H^{\circ}=53.5 \mathrm{kJmol}^{-1}$
C. $K O H, \Delta H^{\circ}=-56.0 \mathrm{kJmol}^{-1}$
D. $H B r, \Delta H^{\circ}=-83.3 \mathrm{kJmol}^{-1}$
41. Read the following statements carefully and choose the correct option
(i) Internal energy U of the system is a state function.
(i) Internal energy U of the system is a state fuction.
(ii) -w shows, that work is done on the system.
(iii) $+w$ shows,that work is done by the system
A. (i) and (ii) are correct
B. (ii) and (iii) are correct
C. (i) and (iii) are correct
D. only (i) is correct

## Answer: D

42. Consider the following reaction occurring in an automobile $2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Itbr. The sign of $\Delta H, \Delta S$ and $\Delta G$ would be
A.,,+-+
B.,,-+-
C.,,-++
D.,,++-

## Answer: B

## - View Text Solution

43. Choose the eraction with negative $\Delta S$ value.
A. $2 \mathrm{NaHCO}_{3(s)} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3(s)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$
B. $C l_{2(g)} \rightarrow 2 C l_{(g)}$
C. $2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{SO}_{3(g)}$
D. $2 \mathrm{KClO}_{3(s)} \rightarrow 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2(g)}$

## Answer: C

View Text Solution

