©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

KINETIC THEORY OF GASES

Physics

1. The pressure of a gas filled in a closed vessel
increase by 0.4% when temperature is
increased by $1^{\circ} C$. Find the initial temperature of the gas.
A. $250 K$
B. $250^{\circ} \mathrm{C}$
C. $2500 K$
D. $25^{\circ} \mathrm{C}$

Answer:
(Watch Video Solution
2. To double the volume of a given mass of an ideal gas at $27^{\circ} C$ keeping the pressure constant, one must raise the temperature in degree centigrade to
A. 54
B. 270
C. 327
D. 600

Answer:

3. Under which of the following conditions is
the law $\mathrm{PV}=\mathrm{RT}$ obeyed most closed by a real gas?
A. High pressure and high temperature
B. Low pressure and low temperature
C. Low pressure and high temperature
D. High pressure and low temperature
4. The pressure P, Volume V and temperature T of a gas in the jar A and the other gas in the jar B at pressure $2 P$, volume $V / 4$ and temperature $2 T$, then the ratio of the number of molecules in the jar A and B will be
A. 1:1
B. 1:2
C. 2:1
D. $4: 1$

Answer:

D Watch Video Solution

5. A flask is filled with $13 g$ of an ideal gas at
$27^{\circ} \mathrm{C}$ and its temperature is raised to $52^{\circ} \mathrm{C}$.

The mass of the gas that has to be released to maintain the temperature of the gas in the flask at $52^{\circ} C$, the pressure remaining the same is
A. $2.5 g$
B. $2.0 g$
C. $1.5 g$
D. $1.0 g$

Answer:

D Watch Video Solution

6. Two gases each at temperature T, volume V and pressure P are mixed such that temperature of mixture is T and volume is V .

What will be the pressure of the mixture ?
A. $p / 2$
B. p
C. $2 p$
D. $4 p$

Answer:

D Watch Video Solution
7. The root mean square velocity of a gas molecule of mass m at a given temperature is
A. m°
B. m
C. \sqrt{m}
D. $\frac{1}{\sqrt{m}}$

Answer:

- Watch Video Solution

8. Which of the following statements is true?

A. Absolute zero temperature is not zero
energy temperature
B. Two different gases at the same
temperature and pressure have equal
root mean square velocities
C. The root mean square speed of the molecules of different ideal gases, maintained at the same temperature are
the same

D. Given sample of 1 cc of hydrogen and 1

cc of oxygen both at NTP, oxygen sample has a large number of molecules

Answer:

D Watch Video Solution

9. At room temperature, the rms speed of the

 molecules of a certain diatomic gas is found to be $1930 \mathrm{~m} / \mathrm{s}$. The gas isA. H_{2}
B. F_{2}
C. o_{2}
D. Cl_{2}

Answer:

D Watch Video Solution

10. Root mean square velocity of a particle is v at pressure P. If pressure is increased two
times, then the r.m.s. velocity becomes
A. $2 v$
B. $3 v$
C. $0.5 v$
D. v

Answer:

D Watch Video Solution

11. In the two vessels of same volume, atomic hydrogen and helium at pressure 1 atm and 2 atm are filled. If temperature of both the
sample is same then average speed of
hydrogen atoms $<C_{H}<$ will be related to
that of helium $<C_{H e}>$ as

> A. $<C_{H} \geq \sqrt{2}<C_{H e}>$
> B. $<C_{H}>=<C_{H e}>$
> C. $i t C_{H}>=2 i t C_{H e}>$
> D. $<C_{H}>=\frac{<C_{H e}>}{2}$

Answer:

D Watch Video Solution
12. For gas at a temperature T the root-meansquare speed $v_{r m s}$, the most probable speed $v_{m p}$, and the average speed $v_{a v}$ obey the relationship
A. $v_{a v}>v_{r m s}>v_{m p}$
B. $v_{r m s}>v_{a v}>v_{m p}$
C. $v_{m p}>v_{a v}>v_{r m s}$
D. $v_{m p}>v_{r m s}>v_{a v}$

Answer:

D Watch Video Solution
13. One mole of gas having $\gamma=7 / 5$ is mixed with 1 mole of a gas having $\gamma=4 / 3$. What will be γ for the mixture ?
A. $3 / 2$
B. $23 / 15$
C. $35 / 23$
D. $4 / 3$

Answer:

14. The value of the gas constant (R) calculated
from the perfect gas equation is 8.32 Joule/gm
mol K , whereas its value calculated from the knowledge of C_{P} and C_{V} of the gas is 1.98 $\mathrm{cal} / \mathrm{gm}$ mole K . From this data, the value of J is
A. $4.16 \mathrm{~J} / \mathrm{cal}$
B. $4.18 \mathrm{~J} / \mathrm{cal}$
C. $4.20 \mathrm{~J} / \mathrm{cal}$
D. $4.22 \mathrm{~J} / \mathrm{cal}$

Answer:

- Watch Video Solution

15. Gas at a pressure P_{0} in contained as a
vessel. If the masses of all the molecules are
halved and their speeds are doubles. The resulting pressure P will be equal to
A. $4 p_{0}$
B. $2 p_{0}$
C. p_{0}
D. $\frac{p_{0}}{2}$

Answer:

D Watch Video Solution

16. The mean kinetic energy per unit volume of
gas (E) is related to average pressure P, exerted by the gas is

$$
\text { A. } P=-\frac{1}{2} E
$$

$$
\text { B. } P=E
$$

> C. $P=\frac{3}{2} E$
> D. $P=\frac{2}{3} E$

Answer:

D Watch Video Solution

17. Mean kinetic energy (or average energy)
per gm molecule of a monoatomic gas is given
by
A. $\frac{3}{2} R T$
B. $\frac{1}{2} K T$
C. $\frac{1}{2} R T$
D. $\frac{3}{2} K T$

Answer:

D Watch Video Solution

18. At which of the following temperatures
would the molecules of a gas have twice the average kinetic energy they have at $20^{\circ} C$?
A. $40^{\circ} C$
B. 80°
C. 313°
D. 586°

Answer:

D Watch Video Solution

19. The kinetic energy of one gram molecule of a gas at normal temperature and pressure is

$$
(R=8.31 \mathrm{~J} / \mathrm{mol}-K)
$$

A. $0.56 \times 10^{4} J$
B. $1.3 \times 10^{2} J$
C. $2.7 \times 10^{2} J$
D. $3.4 \times 10^{3} \mathrm{~J}$

Answer:

D Watch Video Solution

20. 70 calories of heat required to raise the temperature of 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}$. The
amount of heat required (in calories) to raise
the temperature of the same gas through the
same range $\left(30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}\right)$ at constant volume is:
A. 30 cal
B. 50 cal
C. 70 cal
D. 90 cal

Answer:

21. A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300 K .

The ratio of the average rorational kinetic energy per O_{2} molecules to that per N_{2} molecules is
A. $1: 1$
B. $1: 2$
C. $2: 1$
D. Depends on the moments of inertia of
the two molecules

Answer:

D Watch Video Solution

22. From the following statements, concerning
ideal gas at any given temperature T, select
the correct one(s)
(1) The coefficient of volume expansion at constant
pressure is same for all ideal gases
(2) In a gaseous mixture, the average translational kinetic
energy of the molecules of each component is
same
(3) The mean free path of molecules increases
with the
decrease in pressure
(4) The average translational kinetic energy
per molecule
of oxygen gas is 3 KT (K being Boltzmann
constant)
A. 1,2and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct

D. 1 and 3 are correct

Answer:

D Watch Video Solution

23. Let $\bar{v}, v_{r m s}$ and v_{p} respectively denote the mean speed. Root mean square speed, and most probable speed of the molecules in an ideal monoatomic gas at absolute temperature T . The mass of a molecule is m .

Then
A. 1,2and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

- Watch Video Solution

24. A gas in container A is in thermal equilibrium with another gas in container B, both contain equal masses of the two gases in
the respective containers. Which of the follow-
ing can be true
(1) $P_{A}=P_{B}, V_{A} \neq P_{B} V_{B}$
(2) $P_{A} V_{B}=P_{B} V_{B}$
(3) $P_{A} \neq P_{B}, V_{A}=V_{B}$
(4) $\frac{P_{A}}{V_{A}}=\frac{P_{B}}{V_{B}}$
A. 1,2and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

- Watch Video Solution

25. A diathermic piston divides adiabatic
cylinder of volume VO into two equal parts as
shown in the figure. Both parts contain ideal monoatomic gases. The initial pressure and temperature of gas in left compartment are PO and TO while that in right compartment are 2PO and 2TO. Initially the piston is kept fixed and the system is allowed to acquire a state of thermal equilibrium.

The pressure in left compartment after thermal equilibrium is achieved is
A. p_{o}
B. $\frac{3}{2} p_{0}$
C. $\frac{4}{3} p_{0}$
D. None of these

- Watch Video Solution

26. A diathermic piston divides adiabatic
cylinder of volume VO into two equal parts as
shown in the figure. Both parts contain ideal monoatomic gases. The initial pressure and temperature of gas in left compartment are PO and TO while that in right compartment are 2PO and 2TO. Initially the piston is kept fixed and the system is allowed to acquire a state of thermal equilibrium.

The heat that flown from right compartment to left compartment before thermal equilibrium is achieved is
A. $P_{0} V_{0}$
B. $\frac{3}{4} P_{0} V_{0}$
C. $\frac{3}{8} P_{0} V_{0}$
D. $\frac{2}{3} P_{0} V_{0}$

Answer:

- Watch Video Solution

27. A diathermic piston divides adiabatic
cylinder of volume VO into two equal parts as
shown in the figure. Both parts contain ideal monoatomic gases. The initial pressure and temperature of gas in left compartment are PO and TO while that in right compartment are 2PO and 2TO. Initially the piston is kept fixed and the system is allowed to acquire a state of
thermal equilibrium.

If the pin which was keeping the piston fixed is removed and the piston is allowed to slide slowly such that a state of mechanical equilibrium is achieved. The volume of left compartment when piston is in equilibrium is
A. $\frac{3}{4} V_{0}$
B. $\frac{V_{0}}{4}$
c. $\frac{V_{0}}{2}$

$$
\text { D. } \frac{2}{3} V_{0}
$$

Answer:

D Watch Video Solution

28. Assertion : Internal energy of an ideal gas
does not depend upon volume of the gas.

Reason : This is because internal energy of ideal gas depends only on temperature of gas.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a
correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is

NOT a correct explanation for

Statement-1.
C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

 False.
Answer:

D Watch Video Solution

29. Assetion : Equal masses of helium and oxygen gases are given equal quantities of heat. The rise in temperature of helium is greater thant that in case of oxygen.

Reason : The molecular mass of oxygen is more than molecular mass of helium.

A. Statement-1 is True, Statement-2 is True,

Statement-2 is a
correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is

NOT a correct explanation for

Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution
30. Statement-1 : Maxwell speed distribution graph is
asymmetric about most probable speed.

Statement-2 : rms speed of ideal gas, depends
upon it's type
(monoatomic, diatomic and polyatomic).
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a
correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is

NOT a correct explanation for

Statement-1.

C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

