đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

CURRENT ELECTRICITY

Physics

1. The voltmeter shown in fig, reads 6 V across
the 60Ω resistor. Then the resistance of the
voltmeter is-

A. 0Ω
B. $\infty \Omega$
C. 200Ω

D. 300Ω

Answer:
2. If only one hundredth part of total current
flowing in the circuit is to be passed through a galvanometer of resistance $G \Omega$, Then the value of shunt resistance required will be-
A. $G / 10$
B. $G / 100$
C. $G / 99$
D. $G / 999$

Answer:

D Watch Video Solution

3. The shunt required for 10% of main current
to be sent through the moving coil galvanometer of resistance 99Ω will be-
А. 0.9Ω
B. 11Ω
C. 90Ω
D. 9.9Ω

Answer:

D Watch Video Solution

4. The reading of voltmeter in the following circuit will be-

A. 2 volt
B. 0.80 volt
C. 1.33 volt
D. 1.60 volt

Answer:

- Watch Video Solution

5. The figure below shows current in a part of electric circuit. The current i is

A. 1.7 amp
B. 3.7 amp

C. 1.3 amp

D. 1 amp

Answer:

- Watch Video Solution

6. A voltmeter can measure upto 25 volt and
its resistance is 1000Ω. The resistance
required to add with voltmeter to measure upto 250 volt will be-
A. 9000Ω
B. 1000Ω
C. 2500Ω
D. 900Ω

Answer: A
7. When a Laclanche cell is connected to a 10Ω
resistance then a current of 0.25 ampere flows
in the circuit. If the resistance is reduced to 4Ω
then current becomes 0.5 ampere. The internal resistance of galvanometer will be-
A. 1.5Ω
B. 0.5Ω
C. 1Ω
D. 2Ω

Answer:

- Watch Video Solution

8. Consider the circuit shown in the figure. The current I_{3} is equal to

A. $5 A$
B. $3 A$
C. $-3 A$
D. $-5 / 6 A$

Answer:

- Watch Video Solution

9. If $V_{A B}=4 V$ in the given fig are, then resistance χ will be

A. 5Ω
B. 10Ω
C. 15Ω
D. 20Ω

Answer:

- Watch Video Solution

10. In the given circuit the current I_{1} is

A. $0.4 A$
B. $-0.4 A$
C. $0.8 A$
D. $-0.8 A$

Answer:

- Watch Video Solution

11. To get the maximum current from a parallel combination of n identical cells each of internal resistance r in an external resistance R, when
A. $R \gg r$
B. $R \ll r$
C. $R>r$

$$
\text { D. } R=r
$$

Answer:

D Watch Video Solution

12. In the circuit shown below, if the value of R
is increased then what will be the effect on the reading of ammeter if the internal resistance
of cell is negligible-

A. The reading of ammeter will decrease
B. The reading of ammeter will increase
C. The reading of ammeter will remain
unchanged
D. The reading of ammeter will become
zero.

Answer:

D Watch Video Solution

13. Twelve wire, each having resistance r, are
joined to form a cube as shown in figure.Find
the equivalent resistance between the end of
a face diagonal such as a and c.

A. 2 R
B. 12 R
C. $\frac{5}{6} R$
D. 8 R

Answer:

- Watch Video Solution

14. The arrangement as shown in figure is called as

A. Potential divider

B. Potential adder

C. Potential substracter
D. Potential multiplier

Answer:

D Watch Video Solution

15. 5When a cell of emf E and internal resistance r, is connected to the ends of a resistance R , then current through resistance
is I. If the same cell is connected to the ends of
a resistance $R / 2$ then the current would be-
A. less than I
B. I
C. greater then I but less than 21
D. greater than 21

Answer:

D Watch Video Solution

16. The resistance of an ideal voltmeter is

A. Zero
B. Very low
C. Very large
D. Infinite

Answer:

D Watch Video Solution
17. An ammeter with internal resistance 90Ω reads 1.85 A when connected in a circuit containing a battery and two resistors 700Ω and 410Ω in series. Actual current will be
A. $1.85 A$
B. Greater than 1.85 A
C. Less than 1.85 A
D. None of these

Answer:

18. The figure shows a network of currents. The magnitude of currents is shown here. The current I will be

A. $3 A$
B. $9 A$

C. $13 A$

D. 19 A

Answer:

- Watch Video Solution

19. Kirchoff's laws are based on conservation of
(1) charge
(2) potential
(3) energy
(4) mass
A. 1, 2 and 3 are correct
B. 2 and 2 are correct
C. 3 and 4 are correct
D. 2 and 3 are correct

Answer:

D Watch Video Solution

20. A microammeter has a resistance of 100 W and a full scale range of $50 \mu \mathrm{~A}$. It can be used
as a voltmeter or a higher range ammeter
provided a resistance is added to it. Pick the correct range and resistance combination(s).
(1) 10 V range with 200 kW resistance in series.
(2) 50 V range with 10 kW resistance in series.
(3) 5 mA range with 1 W resistance in parallel.
(4) 10 mA range with 1 kW resistance in parallel.
A. 1, 2 and 3 are correct
B. 3 and 2 are correct
C. 4 and 4 are correct
D. 3 and 3 are correct

Answer:

D Watch Video Solution

21. A 6 V battery of negligible internal resistance is connected across a uniform wire
$A B$ of length 100 cm . The positive terminal of another battery of emf 4 V and internal resistance 1Ω is joined to the point A as shown in figure. Take the potential at B to be zero.

2What are the potentials at points A and C ?
A. $6 \mathrm{~V}, 2 \mathrm{~V}$
B. $8 \mathrm{~V}, 4 \mathrm{~V}$
C. $6 \mathrm{~V}, 4 \mathrm{~V}$
D. $8 \mathrm{~V}, 3 \mathrm{~V}$

Answer:

Watch Video Solution

22. A $6 V$ battery of negligible internasl resistance is connected across a uniform wire
$A B$ of length 10 cm . The positive terminal of another battery of emf $4 V$ and internal resistance 1Ω is joined to the point A as shown in figure. Take the potentail at B to be zero.

a. What are the potential at the ponts A and
C ?
b. At which point D of the wire $A B$, the potential is equal to the potential at C ?
c. If the points C and D are connected by a wiere, what will be the current through it ?
d. If the 4 V battery is replaced by 7.5 V
battery, what would be the answer of parts (a)
and (b)?
A. zero
B. $1 A$
C. $2 A$
D. $3 A$

Answer:

D Watch Video Solution
23. Statement -1 : Voltameter measures current more accurately than ammeter. Statement -2 :

Relative error will be small if measured from
voltameter.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

- Watch Video Solution

24. Statement - 1: A larger dry cell has higher emf. Statement - 2 : The emf of a dry cell is independent of its size.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

25. Statement - 1: In the circuit shown, $V_{a b}$ or
$V_{a}-V_{b}=0$, if

Statement - 2 : Potential difference across the terminals of a non ideal battery is less than its emf when a current flows through it.
$I=2 A$

A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

- Watch Video Solution

26. Potentiometer wire of length $1 m$ is connected in series with 490Ω resistance and $2 V$ battery. If $0.2 m \frac{V}{c} m$ is the potential gradient, then resistance of the potentiameter wire is approximately
A. 4.9Ω
B. 7.9Ω

С. 5.9Ω

D. 6.9Ω

Answer:

D Watch Video Solution

27. Two resistances are connected in two gaps of a meter bridge. The balance point is 20 cm from the zero end. A resistance of 15Ω is connected in series with the smaller of the
two. The null point shifts to 40 cm . The value of the smaller resistance in Ω is
A. 3
B. 6
C. 9
D. 12

Answer:

D Watch Video Solution
28. In a potentiometer experiment the balancing with a cell is at length 240 cm . On shunting the cell with a resistance of 2Ω, the balancing length becomes 120 cm . The internal resistance of the cell is
A. 4Ω
B. 2Ω
C. 1Ω
D. 0.5Ω
29. A potentiometer consists of a wire of length 4 m and resistance 10Ω. If is connected of cell of emf $2 V$. The potential difference per unit length of the wire will be
A. $0.5 \mathrm{~V} / \mathrm{m}$
B. $10 \mathrm{~V} / \mathrm{m}$
C. $2 \mathrm{~V} / \mathrm{m}$
D. $5 \mathrm{~V} / \mathrm{m}$

Answer:

D Watch Video Solution

30. In given figure, the potentiometer wire $A B$ has a resistance of 5Ω and length 10 m . The balancing length AM for the emf of 0.4 V is

A. 0.4 m
B. 4 m
C. 0.8 m
D. 8 m

Answer:

- Watch Video Solution

31. In the circuit shown in the figure, the current flowing in 2Ω resistance

A. $1.4 A$
B. $1.2 A$
C. $0.4 A$
D. 1.0 A

Answer:
32. For the post office arrangement to determine the value of unknown resistance,
the unknown resistance should be connected between.

A. B and C
B. C and D
C. A and D
D. B_{1} and C_{1}

Answer:

- Watch Video Solution

33. The e.m.f. of a standard cell balances across

150 cm length of a wire of potentiometer.

When a resistance of 2Ω is connected as a
shunt with the cell, the balance point is
obtained at 100 cm . The internal resistance of the cell is
А. 0.1Ω
B. 1Ω
C. 2Ω
D. 0.5Ω

Answer:
(Watch Video Solution
34. Five resistor are connected as shown in the diagram. The equivalent resistance between A and B is

A. 6Ω
B. 9Ω
C. 12Ω

D. 15Ω

Answer:

D Watch Video Solution

35. A potentiometer has uniform potential gradient. The specific resistance of the material of the potentiometer wire is 10^{-7} ohm-meter and the current passing through it
is 0.1 ampere, cross-section of the wire is
$10^{-6} m^{2}$. The potential gradient along the potentiometer wire is
A. $10^{-4} V / m$
B. $10^{-6} \mathrm{~V} / \mathrm{m}$
C. $10^{-2} V / m$
D. $10^{-8} \mathrm{~V} / \mathrm{m}$

Answer:

D Watch Video Solution
36. Resistance in the two gaps of a meter bridge are 10 ohm and 30 ohm respectively. If the resistances are interchanged he balance point shifts by
A. 33.3 cm
B. 66.67 cm
C. 25 cm
D. 50 cm

Answer:

37. A potentiometer has uniform potential gradient across it. Two cells connected in series (i) to support each other and (ii) to oppose each other are balanced over 6 m and

2 m respectively on the potentiometer wire.

The e.m.f.'s of the cells are in the ratio of
A. $1: 2$
B. 1:1
C. $3: 1$

D. $2: 1$

Answer:

D Watch Video Solution

38. In a potentiometer experiment two cells of
e.m.f. E and E are used in series and in
conjunction and the balancing length is found
to be 58 cm of the wire. If the olarity of E is
reversed, then the balancing length becomes

29 cm . The ratio $\frac{E_{1}}{E_{2}}$ of the e.m.f. of the two cells is
A. $1: 1$
B. $2: 1$
C. $3: 1$
D. $4: 1$

Answer:
(Watch Video Solution
39. The resistance of 10 metre long potentiometer wire is $1 \mathrm{ohm} /$ meter. A cell of e.m.f. 2.2 volts and a high resistance box are connected in series to this wire. The value of resistance taken from resistance box for getting potential gradient of 2.2 millivolt/metre will be
A. 790Ω
B. 810Ω
C. 990Ω

D. 1000Ω

Answer:

- Watch Video Solution

In the shown arrangement of the experiment of the meter bridge if AC corresponding to
null deflection of galvanometer is x , what would be its value if the radius of the wire $A B$ is doubled?
A. x
B. $x / 4$
C. 4 x
D. $2 x$

Answer:

- Watch Video Solution

41. In meter brigde of Wheatstone bridge for measurment of resistance, the known and the unknown resistance are interchanged. The error so removed is
A. End correction
B. Indec error
C. Due to temperature effect
D. Random error

Answer:

- Watch Video Solution

42. Which of the following statements are correct ?
(1) Voltmeter should have high resistance.
(2) Ammeter should have low resistance.
(3) Voltmeter is placed in parallel across the conductor in a circuit.
(4) Ammeter is placed in parallel across the conductor in a circuit.
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

43. Which are coorect statement ?
(1) The Wheatstone bridge is most sensitive when all the four resistances are of the same order
(2) Kirchhoffs first law (for currents meeting at
a junction in an electric circuit) expresses the conservation of charge.
(3) The rheostat can be used as a potential divider.
(4) In a balanced Wheatstone bridge, interchanging the positions of galvanometer and cell affects the balance of the bridge.
A. 1, 2 and 3 are correct
B. 2 and 2 are correct
C. 3 and 4 are correct
D. 2 and 3 are correct

Answer: A

- Watch Video Solution

44. Figure shows a balanced Wheatstone's bridge

(1) If P is slightly increased, the current in the
galvanometer flow from A to C.
(2) If P is slightly increased, the current in the galvanometer flows C to A .
(3) If Q is slightly increased, the current in the galvanometer flows from C to A .
(4) If Q is slightly increased, the current in the galvanometer flows from A to C .
A. 1, 2 and 3 are correct
B. 3 and 2 are correct
C. 4 and 4 are correct
D. 3 and 3 are correct

Answer:

D Watch Video Solution

45. A battery is connected to a potentiometer and a balance point is obtained at 84 cm along
the wire. When its terminals are connected by
a 5Ω resistor, the balance point changes to

70 cm .

Calculate the internal resistance of the cell.
A. 4Ω
B. 2Ω
C. 5Ω
D. 1Ω

Answer:

D Watch Video Solution

46. A battery is connected to a potentiometer and a balance point is obtained at 84 cm along
the wire. When its terminals are connected by
a 5Ω resistor, the balance point changes to

70 cm .

Find the new position of the balance point when 5Ω resistor is changed by 4Ω resistor.
A. 26.5 cm
B. 52 cm
C. 67.2 cm
D. 83.3 cm

Answer:

D Watch Video Solution
47. A battery is connected to a potentiometer and a balance point is obtained at 84 cm along
the wire. When its terminals are connected by
a 5Ω resistor, the balance point changes to 70 cm .

Find the new position of the balance point when 5Ω resistor is changed by 4Ω resistor.
A. By adding a resistance 9980Ω in parallel
with the galvanometer
B. By adding a resistance 9980Ω in series
with the galvanometer
C. By adding a resistance 8890Ω in parallel
with the galvanometer
D. By adding a resistance 9980Ω in series
with the galvanometer

Answer:

D Watch Video Solution

48. Assertion : In metre bridge experiment, a high resistance is always connected in series with a galvanometer.

Reason : As resistance increases, current through the circuit increases,

A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for Statement-1.
C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

 False.
Answer:

- Watch Video Solution

49. Statement -1 : A potentiometer of longer
length is used for accurate measurement

Statement -2 : The potential gradient for a potentiometer of longer length with a given source of e.m.f becomes small
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

50. Assertion : The e.m.f. of the drivercell in the potentiometer experiment should be greater than the e.m.f. of the cell to determined.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

Others

1. In the following fig. the ratio of current in 3Ω
and 1Ω resistances is-

A. 43468
B. 43499
C. 1
D. 2

Answer:

D Watch Video Solution

2. The resultant resistance between the points
A and B in the following fig. will be

A. 4Ω
B. 8Ω
C. 6Ω
D. 2Ω

Answer:

D Watch Video Solution

3. How will the reading in the ammeter A of

Fig. 6.39 be affected if another identical bulb
Q is connected in parallel to P as shows. The
voltage in the mains is maintained at a

constant value.

A. the reading will be reduced to one half
B. the reading will be duuble to one pervious one
C. the reading will not be affceted
D. the reading will increase four fold
4. In the circuit, the galvanometer G shows zero deflection. If the batteries A and b have negligible internal resistance, the value of the resistor R will be -

B. 100Ω

C. 200Ω
D. 500Ω

Answer:

D Watch Video Solution

5. A cylindrical wire is stretched to increase its
length by 10%. The percentage increase in the resistance of the wire will be-
A. 0.22
B. 0.21
C. 0.22
D. 0.24

Answer:

D Watch Video Solution

6. In the figure, the equivalent resistance between A and B is-

A. $2 R / 3$
B. $R / 3$
C. R
D. 3 R

Answer:

D Watch Video Solution
7. In the adjoining network of resistors, each is of resistance r ohm, the equivalent resistance between points A and B is-

A. $5 r$
B. $2 r / 3$
C. r
D. $r / 2$

Answer:

- Watch Video Solution

8. In the figure a carbon resistor has bands of different colours on its body as mentioned in
the figure. The value of the resistance is

A. $2.2 k \Omega$
B. $3.3 k \Omega$
C. $5.6 k \Omega$
D. $9.1 k \Omega$

Answer:
9. Two wires of same material have length L and 2 L and cross- sectional areas 4 A and A respectively. The ratio of their specific resistance would be
A. 0.043055555555556
B. 0.33402777777778
C. 1: 8
D. $1: 1$

Answer:

- Watch Video Solution

10. In the fig. shown, Calculate the current
through 3 ohm resistor. The emf of battery is 2
volt and its internal resistance is $2 / 3$ ohm.

A. 0.33 amp
B. 0.44
C. 1.22 apm
D. 0.88 apm

Answer:

- Watch Video Solution

11. The current in the adjoining circuit will be

A. $\frac{1}{45} A$
B. $\frac{1}{15} A$
C. $\frac{1}{10} A$
D. $\frac{1}{5} A$

Answer:

D Watch Video Solution

12. The equivalent resistance of the following
infinite network of resistance is

A. less then 4Ω
B. 4Ω

C. More then 4Ω but less then 12Ω

D. 12Ω

Answer:

D Watch Video Solution

13. A heater coil connected to a supply of a 220

V is dissipating some power. P_{1} The coil is cut into half and the two halves are connected in parallel. The heater now dissipates a power . P_{2} Theratio of power $P_{1}: P_{2}$ is
A. $2: 1$
B. 1:2
C. 1: 4
D. $4: 1$

Answer:

D Watch Video Solution

14. An electric lamp is marked $60 \mathrm{~W}, 230 \mathrm{~V}$.

The cost of a 1 kWh of energy is Rs. 1.25 . The
cost of using this lamp 8 hrs a day for 30 day is
A. Rs 10
B. Rs 16
C. Rs18
D. Rs20

Answer:
(Watch Video Solution
15. In the fig below the bulbs are identical, The bulbs, light most brightly are

A. A
B. B
C. F
D. D

Answer:

- Watch Video Solution

16. An electric tea kettle has two heating coils.

When one of the coils is switched on , boiling
begins in 6 min . When the other coil is
switched on, boiling begins in 8 min . In what
time will the boiling begin if both coils are
switched on simultaneously (i) in series and (ii)
in parallel.
A. 14 min in series
B. 3.43 mi 9 n in parallel
C. 3.43 min in series
D. 14 min in parallel

Answer:

- Watch Video Solution

17. For the circuit shown in the figure

A. the potential different across R_{L} is 18 V
B. The current I through the battery is 7.5
mA
C. Ratio of power dissipated in R_{1} and r_{2} is
D. If $\quad R_{1} \quad$ and $\quad R_{2}$ are interchanged maguitude of power dissipated in r_{L} will decrease by a factor of 9

Answer:

- Watch Video Solution

18. In the circuit shown in figure find

a) the rate of conversion of internal (chemical) energy to electrical energy within the battery
(b) the rate of dissipation of electrical energy in the battery
(c) the rate of dissipation of electrical energy in the external resistor.
A. 24 W
B. 20W
C. 4 W
D. 14 W

Answer:

- Watch Video Solution

19. In the circuit shown in figure find

a) the rate of conversion of internal (chemical) energy to electrical energy within the battery
(b) the rate of dissipation of electrical energy in the battery
(c) the rate of dissipation of electrical energy in the external resistor.
A. 24 W
B. 20W
C. 4 W
D. 14 W

Answer:

- Watch Video Solution

20. In the circuit shown in figure find

a) the rate of conversion of internal (chemical) energy to electrical energy within the battery
(b) the rate of dissipation of electrical energy in the battery
(c) the rate of dissipation of electrical energy in the external resistor.
A. 4 W
B. 20W
C. 14 W
D. 24 W

Answer:

D Watch Video Solution

21. Assertion: The resistivity of a semiconductor increases with temperature.

Reason: The atoms of a semiconductor vibrate
with larger amplitude at higher temperature therby increasing it resistivity.

A. Statement-1 True, Statement -2 is Ture,

Statement-2 is a Correct explanation fro

Statement -1
B. Statemwnt -1 is True, Statement -2 is
true, Statement is a NOT a correct explanation for Statement -1
C. Statement -1 is False, Statement -2 true
D. Statement - 1 is True, Statement - 2 False

Answer:

- Watch Video Solution

22. Assertion : In a simple battery circuit the
point of lowest potential is positive terminal of the battery.

Reason : The current flows towards the point of the higher potential as it flows in such a circuit from the negative the positive terminal.
A. Statement-1 True, Statement -2 is Ture,

Statement-2 is a Correct explanation fro

Statement -1
B. Statemwnt -1 is True, Statement -2 is
true, Statement is a NOT a correct
explanation for Statement -1
C. Statement -1 is False, Statement -2 true
D. Statement -1 is True, Statement - 2 False

Answer:

23. Statement-1 : The temperature coefficient of resistance is positive for metals and negative for p -type semiconductor.

Statement-2 : The effective charge carriers in metals are negatively charged whereas in p type semiconductor, they are positively charged
A. Statement-1 True, Statement -2 is Ture,

Statement-2 is a Correct explanation fro

Statement -1
B. Statemwnt -1 is True, Statement -2 is
true, Statement is a NOT a correct explanation for Statement -1
C. Statement -1 is False, Statement -2 true
D. Statement -1 is True, Statement -2 False

Answer:

D Watch Video Solution

