©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

DUAL NATURE OF MATTER AND RADIATION

Physics

1. Energy of a α - particle, having de broglie
wavelenght of $0.004{ }^{\circ}$ is approximately.
A. 1275 eV
B. 1200 KeV
C. 1200 MeV
D. 1200 GeV

Answer:

D Watch Video Solution
2. Velocity of a proton is $c / 20$. Associated deBroglife wavelenght is (Take
$\left.h=6.626 \times 10^{-34} J-s\right)$
A. $2.64 \times 10^{-24} \mathrm{~mm}$
B. $2.64 \times 10^{-24} \mathrm{~cm}$
C. $2.64 \times 10^{-14}{ }^{\circ} \mathrm{A}$
D. $2.64 \times 10^{-14} \mathrm{~m}$

Answer:

D Watch Video Solution

3. One electron $\&$ one proton is accelerated by equal potential. Ratio of their do-Broglie wavelenght is-
A. $\sqrt{\frac{m_{P}}{m_{e}}}$
B. $\frac{m_{e}}{m_{p}}$
C. $\frac{m_{p}}{m_{e}}$
D. 1

Answer:

D Watch Video Solution

4. de-Brogile wavelength of an electron is $10{ }^{\circ}$
then velocity will be-
A. $7.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B. $7.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $7.2 \times 10^{5} \mathrm{~m} / \mathrm{s}$
D. $7.2 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution
5. One electron $\&$ one proton have equal energies ten ratio of associated de-Broglie wavelength will be-
A. $1:(1836)^{2}$
B. $\sqrt{1836}: 1$
C. $1836: 1$
D. $(1836)^{2}: 1$

Answer:

D Watch Video Solution

6. A proton and deuteron are accelerated by same potential difference.Find the ratio of
their de-Broglie wavelengths.
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{\frac{2}{2}}$
C. $\frac{1}{2}$
D. $\frac{2}{1}$

Answer:

D Watch Video Solution

7. In photoelectric effect if the intensity of light is doubled then maximum kinetic energy of photoelectrons will become

A. Double

B. Half
C. Four time
D. No change

Answer:

- Watch Video Solution

8. Name the phenomenon which shows the quantum nature of electromagnetic radiation.
A. Huygen wave theory
B. Photoelectric effect
C. Maxwell electromagnetic theory
D. de-Broglie theory

Answer:

D Watch Video Solution
9. From rest an electron is accelerated between two such points which has poteintial

20 \& 40 volts respectively. Associated deBroglie wavelength of electron is-
A. $0.75{ }^{\circ}$
B. $7.5^{\circ} A$
C. $2.75{ }^{\circ} A$
D. 2.75 m

Answer:

- Watch Video Solution

10. An electron microscope uses 40 KeV electrons. Find its resolving limit on the assumption that it is equal to the wavelenght of the electrons-
A. $0.61 A^{\circ}$
B. $0.6 A^{\circ}$
C. $0.06 A^{\circ}$
D. $0.061 A^{\circ}$

Answer:

11. A hydrogen atom moving at a speed v absorbs a photon of wavelength 122 nm and
stops. The value of v is (mass of hydrogen
atom $\left.=1.67 \times 10^{-27} \mathrm{~kg}\right)$
A. $3.5 \mathrm{~m} / \mathrm{s}$
B. $32.5 \mathrm{~m} / \mathrm{s}$
C. $3.05 \mathrm{~m} / \mathrm{s}$
D. $3.25 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

12. The de-Broglie wavelenght of an electron is
$0.2 \stackrel{\circ}{A}$. Calculate the potential difference
(approximate) requrired to retard it to rest-
A. $3.76 \times 10^{-3} V$
B. $3.76 \times 10^{3} V$
C. $3.76 \times 10^{3} \mathrm{eV}$
D. 376.5 V

Answer:

D Watch Video Solution

13. A photon and an electron have equal energy $E . \lambda_{\text {photon }} / \lambda_{\text {electron }}$ is proportional to
A. \sqrt{E}
B. $\frac{1}{\sqrt{E}}$
C. $\frac{1}{E}$
D. Does not depend upon E.

Answer:

- Watch Video Solution

14. In a photoemissive cell, with exciting wavelength λ, the faster electron has speed v.

If the exciting wavelength is changed to $3 \lambda / 4$, the speed of the fastest electron will be
A. $v(3 / 4)^{1 / 2}$
B. $v(4 / 3)^{1 / 2}$
C. Less than $v(4 / 3)^{1 / 2}$
D. Greater than $v(4 / 3)^{1 / 2}$

Answer:

D Watch Video Solution

15. Which of the following figure represents
the variation of particle momentum and the associated de - Broglie wavelength ?
(a)

B.
(b)

C.

Answer:

D Watch Video Solution

16. The work function for the surface of aluminium is 4.2 eV . What will be the wavelenght of that incident light for which the
stopping potential will be zero.

$$
\left(h=6.6 \times 10^{-34} J-s e=1.6 \times 10^{-19} C\right)
$$

A. $2496 \stackrel{\circ}{A}$
B. $2946 \times 10^{-7} m$
C. $2649{ }^{\circ}$ A
D. $2946{ }^{\circ} A$

Answer:
(Watch Video Solution
17. Slope of $V_{0}-v$ curve is-
(where $V_{0}=$ Stopping potential and
$v=$ frequency)
A. e
B. $\frac{h}{e}$
C. ϕ_{0}
D. h

Answer:

- Watch Video Solution

18. An AIR station is broadcasting the waves of
wavelength 300 metres. If the radiating power
of the transmitter is 10 kW , then the number of photons radiated per second is
A. 1.5×10^{35}
B. 1.5×10^{31}
C. 1.5×10^{29}
D. 1.5×10^{33}

Answer:

19. A metal surface of work function 1.07 eV is
irradiated with light of wavelength 332 nm .

The retarding potential required to stop the escape of photo - electrons is
A. 3.74 V
B. 2.67 V
C. 1.0 V
D. 4.81 V

Answer:

- Watch Video Solution

20. The fig. shows the variation of photon current with anode potential for a photosensitive surface for three different radiation.

Let I_{a}, I_{b} and I_{c} be the intensities and f_{a}, f_{b} and f_{c} be the frequency for the curves
a, b and c respectively.

A. $f_{a}=f_{b}$ and $f_{a} \neq I_{b}$
B. $f_{a}=f_{c}$ and $I_{a}=I_{c}$
C. $f_{a}=f_{b}$ nd $I_{a}=I_{b}$
D. $f_{a}=f_{b}$ and $I_{a}=I_{c}$

- Watch Video Solution

21. An electromagnetic radiation of frequency
3×10^{15} cycles per second falls on a photo electric surface whose work functions is 4.0 eV .

Find out the maximum velocity of the photo electrons emitted by the surface.

$$
\begin{aligned}
& \text { A. } 13.4 \times 10^{-19} \mathrm{~m} / \mathrm{s} \\
& \text { B. } 19.8 \times 10^{-19} \mathrm{~m} / \mathrm{s} \\
& \text { C. } 1.73 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer:

D Watch Video Solution

22. Ultraviolet light of wavelenght 280 nm is
used in an experiment on photo electric effect
with lithium $(\phi=2.5 \mathrm{eV})$ cathode.
(1) The maximum kinetic energy is 1.9 eV
(2) The stopping potential is 1.9 V
(3) The maximum kinetic energy is 4.4 V
(4) The stopping potential is $4.4 . \mathrm{eV}$
A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

(Watch Video Solution
23. The separation between Bragg's planes in a crystal is $10{ }^{\circ}$. Then the wavelenght of those X rays which can be diffracted by this cystal is-
(1) $5{ }^{\circ} A$ (2) $10 \stackrel{\circ}{A}$
(3) $20 \stackrel{\circ}{A}$ (4) $25 \stackrel{\circ}{A}$
A. 1,2 and 3 are correct
B. 2 and 2 are correct
C. 3 and 4 are correct
D. 2 and 3 are correct

- Watch Video Solution

24. Electrons are accelerated in television tubes through potential difference of about 10 KV.
(1) The lowest wavelength of the emitted X rays is $12.4{ }^{\circ}$.
(2) The lowest wavelength of the emitted X rays is $1.24{ }^{\circ}$
(3) The highest frequency of the emitted X rays is $2.4 \times 10^{8} \mathrm{~Hz}$
(4) The higher frequency of the emitted X-rays
is $2.4 \times 10^{18} \mathrm{~Hz}$
A. 1,2 and 3 are correct
B. 3 and 2 are correct
C. 4 and 4 are correct
D. 3 and 3 are correct

Answer:
(Watch Video Solution
25. A physicist wishes to eject electrons by
shining light on a metal surfac. The light
source emits light of wavelenght of 450 nm .

The table lists the only available metals and
their work functions.
Metal
$W_{0}(e V)$
Barium 2.5
Lithium 2.3
tantalum 4.2
Tungsten 4.5
Which metal(s) can be used to produce electrons by the photoelectric effect from given source of light?
A. Barium only
B. Barium or lithium
C. Lithium, tantalum or tungston
D. Tungsten or tantalum

Answer:

D Watch Video Solution

26. A physicist wishes to eject electrons by shining light on a metal surfac. The light source emits light of wavelenght of 450 nm .

The table lists the only available metals and
their work functions.
Metal
$W_{0}(e V)$
Barium 2.5
Lithium 2.3
tantalum 4.2
Tungsten 4.5
Which option correctly identifies the metal that will produce the most energetic electrons and their energies?
A. Lithium, 0.45 eV
B. Tungsten, 1.75 eV
C. Lithium, 2.30 eV

D. Tungsten, 2.75 eV

Answer:

D Watch Video Solution

27. A physicist wishes to eject electrons by shining light on a metal surfac. The light source emits light of wavelenght of 450 nm .

The table lists the only available metals and their work functions.

Metal
$W_{0}(e V)$
Barium 2.5
Lithium 2.3
tantalum 4.2
Tungsten 4.5
Suppose photoelectric experiment is done separately with these metals with light of wavelenght 450 nm . The maximum magnitude of stopping potential amongst all the metals. is-
A. 2.75 volt
B. 4.5 volt
C. 0.45 volt

D. 0.25 volt

Answer:

D Watch Video Solution

28. Assertion : Mass of moving photon varies
inversely as the wavelength .

Reason : Energy of the particle
$=$ Mass $\times(\text { Speedoflight })^{2}$
A. Statement-1 is True, Statement,

Statement-2 is True, Statement-2 is a
correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True:

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is Faslse, Statement-2 is

True.
D. Statement-1 is True, Statement-2 is False.

- Watch Video Solution

29. Assertion : Photosensitivity of a metal is
high if its work function is small.
Reason: Work function $=h f_{0}$ where f_{0} is the threshold frequency.

A. Statement-1 is True, Statement,

Statement-2 is True, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True:

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is Faslse, Statement-2 is

True.
D. Statement-1 is True, Statement-2 is False.

Answer:

D Watch Video Solution

30. Assertion : The de - Broglie wavelength of a molecule varies inversely as the square root of temperature.

Reason : The root mean square velocity of the molecule depends on the temperature.
A. Statement-1 is True, Statement,

Statement-2 is True, Statement-2 is a
correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True:

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is Faslse, Statement-2 is

True.
D. Statement-1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

