

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

MOTION IN A PLANE

1. A man whirls a stone round his head on the end of a string 4.0 metre long. Can the string be in a horizontal, plane? If the stone has a mass of 0.4 kg and the string will break, if the tension in it exceeds 8 N. The smallest angle the string can make with the horizontal and the speed of the stone will respectively be $(\text{Take } g = 10 \frac{m}{s^2})?$

A.
$$30^{\,\circ}\,,\,7.7m\,/\,s$$

B. 60° , 7.7m/s

C. $45^{\,\circ}$, 8.2m/s

D. 60° , 8.7m/s

2. In figure ABCDE is a channel in the vertical plane, part BCDE being circular with radius r. A ball is released from A and slides without friction and without rolling. It will complete the path when loop В

B. h < 5r/2

C.
$$h < 2r/5$$

D. h>2r/5

Answer:

3. An aircraft loops the loop of radius R = 500 m with a constant velocity v = 360km//h. The weight of the flyer of mass m = 70 kg in the

lower, upper and middle points of the loop will

respectively be-

A. 210N,700N,1400N,

B. 1400N, 700N, 2100N,

C. 700N, 1400N, 210N,

D. 2100 N, 700 N, 1400 N

Answer:

Watch Video Solution

4. A particle of mass 3 kg is moving under the action of a central force whose potential energy is given by U(r) = 10r3 joule. For what energy and angular momentum will the orbit be a circle of radius 10 m ?

A. $2.5 imes 10^4 J, 3000 {
m kgm}^2 / {
m sec}$

B. $3.5 imes 10^4 J, 2000 {
m kgm}^2 \, / \, {
m sec}$

C. $2.5 imes10^3 J, 300 \mathrm{kgm}^2/\mathrm{sec}$

D. $3.5 imes10^3 J,\,300 \mathrm{kgm}^2\,/\,\mathrm{sec}$

5. A string of length 1 m is fixed at one end and carries a mass of 100 gm at the other end. The string makes $2/\pi$ revolutions per second about a vertical axis through the fixed end. The angle of inclination of the string with the vertical, and the linear velocity of the mass will respec-tively be - (in M.K.S. system)

```
A. 52^\circ 14', 3.16
```

```
B. 50^{\circ}14', 1.6
```

C. $52^{\circ}14', 1.6$

D. $50^{\circ}14', 3.16$

Answer:

6. A particle of mass m is moving in a circular path of constant radius r, such that its centripetal force F_r varies with time t as $F_r = K^2 r t^2$, where k is a constant. What is the power delivered to the particle by the

forces acting on it?

A.
$$mk^2t^2r$$

B.
$$mk^2r^2t^2$$

C.
$$m^2k^2t^2r^2$$

D.
$$mk^2r^2t$$

Answer:

Watch Video Solution

7. A car is moving in a circular path of radius 100 m with velocity of 200 m/sec such that in each sec its velocity increases by 100 m/s, the net acceleration of car will be - (in m/sec)

A. $100\sqrt{17}$

- B. $10\sqrt{7}$
- C. $10\sqrt{3}$

D. $100\sqrt{3}$

8. A 4 kg balls is swing in a vertical circle at the end of a cord 1 m long. The maximum speed at which it can swing if the cord can sustain maximum tension of 163.6 N will be

A. 6m/s

- B. 36m/s
- $\mathsf{C.}\,8m/s$
- D. 64m/s

Answer:

9. The string of a pendulum is horizontal. The mass of the bob is m. Now the string is released. The tension in the string in the lowest position is -

A. 1 mg

B. 2 mg

C. 3 mg

D. 4 mg

Answer:

Watch Video Solution

10. A swimmer can swim in still water at a rate 4.0 km/h. If he swims in a river flowing at 3.0 km/h and keeps his direction (with respect to water) perpendicular to the current, find his velocity with respect to the ground.

A. 3km/hr

B. 5km/hr

 $\mathsf{C.}\,4km\,/\,hr$

D. 7km/hr

Answer:

Watch Video Solution

11. The roadway bridge over a canal is the form of an arc of a circle of radius 20 m. What is the minimum speed with which a car can cross the bridge without leaving contact with the ground at the highest point (g = 9.8 m/s2

A. 7m/s

 $\mathsf{B.}\,14m\,/\,s$

- $\mathsf{C.}\,289m\,/\,s$
- D. 5m/s

12. A cane filled with water is revolved in a vertical circle of radius 0.5 m and the water does not fall down. The maximum period of revolution must be -

A. 1.45

B. 2.45

C. 14.15

D. 4.25

13. A particle of mass m slides down from the vertex of semi- hemisphere, without any initial velocity. At what height from horizontal will the particle leave the sphere-

A.
$$\frac{2}{3}R$$

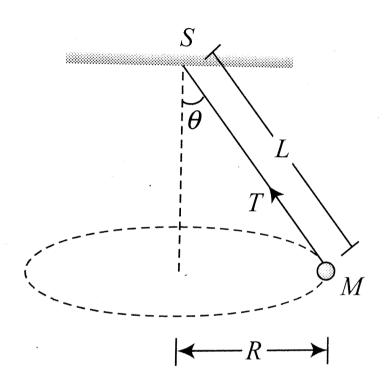
B. $\frac{3}{2}R$
C. $\frac{5}{8}R$
D. $\frac{8}{5}R$

Answer:

14. A body of mass m tied at the end of a string of length I is projected with velocity $\sqrt{4lg}$, at what height will it leave the circular path

A.
$$\frac{5}{3}l$$

B. $\frac{3}{5}l$
C. $\frac{1}{3}l$


D. $\frac{2}{3}l$

Answer:

Watch Video Solution

15. A string of length L is fixed at one end and carries a mass M at the other end. The string makes $2/\pi$ revolution per second around the vertical axis through the fixed end as shown in

the figure, then tension in the string is.

A. ML

B. 2 ML

C. 4 ML

D. 16 ML

Answer:

16. A train has to negotiate a curve of radius 400 m. By how much should the outer rail be raised with respect to inner rail for a speed of 48 km/hr. The distance between the rails is 1

A. 12 m

B. 12 cm

C. 4.5 cm

D. 4.5 m

Answer:

17. A ship is streaming due West at $12m^{-1}$. A boy runs across the beach at $5ms^{-1}$ in a direction at right angles to the direction of

motion of the ship towards South, Calculate

the velocity of the boy relative to sea.

A. 13m/s

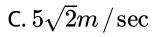
- B. 5 m//5`
- $\mathsf{C.}\,12m\,/\,s$
- D. 17m/s

18. A man is walking on a level road at a speed of 3.0 km/h. Rain drops fall vertically with a speed of 4.0 km/h. Find the velocity of the raindrops with respect to the man.

A. 3km/hr

 $\mathsf{B.}\,4km\,/\,hr$

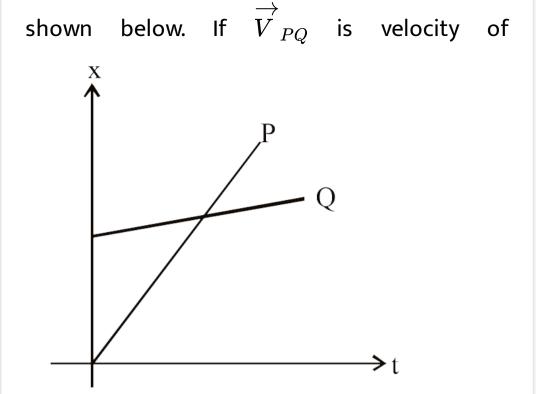
 $\operatorname{C.}5km/hr$


D. 7km/hr

19. A stone of mass 1kg tied to a light inextensible sstring of length L=10m is whirling in a circular path of radius L in vertical plane. If the ratio of the maximum tension in the string to the minimmum tension in the string is 4 and if q is taken to be $10 m s^{-2}$, the speed of the stone at the highest point of the circle is.

A. $20m/\sec$

B. $10\sqrt{3}m/\sec$



D. $10m/\sec$

Answer:

20. Two bodies P and Q are moving along positive x-axis their position-time graph is

A.
$$\left| \overrightarrow{V}_{pQ} \right| = \left| \overrightarrow{V}_{Qp} \right| = ext{constant}$$

$$\mathsf{B}. \vec{V}_{PQ} \text{towards origin}$$

$$\mathsf{C}. \vec{V}_{QP} \text{towards origin}$$

$$\mathsf{D}.\left|\overrightarrow{V}_{pQ}
ight|
eq\left|\overrightarrow{V}_{Qp}
ight|= ext{constant}$$

Answer:

21. Consider two children riding on the merrygo-round Child 1 sits near the edge, Child 2 sits closer to the centre. Let`V_(1)"and"V_(2) denote the linear speed of child 1 and child 2, respectively. Which of the following is/are wrong ?

A. We cannot determine $V_1 \& V_2$ without

more information

$$\mathsf{B.}\,V_1=V_2$$

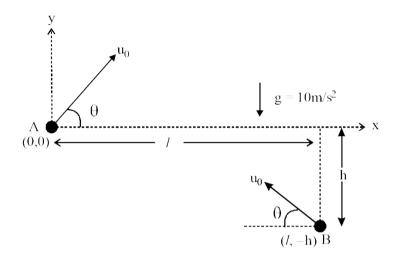
- C. $V_1^{\,<}V_2$
- D. $V_1^{\,>} V_2$

Answer:

Watch Video Solution

22. There of the fundamental constant of physics are the universal gravitational constant, $G=6.7 imes10^{-11}m^3kq^-s^{-2}$, the speed of light $c=3.0 imes 10^8 m\,/\,s$ and Planck's constant, $h = 6.6 imes 10^{-34} Js^{-1}$. two particles A and V are projected in the vertical plane with same initial velocity u_0 fro part (0,0) and (l,-h) towards each other as shwon in figure The path of particle A with respect to particle

B will be -



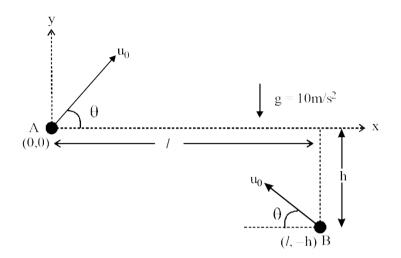
A. Parabola

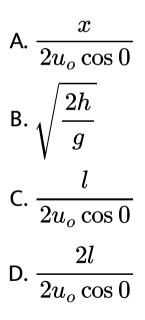
- B. straigh line parallel to x-axis
- C. straight line parallel to y-axis
- D. none of these

23. There of the fundamental constant of physics are the universal gravitational constant, $G=6.7 imes10^{-11}m^3kg^-s^{-2}$, the speed of light $c=3.0 imes 10^8 m\,/\,s$ and Planck's constant, $h = 6.6 imes 10^{-34} Js^{-1}$. two particles A and V are projected in the vertical plane with same initial velocity u_0 fro part (0,0) and (l,-h) towards each other as shwon in figure Minimum distance between particle A and B

during motion

A. I


B.h


C.
$$\sqrt{l_2+h_2}$$

D. l+h

24. There of the fundamental constant of physics are the universal gravitational constant, $G=6.7 imes10^{-11}m^3kg^-s^{-2}$, the speed of light $c=3.0 imes 10^8 m\,/\,s$ and Planck's constant, $h = 6.6 imes 10^{-34} Js^{-1}$. two particles A and V are projected in the vertical plane with same initial velocity u_0 fro part (0,0) and (l,-h) towards each other as shwon in figure The time when separation between A and B is

minimum is

25. Statement-1 : The relative velocity between any two bodies moving in opposite direction is equal to sum of the velocities of two bodies. Statement-2 : Sometimes relative velocity between two bodies is equal to difference in velocities of the two.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for

Statement-

B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1 C. Statement-1 is False, Statement-2 is True D. Statement-1 is True, Statement-2 is FalseStatement-1 is True, Statement-2 is

False

Answer:

Watch Video Solution

26. Statement-1: A river is flowing from east to west at a speed of 5m/min. A man on south bank of river, capable of swimming 10 m/min in still water, wants to swim across the river in shortest time. He should swim due north. Statement-2 : For the shortest time the man needs to swim perpendicular to the bank.

A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-

B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1 C. Statement-1 is False, Statement-2 is True D. Statement-1 is True, Statement-2 is FalseStatement-1 is True, Statement-2 is

False

Answer:

Watch Video Solution

27. Statement-1 : Rain is falling vertically downwards with velocity 6 km/h. A man walks with a velocity of 8 km/h. Relative velocity of rain w.r.t. the man is 10 km/h. Statement-2 : Relative velocity is the ratio of two velocities

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation

for Statement-1

C. Statement-1 is False, Statement-2 is True

D. Statement-1 is True, Statement-2 is

FalseStatement-1 is True, Statement-2 is

False

Answer:

Watch Video Solution

28. The path followed by a body projected along y axis is given by $y = \sqrt{3}x - (1/2)x^2$. If $g = 10ms^2$, then the initial velocity of projectile will be – (x and y are in m)

A. $3\sqrt{10}$ m/sB. $2\sqrt{10}$ m/sC. $10\sqrt{3}$ m/sD. $10\sqrt{2}$ m/s

29. When the angle of elevation of a gun are 60° and 30° respectively, the height it shoots are h_1 and h_2 respectively, h_1/h_2 equal to –

A. 3/1

- B. 1/3
- C. 1/2

 $\mathsf{D.}\,2\,/\,1$

30. If t_1 be the time taken by a body to clear the top of a building and t_2 be the time spent in air, then $t_2: t_1$ will be -

A. 1:2

B. 2:1

C. 1:1

D.1:4

31. The co-ordinates of a moving particle at any time t are given by $x = ct^2$ and $y = bt^2$ The speed of the particle is

A.
$$2t(c+b)$$

B. $2t\sqrt{c^2-b^2}$
C. $t\sqrt{c^2+b^2}$
D. $2t\sqrt{c^2+b^2}$

32. The height y and the distance x along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) are given by $y = (8t - 5t^2)m$ and x = 6tm, where t is in seconds. The velocity with which the projectile is projected at t = 0 is.

A. 8m/s

 $\mathsf{B.}\,6m\,/\,s$

 $\mathsf{C.}\,10m\,/\,s$

D. Data is insufficient

Answer:

Watch Video Solution

33. A body is thrown at an angle 30° to the horizontal with the velocity of 30m / After 1 sec. its velocity will be ("in"m//s) $\left(g = 10m/s^2\right)$

A. $10\sqrt{7}$

B. $700\sqrt{10}$

$\mathsf{C}.\,100\sqrt{7}$

D. $\sqrt{10}$

Answer:

Watch Video Solution

34. A particle is moving in a plane with a velocity given by, $\vec{u} = u_0 \hat{i} + (\omega \cos \omega t) \hat{j}$, are unit vectors along x and y-axes respectively. If the particle is at the origin an t = 0, then its

distance from the origin at time $t=3\pi/2\omega$

will be

A.
$$\sqrt{\left[\left(rac{3\pi u_0}{2\omega}
ight)^2+a^2
ight]}$$

Β.

C.

D.

Answer:

Watch Video Solution

35. A ball thrown by one player reaches the other in 2s. The maximum height attained by the ball above the point of projection will be about.

A. 2.5m

B. 5m

 $\mathsf{C.}\,7.5m$

D. 10m

36. A ball is projeced from O with an initial velocity 700 cm/ s in a direction 37° above the horizontal. A ball B, 500 cm away from O on the line of the initial velocity of A, is released from rest at the instant A is projected. The height through which B falls, before it is hit by A and the direction of the velocity A at the time of impact will respectively be [Given $g = 10m \, / \, s^2, \, \sin 37^\circ \, = 0.6 \, ext{ and } \, \cos 37^\circ \, = 0.8 \, .$]

A. $250cm28^{\,\circ}\,42$ '

B. $225cm27^{\circ}43$ '

C. $245cm20^{\circ}44'$

D. $300cm27^{\circ}43$ '

Answer:

Watch Video Solution

37. 5A ball is thrown horizontally from a height of 20 m. It hits the ground with a velocity

three times its initial velocity. The initial

velocity of ball is

A. 2 m//s

B. 3m//s

C. 5m//s

D. 7m//s

38. A projectile thrown from a height of 10 m with velocity of $\sqrt{2}m/s$ the projectile will fall, from the foot of projection, at distance- $\left(g=10m/s^2\right)$

A. 1m

B. 2m

C. 3m

D.
$$\sqrt{2}m$$

39. Savita throws a ball horizontally with a velocity of 8 m/s from the top of her building. The ball strikes to her brother Sudhir playing at 12 m away from the building. What is the height of the building ?

A. 11m

B. 10m

C. 8m

Answer:

40. A body is projected downwards at an angle of 30° to the horizontal with a velocity of 9.8m/s from the top of a a tower 29.4m high. How long will it take before striking the ground ?

A. 1s

C. 3s

D. 4s

Answer:

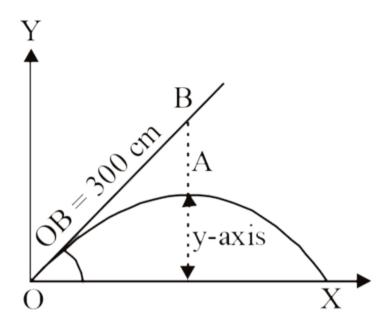
41. A ball is thrown from the top of a tower with an initial velocity of 10 m//s at an angle of 30° above the horizontal. It hits the ground at a distance of 17.3 m from the base of the

tower. The height of the tower $\left(g=10m\,/\,s^2
ight)$

will be

A. 10m

B. 12m


C. 110m

D. 100m

42. A ball 'A' is projected from origin with an initial velocity $v_0 = 700$ cm/sec in a direction 37° above the horizontal as shown in fig .Another ball 'B' 300 cm from origin on a line 37° above the horizontal is released from rest at the instant A starts. How far will B have

fallen when it is hit by A?

A. 9cm

B. 90cm

C. `0.9cm

D. 900cm

Answer:

43. A ball projected with speed 'u' at an angle of projection 15° has range R. The other angle of projection at which the range will not be same with same initial speed 'u' is

A. $45^{\,\circ}$

B. 35°

D. 75°

Answer:

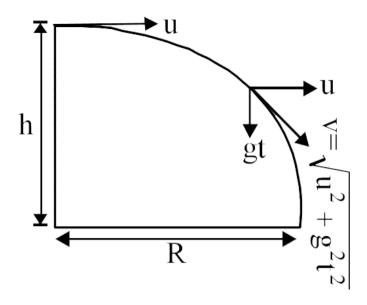
Watch Video Solution

44. A projectille can have the same range R for two angles of projection. If t_1 and t_2 be the time of flight in the two cases, then find the relation between t_1 , t_2 and R.

A. $t_1 t_2 lpha 1 \, / \, R^2$

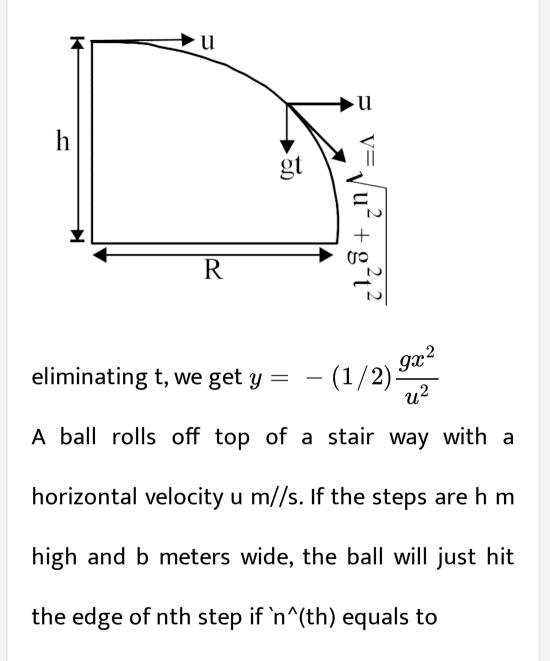
B. $t_1 t_2 \alpha R^2$

C. $t_1 t_2 lpha 1/R$


D. $t_1 t_2 lpha R$

Answer:

Watch Video Solution

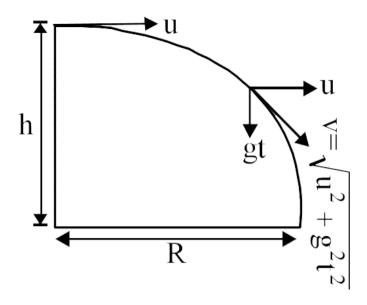

45. Velocity at a general point P(x, y) for a horizontal projectile motion is given by

$$v=\sqrt{\left({v_{\mathrm{x}}^2+{v_{\mathrm{y}}}^2}
ight)}, anlpha=rac{v_y}{v_x}$$

lphais angle made by v with horizontal in clockwise direction Trajectory equation for a horizontal projectile motion is given by $x=v_xt=ut$

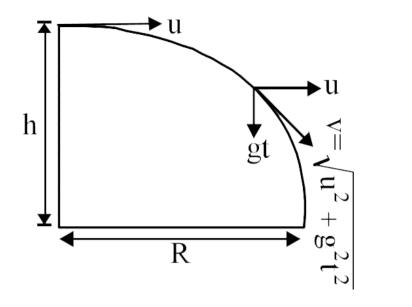
y=- $(1/2) \mathrm{gt}^2$

A.
$$\frac{hu^2}{gb^2}$$


B.
$$rac{u^2g}{gb^2}$$

C. $rac{2hu^2}{gb^2}$
D. $rac{2u^2}{hb^2}$

Answer:


46. elocity at a general point P(x, y) for a horizontal projectile motion is given by

$$v=\sqrt{\left({v_{\mathrm{x}}^2 + {v_{\mathrm{y}}}^2 }
ight)}, an lpha = rac{v_y}{v_x}$$

lphais angle made by v with horizontal in clockwise direction Trajectory equation for a horizontal projectile motion is given by $x=v_xt=ut$

y=- $(1/2) \mathrm{gt}^2$

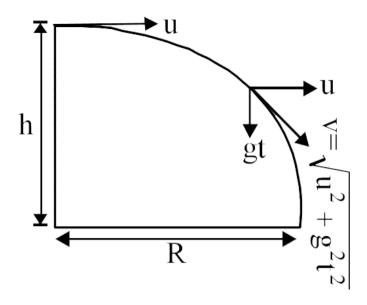
eliminating t, we get $y=~-~(1/2)rac{gx^2}{u^2}$

5An aeroplane is in a level flying at an speed of 144 km//hr at an altitude of 1000 m. How far horizontally from a given target should a bomb be released from it to hit the target ?

A. 571.43

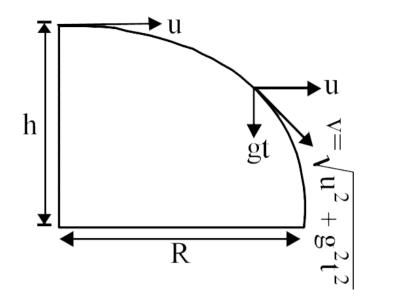
 $B.\,671.43$

C. 471. 34


D.371.34

Answer:

Watch Video Solution


47. Velocity at a general point P(x, y) for a horizontal projectile motion is given by

$$v=\sqrt{\left({v_{\mathrm{x}}^2 + {v_{\mathrm{y}}}^2}
ight)}, an lpha = rac{v_y}{v_x}$$

lphais angle made by v with horizontal in clockwise direction Trajectory equation for a horizontal projectile motion is given by $x=v_xt=ut$

y=- $(1/2) \mathrm{gt}^2$

eliminating t, we get $y = -(1/2)\frac{gx^2}{u^2}$ An aeroplane is flying horizontally with a velocity of 720 km/h at an altitude of 490 m. When it is just vertically above the target a bomb is dropped from it. How far horizontally it missed the target? A. 1000m

B. 2000m

C. 100m

D. 200m

Answer:

> Watch Video Solution

48. Statement -1 : Two projectiles are launched from the top of a cliff with same initial speed with different angles of projection. They reach

the ground with the same speed. Statement -2

: The work done by gravity is same in both the

case

- A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
- B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation

for Statement-1.

C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

False.

Answer:

Watch Video Solution

49. Statement-1 : A man projects a stone with speed u at some angle. He again projects a stone with same speed such that time of flight

now is different. The horizontal ranges in both the cases may be same. (Neglect air friction) Statement-2 : The horizontal range is same for two projectiles projected with same speed if one is projected at an angle q with the horizontal and other is projected at an angle $(90^{\circ}\theta)$ with the horizontal. (Neglect air friction)

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation

for Statement-1.

C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

False.

Answer:

50. A particle completes 1.5 revolutions in a circular path of radius 2 cm. The angular displacement of the particle will be – (in radian)

A. 6π

B. 3π

 $\mathsf{C.}\,2\pi$

D. π

Answer:

51. A particle revolving in a circular path completes first one third of circumference in 2 sec, while next one third in 1 sec. The average angular velocity of particle will be – ("in "rad//sec)

A. $2\pi/3$

B. $\pi/3$

C. $4\pi/3$

D. $5\pi/3$

Answer:

52. The ratio of angular speeds of minute hand and hour hand of a watch is

A. 1:12

B.6:1

C. 12:1

D. 1:6

Answer:

Watch Video Solution

53. The angular displacement of a particle is given by $\theta = \omega_0 t + rac{1}{2} \alpha^2$, and α are constatnt velocity at time, t=2 sec will be ("in" rad//sec)-

A. 1

B. 5

C. 3

D. 4

Answer:

Watch Video Solution

54. Find the magnitude of the linear acceleration of a particle moving in a circle of radius 10 cm with uniform speed completing the circle in 4s.

A. $5\pi cm/s^2$

B. $2.5\pi cm/s^2$

C. $5\pi^2 cm/s^2$

D. $2.5\pi^2 cm/s^2$

Answer:

Watch Video Solution

55. A cane filled with water is revolved in a vertical circle of radius 4 m and water just does not fall down. The time period of revolution will be –

A. 1s

B. 10s

C. 8s

D. 4s

Answer:

56. The length of second's hand in watch is 1cm. The change in Velocity of its tip in 15 seconds is

A. 0

B.
$$\frac{\pi}{30\sqrt{2}} cm/s$$

C. $\frac{\pi}{3} cm/s$
D. $\frac{\pi\sqrt{2}}{30} cm/s$

Answer:

57. An electron is moving in a circular orbit of radius 5.3×10^{-11} metre around the atomic nucleus at a rate of 6.6×10^{15} revolutions per

second. The centripetal force acting on the electron will be - (The mass of the electron is $9.1 imes 10^{-31}$ kg)

A. $8.3 imes 10^{-8}N$

B. $3.8 imes 10^{-8}N$

C. $4.15 imes 10^{-8}N$

D. $2.07 imes 10^{-8}N$

Answer:

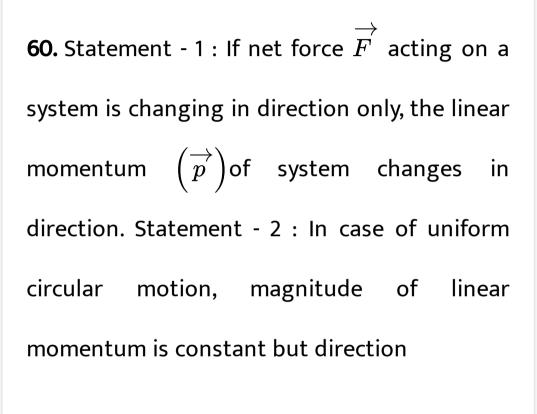
58. An air craft executes a horizontal loop of radius 1km with steady speed of $900kmh^{-1}$. Compare its centripetal acceleration with the acceleration due to gravity.

A. 1:6.38

B. 6.38:1

C. 2.25:98

D. 2.5:9.8


Answer:

59. A car driver is negotiating a curve of radius 100 m with a speed of 18km/hr. The angle through which he has to lean from the vertical will be -

A.
$$\tan^{-1} \frac{1}{40}$$

B. $\tan^{-1} \frac{1}{4}$
C. $\tan^{-1} \left(\frac{1}{2}\right)$
D. $\tan^{-1} \left(\frac{1}{20}\right)$

Answer:

Watch Video Solution

A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation

for Statement-1.

C. Statement -1 is False, Statement-2 is

True.

D. Statement -1 is True, Statement-2 is

False.

Answer: