©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

FLUID MECHANICS

Physics

1. Calculate the force required to separate the glass plates of area $10^{-2} m^{2}$ with a film of water 0.05 mm thickness between them

$$
\left.\left.=70 \times 10^{-3} N / m\right)\right)
$$

A. 28 n
B. 14 n
C. 50 n
D. 38 N

Answer:
(Watch Video Solution
2. A thin metal disc of radius r floats on water surface and bends the surface downwards along the perimeter making an angle θ with vertical edge of the disc of the disc. If the disc dispplaces a weight of water W and surface tension of water is T, then the weight of metal disc is
A. $2 \pi T+W$
B. $2 \pi T \cos \theta-W$
C. $2 \pi r T \cos \theta+W$
D. $W-2 \pi r T \cos \theta$

Answer:

D Watch Video Solution

3. The amount of work done in blowing a soap
bubble such that its diameter increases from d
to D is ($T=$ surface tension of the solution)
A. $4 \pi\left(D^{2}-d^{2}\right) T$
B. $8 \pi\left(D^{2}-d^{2}\right) T$

> C. $\pi\left(D^{2}-d^{2}\right) T$
> D. $2 \pi\left(D^{2}-d^{2}\right) T$

Answer:

D Watch Video Solution

4. A film of water is formed between two straight parallel wires of length 10 cm each separated by 0.5 cm If their separation is increased by 1 mm while still maintaining their parallelism, how much work will have to be

$$
\left.=7.2 \times 10^{-2} \frac{N}{m}\right)
$$

A. 7.22×10^{-6} Joule
B. 1.44×10^{-5} Joule
C. 2.88×10^{-5} Joule
D. 5.76×10^{-5} Joule

Answer:

D Watch Video Solution
5. The liquid meniscus in a capillary tube will be convex, if the angle of contact is
A. Greater than 90°
B. Less than 90°
C. Equal to 90°
D. Equal to 0°

Answer:
(Watch Video Solution
6. Two soap bubbles of radii r_{1} and r_{2} equal to

4 cm and 5 cm are touching each other over a common surface $S_{1} S_{2}$ (shown in figure). Its radius will be

A. 4 cm
B. 20 cm
C. 5 cm
D. 4.5 cm

Answer:

- Watch Video Solution

7. Prove that if two bubbles of radii r_{1} and r_{2}

coalesce isothermally in vacuum then the
radius of new bubble will be $r=\sqrt{r_{1}^{2}+r_{2}^{2}}$
A. $R=\left(r_{1}+r_{2}\right) / 2$

$$
\begin{aligned}
& \text { B. } R=r_{1}\left(r_{1} r_{2}+r_{2}\right) \\
& \text { C. } R^{2}=r_{1}^{2}+r_{2}^{2} \\
& \text { D. } R=r_{1}+r_{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

8. Two parallel glass plates are dipped partly in
the liquid of denstiy ' d ' keeping them vertical.

If the distance between the plates is ' x ',
Surface tension is T and angle of contact is θ
then ries of liquid between the plates due to

capillary will be

$$
\begin{aligned}
& \text { A. } \frac{T \cos \theta}{x d} \\
& \text { B. } \frac{2 T \cos \theta}{x d g} \\
& \text { C. } \frac{2 T}{x d g \cos \theta} \\
& \text { D. } \frac{T \cos \theta}{x d g}
\end{aligned}
$$

Answer:

D Watch Video Solution

9. A capillary tube of radius R is immersed in

water and water rises in it a height H. Mass of
water in capillary tube is M. If the radius of
the tube is doubled, mass of water that will
rise in capillary tube will be
A. M
B. 2 M
C. $M / 2$
D. 4 M

- Watch Video Solution

10. In a surface tension experiment with a capillary tube water rises upto 0.1 m . If the same experiment is repeated in an artificial satellite, which is revolving around the earth, water will rise in the capillary tube upto a height of
A. 0.1 m
B. 0.2 m
C. 0.98 m

D. Full length of the capillary tube

Answer:

D Watch Video Solution

11. Which graph represents the variation of
surface tension with temperature over small
temperature ranges for water?

Answer:

- Watch Video Solution

12. A solid sphere of density $\eta(>1)$ times
lighter than water is suspended in a water tank by a string tied to its base as shown in fig. if the mass of the sphere is m then the tension in the string is given by

A. $\left(\frac{\eta-1}{\eta}\right) m g$
B. $\eta m g$
C. $\frac{m g}{\eta-1}$
D. $(\eta-1) m g$

Answer:

- Watch Video Solution

13. A candle of diameter d is floating on a
liquid in a cylindrical container of diameter
$D(D \ll d)$ as shown in figure. If is burning at the rate of $2 \mathrm{~cm} / \mathrm{h}$ then the top of the
candle will :

A. Remain at the same height

B. Fall at the rate of $1 \mathrm{~cm} /$ hour

C. Fall at the rate of $2 \mathrm{~cm} /$ hour
D. Go up the rate of $1 \mathrm{~cm} /$ hour

Answer:

D Watch Video Solution

14. A viscous fluid is flowing through a
cylindrical tube. The velocity distribution of the fluid is best represented by the diagram
(a)
A.

(b)

(c)
C.

D. None of these

Answer:

- Watch Video Solution

15. When a body falls in a air, the resistance of air depends to a great extent on the shape of the body. The different shapes are given. Identify the combination of air resistance which truly represents the physical situation?
(The cross-sectional areas are the same)

(1) disc

(2) ball (3) cigar shaped

A. $1<2<3$
B. $2<3<1$
C. $3<2<1$
D. $3<1<2$

Answer:
16. A homogeneous solid cylinder of length
$\mathrm{L}(\mathrm{LLtH} / 2)$, cross-sectional area $\mathrm{A} / 5$ is immersed
such that it floats with its axis vertical at the
liquid-liquid interface with length $L / 4$ in the denser liquid as shown in the figure. The lower density liquid is open to atmosphere having
pressure P_{0}. Then density D of solid is given by

> A. $\frac{5}{4} d$ B. $\frac{4}{5} d$ C. d D. $\frac{d}{5}$

Answer:

- Watch Video Solution

17. A large open tank has two holes in the wall.

One is a square hole of side L at a depth y
from the top and the other is a circular hole of radius R at a depth 4y from the top. When the tank is completely filled with water, the quantities of water flowing out per second from both holes are the same. Then, R is equal to
A. $2 \pi L$
B. $\frac{L}{\sqrt{2 \pi}}$
C. L
D. $\frac{L}{2 \pi}$

Answer:

D Watch Video Solution

18. Water is filled in a cylindrical container to a
height of 3 m . The ratio of the cross-sectional area of the orifice and the beaker is 0.1 . The
square of the speed of the liquid coming out
from the orifice is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

A. $50 m^{2} / s^{2}$
B. $50.5 m^{2} / s^{2}$
C. $51 m^{2} / s^{2}$
D. $52 m^{2} / s^{2}$

- Watch Video Solution

19. An incompressible liquid flows through a
horizontal tube as shown in the figure. Then the velocity 'v' of the fluid is:

A. $3.0 \mathrm{~m} / \mathrm{s}$
B. $1.5 \mathrm{~m} / \mathrm{s}$

C. $1.0 \mathrm{~m} / \mathrm{s}$

D. $2.25 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

20. Radius of a capillary is $2 \times 10^{-3} \mathrm{~m}$. A liquid of weight $6.28 \times 10^{-4} N$ may remain in the capillary, then the surface tension of liquid will be:
A. $5 \times 10^{-3} \mathrm{~N} / \mathrm{m}$
B. $5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
C. $5 \mathrm{~N} / \mathrm{m}$
D. $50 \mathrm{~N} / \mathrm{m}$

Answer:

- Watch Video Solution

21. The temperature at which the surface tension of water is zero
(1) $370^{\circ} \mathrm{C}$
(2) $0^{\circ} C$
(3) Slightly less than $647 K$
(4) 277 K
A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution
22. Which of the following statements are true in case when two water drops coalesce and make a bigger drop?
(1) Energy is released.
(2) Energy is absorbed.
(3) The surface area of the bigger drop is smaller than the sum of the surface areas of both the drops.
(4) The surface area of the bigger drop is greater than the sum of the surface areas of both the drops.
A. 1,2 and 3 are correct

B. 2 and 2 are correct

C. 3 and 4 correct
D. 2 and 3 are correct

Answer:

D Watch Video Solution

23. An air bubble in a water tank rises from the
bottom to the top. Which of the following statements are true?
A. 1,2 and 3 are correct
B. 3 and 2 are correct
C. 4 and 4 correct
D. 3 and 3 are correct

Answer:

D Watch Video Solution

24. There is a small mercury drop of radius
4.0 mm . A surface P of area $1.0 \mathrm{~mm}^{2}$ is placed
at the top of the drop. Atmospheric pressure
$=10^{5} \mathrm{~Pa}$. Surface tension of mercury

$=0.465 N / m$. Gravity effect is negligible.

The force exerted by air on surface P is
A. $0.1 N$
B. $1.0023 N$
C. $10^{5} \mathrm{~N}$
D. 1.0 N

Answer:

D Watch Video Solution
25. There is a small mercury drop of radius
4.0 mm . A surface P of area $1.0 \mathrm{~mm}^{2}$ is placed
at the top of the drop. Atmospheric pressure
$=10^{5} \mathrm{~Pa}$. Surface tension of mercury
$=0.465 N / m$. Gravity effect is negligible.
The force exerted by mercury drop on the surface P is
A. $0.1 N$
B. 1.0023 N
C. $0.00023 N$
D. $0.10023 N$

Answer:

D Watch Video Solution

26. In the following questions, a statement of assertion is followed by a statement of reason.

Mark the correct choice as
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If assertion and reason are false.
Q. Assertion: A large soap bubble expands
while a small bubble shrinks, when they are connected to each other by a capillary tube.

Reason: The excess pressure inside bubble (or drop) is inversely proportional to the radius.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

27. Statement-1 : Bernoulli's theorem holds for incompressible, non-viscous fluids. Statement-

2 : The factor $\frac{v^{2}}{2 g}$ is called velocity head.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

28. Assertion: The velocity increases, when water flowing in broader pipe enter a narrow pipe.

Reason: According to equation of continuity, product of area and velocity is constant.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

False.

Answer:

(Watch Video Solution

