©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

ALTERNATING CURRENT

Physics

1. in a LCR circuit capacitance is chagned from C to

2C. For the resomat frequency to remain unchaged,
the inductance should be chagned from L to
A. L/2
B. 2 L
C. 4 L
D. L/4

Answer:

- Watch Video Solution

2. The power factor of LCR circuit at resonance is-
A. 0.707
B. 1
C. Zero
D. 0.5

Answer:

- Watch Video Solution

3. An alternating current source of frequency

100 Hz is joined to a combination of a resistance, a
capacitance and a coil in series. The potential
difference across the coil, the resistance and the capacitor is 46,8 and 40 volt respectively. The
electromotive force of alternating current source in volt is
A. 94
B. 14
C. 10
D. 76

Answer:

4. A 10 ohm resistance, $5 m H$ coil and $10 \mu F$ capacitor are joined in series. When a suitable frequency alternating current source is joined to this combination, the circuit resonates. If the resistance is halved, the resonance frequency
A. is halved
B. is doubled
C. remain unchanged
D. os quadrupled

Answer:

- Watch Video Solution

5. The phase difference between the current and voltage of $L C R$ circuit in series combination at resonance is
A. 0^{0}
B. $\pi / 2$
C. π
D. $-\pi$

Answer:

6. The coefficient of induction of a choke coil is $0.1 H$ and resistance is 12Ω. If it is connected to an alternating current source of frequency 60 Hz , then power factor will be
A. 0.4
B. 0.3
C. 0.2
D. 0.1

Answer:

7. The resonant frequency of a circuit is f. If the capacitance is made 4 times the initial values, then the resonant frequecy will become
A. $\mathrm{f} / 2$
B. 2 f
C. f
D. $\mathrm{f} / 4$

Answer:

8. In the non-resonant circuit, what will be the nature of the circuit for frequencies heigher than the resonant frequency?
A. Resistive
B. Capacitive
C. Inductive
D. None of the above

Answer:

9. In a series $L C R$ circuit, resistance $R=10 \Omega$ and
the impedence $Z=20 \Omega$ the phase difference between the current and the voltage is
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

- Watch Video Solution

10. An alternating EMF of frequency $\frac{1}{2 \pi \sqrt{L C}}$ is applied to a series LCR circuit. For this frequency of the applied EMF,
A. The circuit is at resonance and its impedance is made up only of a reactive part
B. The current in the circuit is not in phase with the applied e.m.f. and the voltage across R equals this applied emf
C. The sum of the p.d.'s across the inductance and capacitance equals the applied e.m.f.
which is 180° ahead of phase of the current in the circui
D. The quality factor of the circuit is
$\omega L / R \quad$ or $\quad 1 / \omega C R$ and this is a measure of
the voltage magnification (produced by the
circuit at resonance) as well as the sharpness
of resonance of the circuit

Answer:

- Watch Video Solution

11. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f.

The current lead the voltages by 45°. The value of C is :
A. ${ }^{`}(1) /(2 p i f(2 p i f L+R))$
B. ${ }^{`}(1) /(2 p i f(2 p i f L+R))$
C. $\frac{1}{2 \pi f(2 \pi f L-R)}$
D. $\frac{1}{2 \pi f(2 \pi f L-R)}$

Answer:

12. For the series $L C R$ circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency

A. $2500 \mathrm{rads}^{-1}$ and $\quad 5 \sqrt{2} A$
B. $2500 \mathrm{rads}^{-1}$ and $5 A$
C. $2500 \mathrm{rads}^{-1}$ and $\quad \frac{5}{\sqrt{2}} A$
D. $25 r a d s^{-1} \quad$ and $\quad(5) / \sqrt{2}(A)$

Answer:

13. In an $A C$ circuit, V and I are given by

$$
V=100 \sin (100 t) v o<s, I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A
$$

. The power dissipated in circuit is
A. 10^{4}
B. 10 watt
C. 0.025
D. 2.5 watt

Answer:
14. For a series $R L C$ circuit $R=X_{L}=2 X_{C}$. The impedence of the current and phase different (between) V and i will be

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{5 R}{2}}, \tan ^{-1}(2) \\
& \text { B. } \sqrt{\frac{5 R}{2}}, \tan ^{-1}(1 / 2) \\
& \text { C. } \sqrt{5} X_{C}, \tan ^{-1}(2) \\
& \text { D. } \sqrt{5} X_{C}, \tan ^{-1}(1 / 2)
\end{aligned}
$$

Answer:

15. In an $A C$ circuit the voltage applied is $E=E_{0} \sin \omega t$. The resulting current in the circuit is $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$. The power consumption in the circuit is given by

$$
\begin{aligned}
& \text { A. } p=\frac{E_{0} I_{0}}{\sqrt{2}} \\
& \text { B. } P=\sqrt{2} E_{0} l_{0} \\
& \text { C. } P=\frac{E_{0} I_{0}}{2} \\
& \text { D. } p=0
\end{aligned}
$$

Answer:

16. An $A C$ supply gives $30 V_{r m s}$ which passes through a 10Ω resistance. The power dissipated in it is
A. $90 \sqrt{2} W$
B. 90 W
C. $45 \sqrt{2} W$
D. 45 W

Answer:

17. The figure shows variation of R, X_{L} and X_{C} with frequency f in a series L, C, R circuit. Then for what frequency point, the circuit is inductive?

A. A
B. B
C. B
D. All point

Answer:

- Watch Video Solution

18. An alternating e.m.f. of angular frequency ω is
applied across an inductance. The instantaneous
power developed in the circuit has an angular
frequency
A. $\frac{\omega}{4}$
B. $\frac{\omega}{2}$
C. ω
D. 2ω

Answer:

- Watch Video Solution

19. In the circuit shown in figure neglecting source resistance the voltmeter and ammeter reading will respectively, will be

A. $0 \mathrm{~V}, 3 \mathrm{~A}$
B. $150 \mathrm{~V}, 3 \mathrm{~A}$
C. 150V, 6A
D. OV, 8 A

Answer:

- Watch Video Solution

20. In an LCR circuit, the sharpness of resonance depends on
A. Inductance (L)
B. Capacitance (C)
C. Resistance (R)

D. All of these

Answer:

- Watch Video Solution

21. For series LCR circuit, correct statements are
A. Applied e.m.f. and potential difference across
resistance may be in phase
B. Applied e.m.f. and potential difference at
inductor coil have phase difference of $\pi / 2$
C. Potential difference across resitance and capacitor have phase difference of $\pi / 2$
D. Potential difference at capacitor and inductor have phase difference of $\pi / 2$

Answer:

- Watch Video Solution

22. An ac source is connected to a resistive circuits.

Which of the following statements are false ?
A. Current leads the voltage
B. Current lags behind the voltage
C. Any of (1) or (2) may be true depending upon the value of resistance
D. Current and voltage are in same phase

Answer:

- Watch Video Solution

23. A series LCR arrangement with
$X_{L}=80 \Omega, X_{c}=50 \Omega, R=40 \Omega$ is applied across
a.c. source of 200 V. Choose the correct options.
A. Wattless current $=3.2 \mathrm{~A}$
B. Power current =3.2 A
C. Power factor $=0.6$
D. Impedance of circuit $=50 \Omega$

Answer:

- Watch Video Solution

24. In $R L C$ circuit, at a frequency v, the potential difference across each device are
$\left(\Delta V_{R}\right)_{\max }=8.8 V,\left(\Delta V_{L}\right)_{\max }=2.6 \mathrm{~V}$
and
$\left(\Delta V_{C}\right)_{\max }=7.4 V$. The composed potential
difference $\left(\Delta V_{C}+\Delta V_{L}\right)_{\max }$ across inductor and capacitor is
A. 10.0 V
B. 7.8 V
C. 7.4 V
D. 4.8 V

Answer:

25. In $R L C$ circuit, at a frequency v, the potential difference across each device are
$\left(\Delta V_{R}\right)_{\max }=8.8 V,\left(\Delta V_{L}\right)_{\max }=2.6 \mathrm{~V}$ and
$\left(\Delta V_{C}\right)_{\max }=7.4 V$. The composed potential difference $\left(\Delta V_{C}+\Delta V_{L}\right)_{\max }$ across inductor and capacitor is
A. 18.8 V
B. 13.6 V
C. 10.0 V
D. 4.0 V

Answer:

- Watch Video Solution

26. What will happen to the value of $\left(\Delta V_{L}\right)$ if the frequency is adjusted to increase the current the current through the circuit?
A. $\left(\Delta V_{L}\right)$ will increase.
B. $\left(\Delta V_{L}\right)$ will decrease.
C. $\left(\Delta V_{L}\right)$ will remain the same regardless of any
changes to f.
D. There is not enough information to answer the question.

Answer:

- Watch Video Solution

27. Assertion: An electric lamp connected in series with a variable capacitor and $A C$ source, its brightness increases with increases in capacitance.

Reason: Capacitive reactance decrease with increases in capacitance of capacitor.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement -1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement -1 is False, Statement-2 is True.
D. Statement -1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

28. Assertion: When capacitive reactance is smaler
than the inductive reactance is $L C R$ circuit, e.m.f.
leads the current.

Reason : The phase angle is the angle between the alternating e.m.f. and alternating current of the circuit.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement -1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for

Statement-1.
C. Statement -1 is False, Statement-2 is True.
D. Statement -1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

29. Assertion: Chock coil is the prefered over a resistor to adjust current in an $A C$ circuit.

Reason: Power factor for inductance is zero.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement -1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for

Statement-1.
C. Statement -1 is False, Statement-2 is True.
D. Statement -1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

30. The resistance of a coil for DC is in ohms. In AC, the resistance
A. remain same
B. increase

C. decrease

D. be zero

Answer:

- Watch Video Solution

31. If instantaneous current is given by $i=4 \cos (\omega t+\varphi)$ amperes, then the $r . m . s$. value of current is
A. 4 ampere
B. $2 \sqrt{2}$ ampere
C. $4 \sqrt{2}$ ampere
D. zero ampere

Answer:

- Watch Video Solution

32. In an AC circuit $I=100 \sin 200 \pi t$. The time required for the current to achieve its peak value of will be
A. $\frac{1}{100} \mathrm{sec}$
B. $\frac{1}{200} \mathrm{sec}$
C. $\frac{1}{300} \mathrm{sec}$
D. $\frac{1}{400} \mathrm{sec}$

Answer:

D Watch Video Solution
33. The frequency of ac mains in India is
A. $30 \frac{c}{s}$ or Hz
B. $50 \frac{c}{s}$ or Hz
C. $60 \frac{c}{s}$ or Hz
D. $120 \frac{c}{s}$ or Hz

Answer:

- Watch Video Solution

34. The peak value of an alternating emf E given by
$E=\left(E_{0}\right) \cos \omega t$
is 10 V and frequency is 50 Hz . At time $t=(1 / 600) s$
the instantaneous value of emf is
A. 10 V
B. $5 \sqrt{3} V$
C. 5 V
D. 1 V

Answer:

- Watch Video Solution

35. An ac is given by equation
$I=\left(I_{1}\right) \cos \omega t+\left(I_{2}\right) \sin \omega t$. The rms value of current is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right) \\
& \text { B. } \frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right)^{2} \\
& \text { C. } \frac{1}{\sqrt{2}}\left(i_{1}^{2}+i_{2}^{2}\right)^{1 / 2} \\
& \text { D. } \frac{1}{2}\left(i_{1}^{2}+i_{2}^{2}\right)^{1 / 2}
\end{aligned}
$$

Answer:

- Watch Video Solution

36. In a circuit, the value of the alternating current is measured by hot wire ammeter as 10 ammeter. Its peak value will be
A. 10 A
B. 20 A
C. 14.14 A
D. 7.07 A

Answer:

- Watch Video Solution

37. The frequency of an alternating voltage is 50 cycles/sec and its amplitude is 120 V . Then the r.m.s
value of voltage is
A. 101.3 V
B. 84.8 V
C. 70.7 V
D. 56.5 V

Answer:

- Watch Video Solution

38. A resistance of 20Ω is connected to a source of
an alternating potential $V=220 \sin (100 \pi t)$. The
time taken by the current to change from the peak
value to rms value is
A. 0.2 sec
B. 0.25 sec
C. $25 \times 10^{-3} \mathrm{sec}$
D. $2.5 \times 10^{-3} \mathrm{sec}$

Answer:

- Watch Video Solution

39. An alternating current of frequency ' f ' is flowing in a circuit containing a resistance R and a choke L in series. The impedence of this circuit is
A. $R+2 \pi f L$
B. $\sqrt{R^{2}+4 \pi^{2} f^{2} L^{2}}$
C. $\sqrt{R^{2}+L^{2}}$
D. $\sqrt{R^{2}+2 \pi f L}$

Answer:

- Watch Video Solution

40. An alternating voltage is connected in series
with a resistance R and inductance L if the
potential drop across the resistance is 200 V and across the inductance is 150 V , then the applied voltage is
A. 350 V
B. 250 V
C. 500 V

Answer:

- Watch Video Solution

41. An inductive circuit a resistance of 10 ohm and an inductance of 2.0 henry. If an AC voltage of 120 volt and frequency of 60 Hz is applied to this circuit, the current in the circuit would be nearly
A. $0.32 A$
B. $0.016 A$
C. $0.48 A$
D. 0.80 A

Answer:

- Watch Video Solution

42. A 20volts $A C$ is applied to a circuit consisting of a resistance and a coil with negligible resistance. If the voltage across the resistance is $12 V$, the voltage across the coil is
A. 16 volt
B. 10 volt
C. 8 volt
D. 6 volt

Answer:

- Watch Video Solution

43. An alternating voltage $E=200 \sqrt{2} \sin (100 t)$ is
connected to a 1 microfarad capacitor through an
$A C$ ammeter. The reading of the ammeter shall be
A. $10 m A$
B. 20 mA
C. 40 mA
D. 80 mA

Answer:

- Watch Video Solution

44. A resistor and a capacitor are connected in series with an a.c. source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V , applied voltage is
A. 13 V
B. 17 V
C. 5 V
D. 12 V

Answer:

- Watch Video Solution

45. A 120 volt $A C$ source is connected across a pure inductor of inductance 0.70 henry. If the frequency
of the source is 60 Hz , the current passing through
the inductor is
A. $4.55 a m p$
B. 0.355 amp
C. $0.455 a m p$
D. $3.55 a m p$

Answer:

- Watch Video Solution

46. The instantaneous value of current in an A.C.
circuit is $I=2 \sin (100 \pi t+\pi / 3) A$. The current will be maximum for the first time at

> A. $t=\frac{1}{100} s$
> B. $t=\frac{1}{200} s$
> C. $t=\frac{1}{400} s$
> D. $t=\frac{1}{600} s$

Answer:

- Watch Video Solution

47. In a $L-R$ circuit, the value of L is $\left(\frac{0.4}{\pi}\right)$ henry and the value of R is 30 ohm. If in the circuit, an alternating e.m.f of 200 vol at 50 cycles per sec is connected, the impendence of the circuit will be
A. $11.4 \Omega, 17.5 A$
B. $30.7 \Omega, 6.5 A$
C. $40.4 \Omega, 5 A$
D. $50 \Omega, 4 A$

Answer:

- Watch Video Solution

48. The figure represents the voltage applied across a pure inductor. The diagram which correctly represents the variation of curent i with time t is
given by

Answer:

D Watch Video Solution

49. One $10 \mathrm{~V}, 60 \mathrm{~W}$ bulb is to be connected to 100 V
line. The required inductance coil has selfinductance of value ($f=50 \mathrm{~Hz}$)
A. $0.052 H$
B. $2.42 H$
C. $16.2 m H$

D. $1.62 m H$

Answer:

- Watch Video Solution

50. A resistance of 300Ω and an inductance of $\frac{1}{\pi}$ henry are connected in series to an $A C$ voltage of 20 volts and 200 Hz frequency. The phase angle between the voltage and current is
A. $\tan ^{-1} \cdot \frac{4}{3}$
B. $\tan ^{-1} \cdot \frac{3}{4}$
C. $\tan ^{-1} \cdot \frac{3}{2}$
D. $\tan ^{-1} \cdot \frac{2}{5}$

Answer:

- Watch Video Solution

51. If an alternating voltage is represented as $E=141 \sin (628 t)$, then
(1) the rms voltage is 141 V
(2) the rms voltage is 100 V
(3) the frequency is 50 Hz
(4) the frequency is 100 Hz
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

- Watch Video Solution

52. The r.m.s. value of an ac of 50 Hz is 10 A . (1) The
time taken by the alternating current in reaching
from zero to maximum value is $5 \times 10^{-3} \mathrm{sec}$ (2)
The time taken by the alternating current in
reaching from zero to maximum value is 2×10^{-3}
sec (3) The peak current is 14.14 A (4) The peak current is 7.07 A
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

53. If the voltage in an ac circuit is reparesented by the equation $V=220 \sqrt{2} \sin (314 t-\phi)$, calculate rms value of the voltage
A. 220 V
B. 314 V
C. $220 \sqrt{2} V$
D. $200 / \sqrt{2} V$

Answer:

54. If the voltage in an ac circuit is reparesented by the equation $V=220 \sqrt{2} \sin (314 t-\phi)$, calculate average voltage
A. 220 V
B. $622 / \pi V$
C. $220 \sqrt{2} V$
D. $200 / \sqrt{2} V$

Answer:

- Watch Video Solution

55. If the voltage in an $a c$ circuit is represented by the equation.
$V=220 \sqrt{2} \sin (314 t-\phi)$ volt calculate (a) peak and rms value of the voltage, (b) average voltage,
(c) frequency of $a c$.
A. 50 Hz
B. $50 \sqrt{2} \mathrm{~Hz}$
C. $50 \sqrt{2} \mathrm{~Hz}$
D. 75 Hz

Answer:

56. Assertion: The alternating current lags behined the e.m.f. by a phase angle of $\pi / 2$, when $A C$ flows through an inductor.

Reason: The inductive reactance increases as the frequency of $A C$ source decreases.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for

Statement-1

C. Statement -1 is False, Statement-2 is True.

D. Statement -1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

57. Statement 1: An alternating current shown magnetic effect.

Statement 2: Alternating current varies with time .
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for

Statement-1
C. Statement -1 is False, Statement-2 is True.
D. Statement -1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

58. Assertion: A capacitor of suitable capacitance
can be used in an $A C$ circuit in place of the choke coil.

Reason: A capacitor blocks $D C$ and allows $A C$
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for

Statement-1
C. Statement -1 is False, Statement-2 is True.
D. Statement -1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

