©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

ELECTROSTATICS

Physics

1. Three charges $\mathrm{Q},+q$ and $+q$ are placed at
the vertices of a right-angled isosceles triangle
as shown. The net electrostatic energy of the

A. $\frac{-q}{1+\sqrt{2}}$
B. $\frac{-2 q}{2+\sqrt{2}}$
C. $-2 q$
D. $+q$

Answer:

- Watch Video Solution

2. If 3 charges are placed at the vertices of equilateral triangle of charge ' q ' each. What is
the net potential energy, if the side of equilateral Δ is $l c m$?
A. $\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{l}$
B. $\frac{1}{4 \pi \epsilon_{0}} \frac{2 q^{2}}{l}$
C. $\frac{1}{4 \pi \epsilon_{0}} \frac{3 q^{2}}{l}$
D. $\frac{1}{4 \pi \epsilon_{0}} \frac{4 q^{2}}{l}$

Answer:

D Watch Video Solution

3. If identical charges $(-q)$ are placed at each
corner of a cube of side b, then electric potential energy of charge $(+q)$ which is palced at centre of the cube will be

$$
\begin{aligned}
& \text { A. } \frac{8 \sqrt{2} q^{2}}{4 \pi \in_{0} b} \\
& \text { B. } \frac{-8 \sqrt{2} q^{2}}{4 \pi \in_{0} b} \\
& \text { C. } \frac{-4 \sqrt{2} q^{2}}{\pi \epsilon_{0} b}
\end{aligned}
$$

$$
\text { D. } \frac{-4 \sqrt{2} q^{2}}{\pi \in_{0} b}
$$

Answer:

D Watch Video Solution

4. Two charges q_{1} and q_{2} are placed 30 cm apart, as shown in the figure. A third charge q_{3} is moved along the arc of a circle of radius 40 cm from C to D. The change in the potential energy o the system is $\frac{q_{3}}{4 \pi \varepsilon_{0}} k$.,
where k is

A. $8 q_{2}$
B. $8 q_{1}$
C. $6 q_{2}$
D. $6 q_{1}$

Answer:

- Watch Video Solution

5. Three particles, each having a charge of $10 \mu C$ are placed at the coners of an equilateral triangle of side 10 cm . The electrostatic potential energy of the system is
(Given $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} N-m^{2} / C^{2}$)
A. Zero
B. Infinite
C. 27 J
D. 100 J

Answer:

D Watch Video Solution

6. Two equal charges q are placed at a distance of $2 a$ and a third charge $-2 a$ is placed at the midpoint. The potential energy of the system is
A. $\frac{q^{2}}{8 \pi \in_{0} a}$
B. $\frac{6 q^{2}}{8 \pi \in_{0} a}$
C. $-\frac{7 q^{2}}{8 \pi \in_{0} a}$
D. $-\frac{9 q^{2}}{8 \pi \epsilon_{0} a}$

Answer:

- Watch Video Solution

7. An electric dipole has the magnitude of its charge as q and its dipole moment is p. It is placed in a uniform electric field E. If its dipole
moment is along the direction of the field, the
force on it and its potential energy are respectively
A. 2. qEand minimum
B. .qe and .pE
C. Zero and minimum
D. .qEand maximum

Answer:

D Watch Video Solution
8. When one electron is taken towards the other electron, then the electric potential energy of the system
A. decreases
B. increases
C. remains unchanged
D. becomes zero

Answer:

9. Two identical charges are placed at the two corners of an equilateral triangle. The potential energy of the system is U. The work done in bringing an identical charge from infinity to the third vertex is
A. U
B. 2 U
C. 3 U
D. zero
10. Potential energy of two equal negative point charges 2 mC held 1 m apart in air is
A. 2 J
B. 2 eV
C. 4 J
D. 0.036 J

Answer:
11. Four charges $+q,-q,+q$ and $-q$ are put together on four corners of a square as shown in figure. The work done by external agent in slowly assembling this configuration is

A. zero
B. $-2.59 k q^{2} / a$
C. $-2.59 k q^{2} / a$
D. none of these

Answer:

D Watch Video Solution

12. As shown in figure a dust particle with mass $\mathrm{m}=5.0 \times 10-9 \mathrm{~kg}$ and charge $\mathrm{qO}=2.0 \mathrm{nC}$ starts from rest at point a and moves in a straight line to point b. What is its speed v at
point b?

A. $26 m s^{-1}$
B. $34 m s^{-1}$
C. $46 m s^{-1}$
D. $14 m s^{-1}$

Answer:

- Watch Video Solution

13. Charges $-q, Q$, and $-q$ are placed at an equal distance on a straight liner. If the total potential energy of the system of three charges is zero, then find the ratio Q / q.

A. $1 / 2$
B. 1/4
C. 2/3
D. $3 / 4$

Answer:

- Watch Video Solution

14. When the separation between two charges
is increased, the electric potential energy of
the charges
A. increases
B. decreases
C. remains the same
D. may increase or decrease

Answer: D

D Watch Video Solution

15. If a positive charge is shifted from a low potential region to a high- potential region, the electric potential energy
A. increases
B. decreases
C. will remain the same
D. nothing definite can be predicted

Answer:

D Watch Video Solution

16. If V and u are electric potential and energy
density, respectively, at a distance r from a positive point charge, then which of the following graph is correct ?

Answer:

D Watch Video Solution

17. 7 S is a solid neutral conducting sphere. A point charge q of $1 \times 10-6 \mathrm{C}$ is placed at point
A. C is the centre of sphere and $A B$ is a tangent. $B C=3 \mathrm{~m}$ and $A B=4 \mathrm{~m}$.
(1) The electric potential of the conductor is 1.8
kV
(2) The electric potential of the conductor is 2.25 kV
(3) The electric potential at B due to induced charges on the sphere is -0.45 kV
(4) The electric potential at B due to induced
charges on the sphere is 0.45 kV

A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

18. A proton moves a distance d in a uniform electric field $E{ }^{\circledR}$ as shown in the figure. Then which of the following statements are correct
(1) Electric field do a negative work on the proton
(2) Electric potential energy of the proton increases
(3) Electric field do a positive work on the proton
(4) Electric potential energy of the proton

\vec{E}

A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct
19. Three concentric spherical conductors A, B
and C of radii $R, 2 R$ and $4 R$ respectively. A and
C is shorted and B is uniformly charged

Charge on conductor A is

A. $Q / 3$
B. $-\mathrm{Q} / 3$
C. 2 Q/3

D. None of these

Answer:

D Watch Video Solution

20. Three concentric spherical conductors A, B
and C of radii $R, 2 R$ and $4 R$ respectively. A and
C is shorted and B is uniformly charged

Potential at A is

A.
Q
$\overline{4 \pi \epsilon_{0} R}$
B.
Q
$16 \pi \in_{0} R$
C. $\frac{Q}{20 \pi \epsilon_{0} R}$

D. none of these

Answer:

D Watch Video Solution

21. Three concentric spherical conductors A, B
and C of radii $R, 2 R$ and $4 R$ respectively. A and
C is shorted and B is uniformly charged .

Potential at B is

A.
Q
$\overline{4 \pi \epsilon_{0} R}$
B.
$\frac{Q}{16 \pi \in_{0} R}$
c. $\frac{5 Q}{48 \pi \epsilon_{0} R}$

D. none of these

Answer:

D Watch Video Solution

22. Statement-1 : No work is done in taking a small positive charge from one point to other inside a positively charged metallic sphere while outside the sphere work is done in taking the charge towards the sphere. Neglect induction due to small charge.

Statement-2 : Inside the sphere electric potential is same at each point, but outside it is different for different points.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution
23. Statement-1 : Electric potential of earth is
taken to be zero as a reference.

Statement-2 : The electric field produced by earth in surrounding space is zero.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

 False.
Answer:

D Watch Video Solution

24. 4Statement-1: The electric potential and
the electric field intensity at the centre of a square having four fixed point charges at their vertices as shown in figure are zero.

Statement - 2 : If electric potential at a point is
zero then the magnitude of electric field at that point must be zero.

A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C.
D. Statement -1 is True, Statement-2 is

False.

Answer:

25. A parallel plate capacitor is charged to a potential difference of 50 V . It is discharged through a resistance. After 1 second, the potential difference between plates becomes 40 V . Then
A. Fraction of stored energy after 1 second is $16 / 25$
B. Potential difference between the plates
after 2 seconds will be 30 V
C. Potential difference between the plates
after 2 seconds will be 20 V
D. Fraction of stored energy after 1 second is $4 / 5$

Answer: A

D Watch Video Solution

26. Five identical capacitor paltes, each of area

A, are arranged such that adjacent plates are at a distance d apart, the plates are connected
to a source of emf V as shown in the figure

The charge on plate 1 isand on plate 4 is.

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon_{0} A V}{2 d}, \frac{2 \varepsilon_{0} A V}{2 d} \\
& \text { B. } \frac{\varepsilon_{0} A V}{2 d}, \frac{2 \varepsilon_{0} A V}{2 d} \\
& \text { C. } \frac{\varepsilon_{0} A V}{2 d}, \frac{-2 \varepsilon_{0} A V}{2 d} \\
& \text { D. } \frac{-\varepsilon_{0} A V}{2 d}, \frac{-2 \varepsilon_{0} A V}{2 d}
\end{aligned}
$$

Answer:

- Watch Video Solution

27. The figure shows two identical parallel
plate capacitors connected to a battery with
the switch S closed. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant(or relative permittivity) 3 . Find the ratio of the total electrostatic energy stored in both capacitors before and after the
introduction of the dielectric.

A. $3: 1$
B. $5: 1$
C. $3: 5$
D. $5: 3$

Answer:

- Watch Video Solution

28. All six capacitors shown are identical. Each
can withstand maximum 200 volts between its
terminals. The maximum voltage that can be safely applied between A and B is

A. 1200 V
B. 400 V
C. 800 V
D. 200 V

Answer:

- Watch Video Solution

29. A capacity of capacity C_{1} is charged up to
V volt and then connected to an uncharged
capacitor of capacity C_{2}. Then final potential difference across each will be

$$
\begin{aligned}
& \text { A. } \frac{C_{2} V}{C_{1}+C_{2}} \\
& \text { B. } 1+\left(\frac{C_{2}}{C_{1}}\right) V \\
& \text { C. } \frac{C_{1} V}{C_{1}+C_{2}} \\
& \text { D. } 1-\left(\frac{C_{2}}{C_{1}}\right) V
\end{aligned}
$$

Answer:

D Watch Video Solution

30. Two capacitors of capacitances $3 \mu F$ and $6 \mu F$ are charged to a potential of 12 V each.

They are now connected to each other, with the positive plate of each joined to the negative plate of the other. The potential difference across each will be
A. 6 volt
B. 4 volt
C. 3 volt
D. zero

Answer:

- Watch Video Solution

31. In the figure a capacitor is filled with dielectrics K_{1}, K_{2} and K_{3}. The resultant
capacitance

A. $\frac{2 \varepsilon_{0} A}{d}\left[\frac{1}{K_{1}}+\frac{1}{K_{2}}+\frac{1}{K_{3}}\right]$
B. $\frac{\varepsilon_{0} A}{d}\left[\frac{1}{K_{1}}+\frac{1}{K_{2}}+\frac{1}{K_{3}}\right]$
c. $\frac{2 \varepsilon_{0} A}{d}\left[K_{1}+K_{2}+K_{3}\right]$
D. None of these

Answer:

- Watch Video Solution

32. The resultant capacitance of given circuit is

A. 3C
B. 2 C

C. C

D. $\frac{C}{3}$

Answer:

D Watch Video Solution

33. Two dielectric slabs of constant K1 and K2
have been filled in between the plates of a capacitor as shown below. What will be the
capacitance of the capacitor

$$
\begin{aligned}
& \text { A. } \frac{2 \varepsilon_{0} A}{d}\left(K_{1}+K_{2}\right) \\
& \text { B. } \frac{2 \varepsilon_{0} A}{d}\left(\frac{K_{1}+K_{2}}{K_{1} \times K_{2}}\right) \\
& \text { C. } \frac{4 \varepsilon_{0} A}{d}\left(\frac{K_{1} \times K_{2}}{K_{1}+K_{2}}\right) \\
& \text { D. } \frac{2 \varepsilon_{0} A}{d}\left(\frac{K_{1} \times K_{2}}{K_{1}+K_{2}}\right)
\end{aligned}
$$

Answer:
34. Eight drops of mercury of equal radii possessing equal charges combine to from a big drop. Then the capacitance of bigger drop compared to each individual small drop is
A. 8 times
B. 4 times
C. 2 times
D. 32 times

Answer:

D Watch Video Solution

35. Separation between the plates of a parallel
plate capacitor is d and the area of each plates is A. When a slab of material of dielectric constant k and thickness $t(t<d)$ is introduced between the plates. Its capacitance becomes
A. $\frac{\varepsilon_{0} A}{d+t\left(1-\frac{1}{k}\right)}$

> B. $\frac{\varepsilon_{0} A}{d+t\left(1+\frac{1}{k}\right)}$
> C. $\frac{\varepsilon_{0} A}{d-t\left(1-\frac{1}{k}\right)}$
> D. $\frac{\varepsilon_{0} A}{d-t\left(1+\frac{1}{k}\right)}$

Answer:

D Watch Video Solution

36. There is an air filled 1 pF parallel plate capacitor. When the plate separation is doubled and the space is filled with wax, the
capacitance increases to $2 p F$. The dielectric

constant of wax is

A. 2
B. 4
C. 6
D. 8

Answer:
(Watch Video Solution
37. Between the plates of a parallel plate condenser, a plate of thickness t_{1} and dielectric constant k_{1} is placed. In the rest of the space, there is another plate of thickness
t_{2} and dielectric constant k_{2}. The potential difference across the condenser will be

$$
\begin{aligned}
& \text { A. } \frac{Q}{A \varepsilon_{0}}\left(\frac{t_{1}}{K_{2}}+\frac{t_{2}}{K_{2}}\right) \\
& \text { B. } \frac{\varepsilon_{0_{Q}}}{A}\left(\frac{t_{1}}{K_{1}}+\frac{t_{2}}{K_{2}}\right) \\
& \text { C. } \frac{Q}{(A) \varepsilon_{0}}\left(\frac{K_{1}}{t_{1}}+\frac{K_{2}}{t_{2}}\right) \\
& \text { D. } \frac{\varepsilon_{0_{Q}}}{A}\left(K_{1} t_{1}+K_{2} t_{2}\right)
\end{aligned}
$$

Answer:

- Watch Video Solution

38. A parallel plate capacitor is charged and
the charging battery is then disconnected. If
the plates of the capacitor are moved farther apart by means of insulating handles:
A. The charge on the capacitor increases
B. The voltage across the plates decreases
C. The capacitance increases
D. The electrostatic energy stored in the capacitor increases

Answer:

- Watch Video Solution

39. A parallel plate capacitor of plate area A and plates separation distance d is charged by applying a potential V_{0} between the plates.

The dielectric constant of the medium between the plates is K . What is the uniform
electric field E between the plates of the capacitor?

$$
\begin{aligned}
& \text { A. } E=\epsilon_{0} \frac{C V_{0}}{K A} \\
& \text { B. } E=\frac{V_{0}}{K d} \\
& \text { C. } E=\frac{V_{0}}{K A} \\
& \text { D. } E=\frac{K V_{0} d}{\epsilon_{0} A}
\end{aligned}
$$

Answer:

D Watch Video Solution

40. A parallel plate air capacitor is connected to a battery. The quantities charge, voltage, electric field and energy associated with this capacitor are given by Q_{0}, V_{0}, E_{0} and U_{0} respectively. A dielectric slab is now introduced to fill the space between the plates with battery still in connection. The corresponding quantities now given by $\mathrm{Q}, \mathrm{V}, \mathrm{E}$ and U are related to the previous one as
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

41. The false statement are, on increasing the distance between the plates of a parallel plate condenser,
(1) The electric field intensity between the plates will decrease
(2) The electric field intensity between the
plates will increase
(3) The P. D. between the plates will decrease
(4)The electric field intensity between the plates will remain unchanged
A. 1, 2 and 3 are incorrect
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer: A
42. The capacitance of a parallel plate condenser depends on
(1) Area of the plates
(2) Medium between the plates
(3) Distance between the plates
(4) Metal of the plates
43. Capacitor C_{3} in the circuit is variable capacitor (its capacitance can be varied).

Graph is plotted between potential difference V_{1} (across capacitor C_{1}) versus C_{3}.

Electric potential V_{1} approaches on asymptote of 10 volts as $C_{3} \rightarrow \infty$

The ratio of the capacitance $\frac{C_{1}}{C_{2}}$ will be

A. $2 / 3$
B. $4 / 3$
C. 3 / 4
D. $3 / 2$

Answer:

- Watch Video Solution

44. Capacitor C_{3} in the circuit is variable capacitor (its capacitance can be varied).

Graph is plotted between potential difference
V_{1} (across capacitor C_{1}) versus C_{3}.

Electric potential V_{1} approaches on asymptote of 10 volts as $C_{3} \rightarrow \infty$

OThe value of C3 for which potential difference across $C_{1} \quad$ will become 8 V , is
A. $1.5 C_{1}$
B. $2.5 C_{1}$
C. $3.5 C_{1}$
D. $4.5 C_{1}$

Answer:

D Watch Video Solution

45. Capacitor C_{3} in the circuit is variable capacitor (its capacitance can be varied).

Graph is plotted between potential difference V_{1} (across capacitor C_{1}) versus C_{3}.

Electric potential V_{1} approaches on asymptote of 10 volts as $C_{3} \rightarrow \infty$

The ratio of energy stored in capacitor C_{1} to
that of total energy when $C_{3} \rightarrow \infty$ is

A. zero
B. $1 / 3$
C. 1
D. Data insufficient

Answer:
46. Assertion: The force with which one plate of a parallel plate capacitor is attracted towards the other plate is equal to square of surface density per ε per unit area.

Reason: The electric field due to one charged plate of the capacitor at the location of the other is equal to surface density per ε.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is False, Statement-2 is True.
D. Statement-1 is True, Statement-2 is False.

Answer:

- Watch Video Solution

47. Assertion: Circuit containing capacitors should be handled cautiously even when there is no current.

Reason: The capacitors are very delicate and so quickly break down.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is False, Statement-2 is True.
D. Statement-1 is True, Statement-2 is False.

Answer:

D Watch Video Solution

48. Assertion: If the distance between parallel
plates of a capacitor is halved and dielectric constant is made three times, then the capacitor becomes 6 times.

Reason: Capacity of the capacitor does not depend upon the nature of the meterial.

A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is False, Statement-2 is True.
D. Statement-1 is True, Statement-2 is False.

Answer:

D Watch Video Solution

49. In the electric field of a point chargde q, a
cetrain charge is carried from point A to
B, C, D and E. Then the ork done

A. least along the path $A B$
B. least along the path $A D$
C. zero along all the paths $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$ and AE
D. least along AE

Answer:

D Watch Video Solution

50. Four equal charges Q are placed at the four corners of a square of each side is 'a'.

Work done in removing a charge $-Q$ from its centre to infinity is
A. 0
B. $\frac{\sqrt{2} Q^{2}}{4 \pi \in_{0} a}$
C. $\frac{\sqrt{2} Q^{2}}{\pi \in_{0} a}$
D. $\frac{Q^{2}}{2 \pi \in_{0} a}$

Answer:

D Watch Video Solution

51. A particle A has chrage $+q$ and a particle
B has charge $+4 q$ with each of them having
the same mass m. When allowed to fall from
rest through the same electric potential
difference, the ratio of their speed $\frac{v_{A}}{v_{B}}$ will become
A. $2: 1$
B. 1:2
C. 1:4
D. $4: 1$

Answer:

D Watch Video Solution
52. In the firgure the charge Q is at the centre of the circle. Work done is maximum when another charge is taken from point P to

A. K
B. L
C. M
D. N

Answer:

D Watch Video Solution

53. How much kinetic energy will be gained by
an α - particle in going from a point at 70 V
to another point at 50 V
A. 40 eV

B. 40 KeV

C. 40 MeV

D. 0 eV

Answer:

- Watch Video Solution

54. Ten electrons are qually spaced and fixed
around a circle of radius R. Relative to $V=0$
at infinity, the electrostatic potential V and the electric field E at the centre C are
A. $V \neq 0$ and $\vec{E} \neq 0$
B. $V \neq 0$ and $\vec{E}=0$
C. $V=0$ and $\vec{E}=0$
D. $V=0$ and $\vec{E} \neq 0$

Answer:

D Watch Video Solution
55. The displacement of a charge Q in the electric field $\quad \vec{E}=e_{1} \hat{i}+e_{2} \hat{j}+e_{3} \hat{k} \quad$ is
$\vec{r}=a \hat{i}+b \hat{j}$. The work done is
A. $Q\left(a e_{1}+b e_{2}\right)$
B. $Q \sqrt{\left(a e_{1}\right)^{2}+\left(b e_{2}\right)^{2}}$
C. $Q\left(e_{1}+e_{2}\right) \sqrt{a^{2}+b^{2}}$
D. $Q\left(\sqrt{e_{1}^{2}+e_{2}^{2}}\right)(a+b)$

Answer:

D Watch Video Solution

56. As shown in the figure, charges $+q$ and $-q$ are placed at the vertices B and C of an isoscles triangle. The potential at the
vertex A is

A. $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 q}{\sqrt{a^{2}+b^{2}}}$
B. Zero
C. $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{\sqrt{a^{2}+b^{2}}}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{(-q)}{\sqrt{a^{2}+b^{2}}}$

Answer:
57. Two electric charges $12 \mu C$ and $-6 \mu C$ are placed 20 cm apart in air. There will be a point
P on the line joining these charges and outside the region between them, at which
the electric potential is zero. The distance of P
from $6 \mu C$ chrage is
A. 0.10 m
B. 0.15 m
C. 0.20 m
D. 0.25 m

Answer:

D Watch Video Solution

58. In the rectangle, shown below, the two corners have charges $q_{1}=-5 \mu C$ and $q_{2}=+2.0 \mu C$. The work done in moving a charge $+3.0 \mu C$ from $B \rightarrow A$ is (take
$\left.1 / 44 \pi \varepsilon_{0}=10^{10} N-m^{2} / C^{2}\right)$

A. 2.8 J
B. 3.5 J
C. 4.5 J
D. 5.5 J
59. Electric charges $q, q,-2 q$ are placed at the corners of an equilateral triangle ABC of side I.

The magnitude of electric dipole moment of the system is
A. $q l$
B. $2 q l$
C. $\sqrt{3} q l$
D. $4 q l$

Answer:

D Watch Video Solution

60. A charge $(-q)$ and another charge (Q) are kept at two points A and B respectively. Keeping the charge $(+Q)$ fixed at B, the charge $(-q)$ at A is moved to another point
C such that $A B C$ forms an equilateral triangle of side l. The net work done in moving teh charge $(-q)$ is
A. $\frac{1}{4 \pi \in_{0}} \frac{Q q}{l}$
B. $\frac{1}{4 \pi \in_{0}} \frac{Q q}{l^{2}}$
C. $\frac{1}{4 \pi \in_{0}} Q q l$
D. zero

Answer:

D Watch Video Solution

61. In an hydrogen atom, the electron revolves around the nucles in an orbit of radius
$0.53 \times 10^{-10} \mathrm{~m}$. Then the electrical potential
produced by the nucleus at the position of the electron is
A. -13.6 V
B. -27.2 V
C. 27.2 V
D. 13.6 V

Answer:

- Watch Video Solution

62. Point charge $q_{1}=2 \mu C$ and $q_{2}=-1 \mu C$
are kept at points $x=0$ and $x=6$
respectively. Electrical potential will be zero at points

> A. $x=2$ and $x=9$
> B. $x=1$ and $x=5$
> C. $x=4$ and $x=12$
> D. $x=-12$ and $x=2$

Answer:

63. The distance between H^{+}and CI^{-}ions in $H C I$ molecule is $1.28 \AA$. What will be the potential due to this dipole at a distance of $12 \AA$ on the axis of dipole?
A. 0.13 V
B. 1.3 V
C. 13 V
D. 130 V

Answer:

- Watch Video Solution

64. Two identical thin ring, each of radius R meters, are coaxially placed a distance R metres apart. If Q_{1} coulomb, and Q_{2} coulomb, are repectively the charges uniformly spread on the two rings, the work done in moving a charge q from the centre of one ring to that of the other is
A. Zero

$$
\begin{aligned}
& \text { B. } \frac{q\left(Q_{2}-Q_{1}\right)(\sqrt{2}-1)}{\sqrt{2} \cdot 4 \pi \epsilon_{0} R} \\
& \text { C. } \frac{q \sqrt{2}\left(Q_{1}+Q_{2}\right)}{4 \pi \epsilon_{0} R} \\
& \text { D. } \frac{q\left(Q_{1}+Q_{2}\right)(\sqrt{2}+1)}{4 \pi \in_{0} R}
\end{aligned}
$$

Answer:

D Watch Video Solution

65. A charge $+q$ is fixed at each of the points
$x=x_{0}, \quad x=3 x_{0}, \quad x=5 x_{0}, \ldots \ldots \ldots \ldots x=\infty \quad$ on
the x axis, and a charge $-q$ is fixed at each of
the points $x=2 x_{0}, x=4 x_{0}, x=6 x_{0}$,
$x=\infty$. Here x_{0} is a positive constant. Take
the electric potential at a point due to a charge Q at a distance r from it to be
$Q /\left(4 \pi \varepsilon_{0} r\right)$.Then, the potential at the origin due to the above system of
A. 0
B. $\frac{q}{8 \pi \in_{0} x_{0} \ln 2}$
C. ∞
D. $\frac{q \ln 2}{4 \pi \in_{0} x_{0}}$

Answer:

D Watch Video Solution

66. A uniform electric field pointing in positive x-direction exists in a region. Let A be the origin, B be the point on the x-axis at $x=+1 \mathrm{~cm}$ and C be the point on the y -axis at $y=+1 \mathrm{~cm}$. then the potential at the points
A, B and C satisfy
a. $V_{A}<V_{B}$, b. $V_{A}>V_{B}$ c. $V_{A}<V_{C}$ d.
$V_{A}>V_{C}$
A. $V_{A}<V_{B}$
B. $V_{A}>V_{B}$
C. $V_{A}<V_{C}$
D. $V_{A}>V_{C}$

Answer:

D Watch Video Solution

67. A point Q lies on the perpendicular bisector of an electrical dipole of dipole moment p, If the distance of Q from the dipole
is r (much larger than the size of the dipole),
then electric field at Q is proportional to
A. P^{-1} and r^{-2}
B. P and r^{-2}
C. P^{2} and r^{-3}
D. p and r^{-3}

Answer:

D Watch Video Solution

68. Consider a system of three charges
$\frac{q}{3}, \frac{q}{3}$ and $-\frac{2 q}{3}$ placed ar point A,B and C respectively, as shown in the figure. Take O to
be the centre of the circle of radius R and angle $C A B=60^{\circ}$. Choose the incorrect options

(1) The electric field at point O is $\frac{q}{8 \pi \varepsilon_{0} R^{2}}$ directed along the negative x-axis
(2) The potential energy of the system is zero
(3) The potential at point O is
$\overline{12 \pi \varepsilon_{0} R}$
(4) The magnitude of the force between the
charges at C and B is $\frac{q^{2}}{54 \pi \varepsilon_{0} R^{2}}$
A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

69. For spherical symmetrical charge distribution, variation of electric potential with distance from centre is given in diagram

Given that : $\quad V=\frac{q}{4 \pi \varepsilon_{0} R_{0}} \quad$ for
$r \leq R_{0}$ and $V=\frac{q}{4 \pi \varepsilon_{0} r}$ for $r \geq R_{0}$
Then which option (s) are correct :
(1) Total charge within $2 R_{0}$ is q
(2) Total electrosstatic energy for $r \leq R_{0}$ is non-zero
(3) At $r=R_{0}$ electric field is discontinuous
(4) There will be no charge anywhere except at
$r<R_{0}$

A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

70. An electric dipole (AB) consisting of two
particles of equal and opposite charge and
same mass is released in an electric field. In
the figure field lines are without considering effect of field of dipole.

The centre of mass of the dipole
A. Has no acceleration
B. Has acceleration with positive x and y
components
C. Has acceleration with positive x
component and negative y component
D. Has acceleration with negative x component and positive y component

Answer:

D Watch Video Solution

71. An electric dipole (AB) consisting of two particles of equal and opposite charge and same mass is released in an electric field. In
the figure field lines are without considering effect of field of dipole.

Angular acceleration of the dipole, immediately after it is released
A. is zero
B. is clockwise
C. is anticlockwise
D. cannot be determined from the given

Answer:

- Watch Video Solution

72. Statement -1 : A bird perches on a high power line and nothing happens to the bird.

Statement -2 : The level of bird is very high from the ground.
A. Statement-1 is True, Statement-2 is True ,

Statement-2 is a correct explanation for

Statement-1
B. Statement-1 is True, Statement-2 is True ,

Statement-2 is NOT a correct explanation
for Statement-1
C. Statement- 1 is False, Statement- 2 is True
D. Statement-1 is True, Statement-2 is True ,

Statement-2 is a correct explanation for

Statement-1

Answer:

D Watch Video Solution

73. Statement -1 : Electrons move away from a low potential to high potential region. Statement- 2 : Because electrons have negative charge

A. Statement-1 is True, Statement-2 is True ,

Statement-2 is a correct explanation for

Statement-2
B. Statement-1 is True, Statement-2 is True ,

Statement-2 is NOT a correct explanation
for Statement-2
C. Statement- 1 is False, Statement- 2 is True

D. Statement-1 is True, Statement-2 is True ,

Statement-2 is a correct explanation for

Statement-2

Answer:

D Watch Video Solution
74. Assertion: Surface of asymmetrical conductor can be treated as equipotential
surface.

Reason: Charges can easily flow in a conductor.
A. Statement-1 is True, Statement-2 is True ,

Statement-2 is a correct explanation for

Statement-3
B. Statement-1 is True, Statement-2 is True ,

Statement-2 is NOT a correct explanation
for Statement-3
C. Statement-1 is False, Statement-2 is True

D. Statement-1 is True, Statement-2 is True ,

Statement-2 is a correct explanation for

Statement-3

Answer:

D Watch Video Solution

75. A total charge Q is broken in two parts Q_{1} and Q_{2} and they are placed at a distance R from each other. The maximum force of repulsion between them will occur, when
A. $Q_{2}=\frac{Q}{R}, Q_{1}=Q-\frac{Q}{R}$
B. $Q_{2}=\frac{Q}{4}, Q_{1}=Q-\frac{2 Q}{3}$
c. $Q_{2}=\frac{Q}{4}, Q_{1}=\frac{3 Q}{4}$
D. $Q_{1}=\frac{Q}{2}, Q_{2}=\frac{Q}{2}$

Answer:

D Watch Video Solution

76. Two small balls having equal positive charge Q (coulomb) on each are suspended by two insulated string of equal length L meter,
from a hook fixed to a stand. The whole gravity
(state of weightlessness). Then the angle between the string and tension in the string is

A. $180^{\circ} \frac{1}{4 \pi \epsilon_{0}}$
B. $90^{\circ} \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{L^{2}}$
C. $180^{\circ}, \frac{1}{4 \pi \in_{0}} \frac{Q^{2}}{2 L^{2}}$
D. $180^{\circ}, \frac{1}{4 \pi \in_{0}} \frac{Q^{2}}{L^{2}}$

Answer:

D Watch Video Solution

77. Electric charges of $1 \mu C,-1 \mu C$ and $2 \mu C$ are placed in air at the corners A, B and C respectively of an equilateral triangle $A B C$
having length of each side 10 cm . The resultant force on the charge at C is
A. 0.9 N
B. 1.8 N
C. 2.7 N
D. 3.6 N

Answer:
(Watch Video Solution

78. An electron is moving round the nucleus of

a hydrogen atom in a circular orbit of radius r.
The coulomb force \vec{F} between the two is
(where $k=\frac{1}{4 \pi \varepsilon_{0}}$)

$$
\begin{aligned}
& \text { A. }-K \frac{e^{2}}{r^{3}} \hat{r} \\
& \text { B. } K \frac{e^{2}}{r^{3}} \vec{r} \\
& \text { C. }-K \frac{e^{2}}{r^{3}} \vec{r} \\
& \text { D. }-K \frac{e^{2}}{r^{2}} \hat{r}
\end{aligned}
$$

Answer:

79. Equal charges q are placed at the four corners A, B, C, D of a square of length a.

The magnitude of the force on the charge at B will be

$$
\begin{aligned}
& \text { A. } \frac{3 q^{2}}{4 \pi \epsilon_{0} a^{2}} \\
& \text { B. } \frac{q^{2}}{\pi \epsilon_{0} a^{2}} \\
& \text { C. }\left(\frac{1+2 \sqrt{2}}{2}\right) \frac{q^{2}}{4 \pi \in_{0} a^{2}} \\
& \text { D. }\left(2+\frac{1}{\sqrt{2}}\right) \frac{q^{2}}{4 \pi \epsilon_{0} a^{2}}
\end{aligned}
$$

Answer:

- Watch Video Solution

80. The charges on two spheres are $+7 \mu C$
and $-5 \mu C$ respectively. They experience a
force F. If each of them is given an additional
charge of $-2 \mu C$, the new force of attraction
will be
A. F
B. $F / 2$
C. $F / \sqrt{3}$
D. $2 F$

Answer:

D Watch Video Solution

81. Electric lines of force about negative point charge are
A. Circular, anticlockwise
B. Circular, clockwise

C. Radial, inward

D. Radial, outward

Answer:

- Watch Video Solution

82. Figure shows the electric lines of force emerging from a charged body. If the electric field at A and B are E_{A} and E_{B} respectively and if the displacement between A and B is r
then

A. $E_{A}>E_{B}$
B. $E_{A}<E_{B}$
C. $E_{A}=\frac{E_{B}}{r}$
D. $E_{A}=\frac{E_{B}}{r^{3}}$

Answer:

D Watch Video Solution

83. The magnitude of electric field intensity E is
such that, an electron placed in it would experience an electrical force equal to its weight is given by
A. mge

$$
\begin{aligned}
& \text { B. } \frac{m g}{e} \\
& \text { C. } \frac{e}{m g}
\end{aligned}
$$

D. $\frac{e^{2}}{m^{2}} g$

Answer:

D Watch Video Solution

84. A charge particle is free to move in an electric field. It will travel
A. Always along a line of force
B. Along a line of force, if its initial velocity
is zero
C. Along a line of force, if it has some initial
velocity in the direction of an acute angle with the line of force
D. None of the above

Answer:

- Watch Video Solution

85. Two point charges Q and $-3 Q$ are placed at some distance apart. If the electric field at
the location of Q is E then at the locality of
$-3 Q$, it is
A. $-E$
B. $E / 3$
C. $-3 E$
D. $-E / 3$

Answer:

D Watch Video Solution
86. Charges $q, 2 q, 3 q$ and $4 q$ are placed at the corners A, B, C and D of a square as shown in the following figure. The directon of electric field at the centre of the square is along

A. $A B$
B. $C B$
C. BD
D. AC

Answer:

D Watch Video Solution

87. Three infinitely long charge sheets are placed as shown in figure. The electric field at
point P is

A. $\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
B. $-\frac{2 \sigma}{\varepsilon_{0}} \hat{k}$
C. $\frac{4 \sigma}{} \hat{k}$
ε_{0}
D. $-\frac{4 \sigma}{\varepsilon_{0}} \hat{k}$

Answer:

D Watch Video Solution

88. Gauss's law is true only if force due to a
charge varies as
A. r^{-1}
B. r^{-2}
C. r^{-3}
D. r^{-4}

Answer:
89. The electric intensity due to a uniformly charged infinite cylinder of radius R, at a distance $r(>R)$, from its axis is proportional to
A. Directly proprotional to r^{2}
B. Directly proprotional to r^{3}
C. Inversely proprotional to r
D. Inversely proprotional to r^{2}

Answer:

D Watch Video Solution

90. A sphere of radius R has a uniform
distribution of electric charge in its volume. At
a distance x from its centre, for $x<R$, the electric field is directly proportional to

> A. $\frac{1}{x^{2}}$
> B. $\frac{1}{x}$
C. x
D. x^{2}

Answer:

D Watch Video Solution

91. A charged ball B hangs from a silk thread S,
which makes an angle θ with a large charged
conducting sheet P, as shown in figure. The
surface charge density σ of the sheet is
proportional to

A. $\sin \theta$
B. $\tan \theta$
C. $\cos \theta$
D. $\cot \theta$

Answer:
92. A charge q is placed at the centre of a cube of side l what is the electric flux passing through two opposite faces of the cube?

$$
\begin{aligned}
& \text { A. } \frac{q}{\epsilon_{0}} \\
& \text { B. } \frac{q}{2 \epsilon_{0}} \\
& \text { C. } \frac{q}{4 \epsilon_{0}} \\
& \text { D. } \frac{q}{6 \epsilon_{0}}
\end{aligned}
$$

- Watch Video Solution

93. A solid sphere S_{1} is connected to a charge reservoir through a heater H as shown in figure.

Flux through a closed spherical surface around S_{1} is given by $\phi=\alpha t^{2}$ where α is a constant and t is time in seconds. If resistance of heater is R then select correct statements
(1) Power consumed by heater will be $4 \alpha^{2} e_{0}^{2} R t^{2}$.
(2) Electric flux through a closed spherical surface around S_{2} will be $-\alpha t_{2}$.
(3) Rate of change of electric flux through a closed spherical surface around S_{2} will be $-2 \alpha t$
(4) All of the above are correct
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct

D. 1 and 3 are correct

Answer:

D Watch Video Solution

94. A simple pendulum has a time period T.

The bob is now given some positive charge -
(1) If some positive charge is placed at the point of suspension, T will increases
(2) If some positive charge is placed at the point of suspension, T will not change
(3) If a uniform downward electric field is
switched on, T will increase
(4) If a uniform downward electric field is switched on, T will decrease
A. 1, 2 and 3 are correct
B. 2 and 2 are correct
C. 3 and 4 are correct
D. 2 and 3 are correct

Answer:

95. A sphere of radius R contains charge density $\rho(r)=A(R-r)$, for $0<r<R$. The total electric charge inside the sphere is Q .

The value of A in terms of Q and R is

$$
\begin{aligned}
& \text { A. } \frac{2 Q^{2}}{\pi R^{4}} \\
& \text { B. } \frac{3 Q}{\pi R^{4}} \\
& \text { C. } \frac{3 Q^{2}}{\pi R^{3}} \\
& \text { D. } \frac{3 Q}{\pi R}
\end{aligned}
$$

- Watch Video Solution

96. A sphere of radius R contains charge density $\rho(r)=A(R-r)$, for $0<r<R$. The total electric charge inside the sphere is Q .

The electric field inside the sphere is

$$
\begin{aligned}
& \text { A. } \frac{3 Q}{\epsilon_{0} R^{2}}\left[\frac{1}{3}\left(\frac{r}{R}\right)-\frac{1}{4}\left(\frac{r}{R}\right)^{2}\right] \\
& \text { B. } \frac{12 Q^{2}}{R^{3}}\left[\frac{1}{3}\left(\frac{r}{R}\right)-\frac{1}{4}\left(\frac{r}{R}\right)^{2}\right] \\
& \text { C. } \frac{120 Q}{5 \in_{0} R^{2}}\left[\frac{1}{4}\left(\frac{r}{R}\right)-\frac{1}{3}\left(\frac{r}{R}\right)^{2}\right] \\
& \text { D. } \frac{12}{R^{2} Q}\left[\frac{1}{3}\left(\frac{r}{R}\right)-\frac{1}{4}\left(\frac{r}{R}\right)^{2}\right]
\end{aligned}
$$

Answer:

D Watch Video Solution

97. A sphere of radius R contains charge density $\rho(r)=A(R-r)$, for $0<r<R$. The total electric charge inside the sphere is Q .

The electric outside the sphere is

$$
\left(k=\frac{1}{4 \pi \epsilon_{0}}\right)
$$

A. $\frac{k Q}{r}$
B. $\frac{k Q}{r^{2}}$
C. $\frac{k Q}{r^{2}}$
D. $\frac{k Q^{2}}{r^{2}}$

Answer:

D Watch Video Solution

98. Assetrion: Electric lines of force never cross
each other.

Reason: Electric field at a point superimpose to give one resultant electric field
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

99. Assertion: A point charge is brought in an
electric field. The field at a nearby point will
increase, whatever be the nature of the charge.

Reason: The electric field is independent of the nature of charge.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

100. Statement-1 : Direction of electric field at
a point signifies direction of force experienced by a point charge placed at that point.

Statement-2 : Electric field is a vector quantity.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

\square

