©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

MOTION IN A PLANE

Physics

1. A man whirls a stone round his head on the
end of a string 4.0 metre long. Can the string
be in a horizontal, plane? If the stone has a
mass of 0.4 kg and the string will break, if the tension in it exceeds 8 N . The smallest angle the string can make with the horizontal and the speed of the stone will respectively be (Take $g=10 \frac{m}{s^{2}}$)?
A. $30^{\circ}, 7.7 m / s$
B. $60^{\circ}, 7.7 m / s$
C. $45^{\circ}, 8.2 \mathrm{~m} / \mathrm{s}$
D. $60^{\circ}, 8.7 \mathrm{~m} / \mathrm{s}$

Answer:
2. In figure $A B C D E$ is a channel in the vertical plane, part BCDE being circular with radius r. A ball is released from A and slides without friction and without rolling. It will complete the loop path
when

A. $h>5 r / 2$
B. $h<5 r / 2$
C. $h<2 r / 5$
D. $h>2 r / 5$

Answer:

D Watch Video Solution

3. An aircraft loops the loop of radius $R=500$
m with a constant velocity $\mathrm{v}=360 \mathrm{~km} / / \mathrm{h}$. The
weight of the flyer of mass $m=70 \mathrm{~kg}$ in the
lower, upper and middle points of the loop will respectively be-

A. $210 \mathrm{~N}, 700 \mathrm{~N}, 1400 \mathrm{~N}$,

B. $1400 \mathrm{~N}, 700 \mathrm{~N}, 2100 \mathrm{~N}$,
C. $700 \mathrm{~N}, 1400 \mathrm{~N}, 210 \mathrm{~N}$,
D. $2100 \mathrm{~N}, 700 \mathrm{~N}, 1400 \mathrm{~N}$

Answer:

D Watch Video Solution
4. A particle of mass 3 kg is moving under the action of a central force whose potential energy is given by $U(r)=10 r 3$ joule. For what energy and angular momentum will the orbit be a circle of radius 10 m ?

> A. $2.5 \times 10^{4} J, 3000 \mathrm{kgm}^{2} / \mathrm{sec}$
> B. $3.5 \times 10^{4} J, 2000 \mathrm{kgm}^{2} / \mathrm{sec}$
> C. $2.5 \times 10^{3} J, 300 \mathrm{kgm}^{2} / \mathrm{sec}$
> D. $3.5 \times 10^{3} J, 300 \mathrm{kgm}^{2} / \mathrm{sec}$

- Watch Video Solution

5. A string of length 1 m is fixed at one end and carries a mass of 100 gm at the other end. The string makes $2 / \pi$ revolutions per second about a vertical axis through the fixed end.

The angle of inclination of the string with the
vertical, and the linear velocity of the mass will respec- tively be - (in M.K.S. system)
A. $52^{\circ} 14^{\prime}, 3.16$
B. $50^{\circ} 14^{\prime}, 1.6$

C. $52^{\circ} 14^{\prime}, 1.6$

$$
\text { D. } 50^{\circ} 14^{\prime}, 3.16
$$

Answer:

D Watch Video Solution

6. A particle of mass m is moving in a circular path of constant radius r, such that its centripetal force F_{r} varies with time t as $F_{r}=K^{2} r t^{2}$, where k is a constant. What is
the power delivered to the particle by the forces acting on it?
A. $m k^{2} t^{2} r$
B. $m k^{2} r^{2} t^{2}$
C. $m^{2} k^{2} t^{2} r^{2}$
D. $m k^{2} r^{2} t$

Answer:
(Watch Video Solution
7. A car is moving in a circular path of radius

100 m with velocity of $200 \mathrm{~m} / \mathrm{sec}$ such that in
each sec its velocity increases by $100 \mathrm{~m} / \mathrm{s}$, the net acceleration of car will be - (in $\mathrm{m} / \mathrm{sec}$)
A. $100 \sqrt{17}$
B. $10 \sqrt{7}$
C. $10 \sqrt{3}$
D. $100 \sqrt{3}$

Answer:

8. A 4 kg balls is swing in a vertical circle at the end of a cord 1 m long. The maximum speed at which it can swing if the cord can sustain maximum tension of 163.6 N will be
A. $6 m / s$
B. $36 m / s$
C. $8 m / s$
D. $64 \mathrm{~m} / \mathrm{s}$

Answer:

- Watch Video Solution

9. The string of a pendulum is horizontal. The mass of the bob is m . Now the string is released. The tension in the string in the lowest position is -
A. 1 mg
B. 2 mg
C. 3 mg

D. 4 mg

Answer:

D Watch Video Solution

10. A swimmer can swim in still water at a rate
$4.0 \mathrm{~km} / \mathrm{h}$. If he swims in a river flowing at 3.0
km / h and keeps his direction (with respect to
water) perpendicular to the current, find his
velocity with respect to the ground.
A. $3 k m / h r$
B. $5 \mathrm{~km} / \mathrm{hr}$
C. $4 k m / h r$
D. $7 k m / h r$

Answer:

D Watch Video Solution

11. The roadway bridge over a canal is the form of an arc of a circle of radius 20 m . What is the minimum speed with which a car can cross the
bridge without leaving contact with the ground at the highest point ($g=9.8 \mathrm{~m} / \mathrm{s} 2$
A. $7 m / s$
B. $14 m / s$
C. $289 m / s$
D. $5 m / s$

Answer:
(D) Watch Video Solution
12. A cane filled with water is revolved in a vertical circle of radius 0.5 m and the water does not fall down. The maximum period of revolution must be -
A. 1.45
B. 2.45
C. 14.15
D. 4.25

Answer:

13. A particle of mass m slides down from the
vertex of semi- hemisphere, without any initial
velocity. At what height from horizontal will the particle leave the sphere-
A. $\frac{2}{3} R$
B. $\frac{3}{2} R$
C. $\frac{5}{8} R$
D. $\frac{8}{5} R$

Answer:

D Watch Video Solution

14. A body of mass m tied at the end of a string of length I is projected with velocity
$\sqrt{4 l g}$, at what height will it leave the circular path
A. $\frac{5}{3} l$
B. $\frac{3}{5} l$
C. $\frac{1}{3} l$
D. $\frac{2}{3} l$

Answer:

D Watch Video Solution

15. A string of length L is fixed at one end and
carries a mass M at the other end. The string
makes $2 / \pi$ revolution per second around the
vertical axis through the fixed end as shown in
the figure, then tension in the string is.

A. ML
B. 2 ML

C. 4 ML

D. 16 ML

Answer:

D Watch Video Solution

16. A train has to negotiate a curve of radius

400 m. By how much should the outer rail be
raised with respect to inner rail for a speed of
$48 \mathrm{~km} / \mathrm{hr}$. The distance between the rails is 1
m.
A. 12 m
B. 12 cm
C. 4.5 cm
D. 4.5 m

Answer:

D Watch Video Solution

17. A ship is streaming due West at $12 m^{-1}$. A
boy runs across the beach at $5 m s^{-1}$ in a
direction at right angles to the direction of
motion of the ship towards South, Calculate
the velocity of the boy relative to sea.
A. $13 m / s$
B. $5 \mathrm{~m} / / 5^{\prime}$
C. $12 m / s$
D. $17 m / s$

Answer:
(D) Watch Video Solution
18. A man is walking on a level road at a speed
of $3.0 \mathrm{~km} / \mathrm{h}$. Rain drops fall vertically with a
speed of $4.0 \mathrm{~km} / \mathrm{h}$. Find the velocity of the raindrops with respect to the man.
A. $3 k m / h r$
B. $4 k m / h r$
C. $5 \mathrm{~km} / \mathrm{hr}$
D. $7 \mathrm{~km} / \mathrm{hr}$

Answer:

19. A stone of mass 1 kg tied to a light inextensible sstring of length $L=10 \mathrm{~m}$ is whirling in a circular path of radius L in vertical plane. If the ratio of the maximum tension in the string to the minimmum tension in the string is 4 and if g is taken to be $10 m s^{-2}$, the speed of the stone at the highest point of the circle is.
A. $20 \mathrm{~m} / \mathrm{sec}$
B. $10 \sqrt{3} \mathrm{~m} / \mathrm{sec}$
C. $5 \sqrt{2} m / \mathrm{sec}$
D. $10 \mathrm{~m} / \mathrm{sec}$

Answer:

D Watch Video Solution

20. Two bodies P and Q are moving along positive x-axis their position-time graph is
shown below. If $\vec{V}_{P Q}$ is velocity of

A. $\left|\vec{V}_{p Q}\right|=\left|\vec{V}_{Q p}\right|=\mathrm{constant}$
B. $\vec{V}_{P Q}$ towards origin
C. $\vec{V}_{Q P}$ towards origin
D. $\left|\vec{V}_{p Q}\right| \neq\left|\vec{V}_{Q p}\right|=\mathrm{constant}$

Answer:

D Watch Video Solution

21. Consider two children riding on the merry-go-round Child 1 sits near the edge, Child 2 sits closer to the centre. Let`_(1)"and"V_(2) denote the linear speed of child 1 and child 2 , respectively. Which of the following is/are wrong?
A. We cannot determine $V_{1} \& V_{2}$ without more information
B. $V_{1}=V_{2}$
C. $V_{1}<V_{2}$
D. $V_{1}^{>} V_{2}$

Answer:

- Watch Video Solution

22. There of the fundamental constant of physics are the universal gravitational constant, $\quad G=6.7 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-} \mathrm{s}^{-2}$, the speed of light $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and Planck's constant, $h=6.6 \times 10^{-34} \mathrm{Js}^{-1}$. two particles
A and V are projected in the vertical plane with
same initial velocity u_{0} fro part $(0,0)$ and (l,-h)
towards each other as shwon in figure

The path of particle A with respect to particle

B will be -

A. Parabola
B. straigh line parallel to x-axis
C. straight line parallel to y-axis
D. none of these

- Watch Video Solution

23. There of the fundamental constant of physics are the universal gravitational constant, $G=6.7 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-} \mathrm{s}^{-2}$, the speed of light $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and Planck's constant, $h=6.6 \times 10^{-34} \mathrm{Js}^{-1}$. two particles

A and V are projected in the vertical plane with
same initial velocity u_{0} fro part $(0,0)$ and (1,-h) towards each other as shwon in figure

Minimum distance between particle A and B

during motion

A. I

B. h

C. $\sqrt{l_{2}+h_{2}}$
D. I+h

- Watch Video Solution

24. There of the fundamental constant of physics are the universal gravitational constant, $G=6.7 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-} \mathrm{s}^{-2}$, the speed of light $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and Planck's constant, $h=6.6 \times 10^{-34} \mathrm{Js}^{-1}$. two particles

A and V are projected in the vertical plane with
same initial velocity u_{0} fro part $(0,0)$ and (I,-h) towards each other as shwon in figure

The time when separation between A and B is

minimum is

- Watch Video Solution

25. Statement-1 : The relative velocity between
any two bodies moving in opposite direction is equal to sum of the velocities of two bodies.

Statement-2 : Sometimes relative velocity between two bodies is equal to difference in velocities of the two.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1
C. Statement- 1 is False, Statement- 2 is True
D. Statement-1 is True, Statement-2 is

FalseStatement-1 is True, Statement-2 is

False

Answer:

D Watch Video Solution

26. Statement-1: A river is flowing from east to
west at a speed of $5 \mathrm{~m} / \mathrm{min}$. A man on south
bank of river, capable of swimming $10 \mathrm{~m} / \mathrm{min}$ in
still water, wants to swim across the river in
shortest time. He should swim due north.

Statement-2 : For the shortest time the man needs to swim perpendicular to the bank.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1
C. Statement- 1 is False, Statement- 2 is True
D. Statement-1 is True, Statement-2 is

FalseStatement-1 is True, Statement-2 is

False

Answer:

D Watch Video Solution

27. Statement-1 : Rain is falling vertically downwards with velocity $6 \mathrm{~km} / \mathrm{h}$. A man walks with a velocity of $8 \mathrm{~km} / \mathrm{h}$. Relative velocity of rain w.r.t. the man is $10 \mathrm{~km} / \mathrm{h}$. Statement-2 : Relative velocity is the ratio of two velocities
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1
C. Statement-1 is False, Statement-2 is True
D. Statement-1 is True, Statement-2 is

FalseStatement-1 is True, Statement-2 is

False

Answer:

D Watch Video Solution

28. The path followed by a body projected along y axis is given by $y=\sqrt{3} x-(1 / 2) x^{2}$. If $g=10 m s^{2}$, then the initial velocity of projectile will be - (x and y are in m)
A. $3 \sqrt{10} \quad \mathrm{~m} / \mathrm{s}$
B. $2 \sqrt{10} \mathrm{~m} / \mathrm{s}$
C. $10 \sqrt{3} \quad \mathrm{~m} / \mathrm{s}$
D. $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer:

29. When the angle of elevation of a gun are 60° and 30° respectively, the height it shoots are h_{1} and h_{2} respectively, h_{1} / h_{2} equal to -
A. $3 / 1$
B. $1 / 3$
C. $1 / 2$
D. $2 / 1$

Answer:
30. If t_{1} be the time taken by a body to clear
the top of a building and t_{2} be the time spent in air, then $t_{2}: t_{1}$ will be -
A. 1:2
B. 2:1
C. 1:1
D. 1:4

- Watch Video Solution

31. The co-ordinates of a moving particle at any time t are given by $x=c t^{2}$ and $y=b t^{2}$

The speed of the particle is

$$
\begin{aligned}
& \text { A. } 2 t(c+b) \\
& \text { B. } 2 t \sqrt{c^{2}-b^{2}} \\
& \text { C. } t \sqrt{c^{2}+b^{2}} \\
& \text { D. } 2 t \sqrt{c^{2}+b^{2}}
\end{aligned}
$$

- Watch Video Solution

32. The height y and the distance x along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) are given by $y=\left(8 t-5 t^{2}\right) m$ and $x=6 t m$, where t is in seconds. The velocity with which the projectile is projected at $t=0$ is.
A. $8 m / s$
B. $6 m / s$
C. $10 \mathrm{~m} / \mathrm{s}$

D. Data is insufficient

Answer:

D Watch Video Solution

33. A body is thrown at an angle 30° to the
horizontal with the velocity of $30 \mathrm{~m} /$ After 1
sec. its velocity will be ("in"m//s)
$\left(g=10 m / s^{2}\right)$
A. $10 \sqrt{7}$

B. $700 \sqrt{10}$

C. $100 \sqrt{7}$
D. $\sqrt{10}$

Answer:

D Watch Video Solution

34. A particle is moving in a plane with a velocity given by, $\vec{u}=u_{0} \hat{i}+(\omega \cos \omega t) \hat{j}$, are unit vectors along x and y-axes respectively. If the particle is at the origin an $t=0$, then its
distance from the origin at timet $=3 \pi / 2 \omega$ will be
A. $\sqrt{\left[\left(\frac{3 \pi u_{0}}{2 \omega}\right)^{2}+a^{2}\right]}$
B.
C.
D.

Answer:

D Watch Video Solution
35. A ball thrown by one player reaches the other in $2 s$. The maximum height attained by the ball above the point of projection will be about.
A. $2.5 m$
B. 5 m
C. $7.5 m$
D. 10 m

Answer:

36. A ball is projeced from O with an initial velocity $700 \mathrm{~cm} / \mathrm{s}$ in a direction 37° above the horizontal. A ball B, 500 cm away from O on the line of the initial velocity of A, is released from rest at the instant A is projected. The height through which B falls, before it is hit by

A and the direction of the velocity A at the time of impact will respectively be [Given $g=10 \mathrm{~m} / \mathrm{s}^{2}, \sin 37^{\circ}=0.6$ and $\cos 37^{\circ}=0.8$]
A. $250 \mathrm{~cm} 28^{\circ} 42^{\prime}$
B. $225 \mathrm{~cm} 27^{\circ} 43^{\prime}$
C. $245 \mathrm{~cm} 20^{\circ} 44^{\prime}$
D. $300 \mathrm{~cm} 27^{\circ} 43^{\prime}$

Answer:

D Watch Video Solution

37. 5A ball is thrown horizontally from a height of 20 m . It hits the ground with a velocity
three times its initial velocity. The initial velocity of ball is
A. $2 \mathrm{~m} / / \mathrm{s}$
B. $3 \mathrm{~m} / / \mathrm{s}$
C. $5 \mathrm{~m} / / \mathrm{s}$
D. $7 \mathrm{~m} / / \mathrm{s}$

Answer:

D Watch Video Solution
38. A projectile thrown from a height of 10 m
with velocity of $\sqrt{2} m / s$ the projectile will fall,
from the foot of projection, at distance$\left(g=10 m / s^{2}\right)$
A. 1 m
B. 2 m
C. 3 m
D. $\sqrt{2} m$

Answer:
39. Savita throws a ball horizontally with a velocity of $8 \mathrm{~m} / \mathrm{s}$ from the top of her building.

The ball strikes to her brother Sudhir playing at 12 m away from the building. What is the height of the building ?
A. 11 m
B. 10 m
C. 8 m
D. 7 m

Answer:

D Watch Video Solution

40. A body is projected downwards at an angle of 30° to the horizontal with a velocity of $9.8 m / s$ from the top of a a tower $29.4 m$ high.

How long will it take before striking the ground?
A. 1s
B. 2 s
C. 3 s
D. 4 s

Answer:

D Watch Video Solution

41. A ball is thrown from the top of a tower with an initial velocity of $10 \mathrm{~m} / / \mathrm{s}$ at an angle of 30° above the horizontal. It hits the ground at a distance of 17.3 m from the base of the
tower. The height of the tower $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ will be
A. 10 m
B. 12 m
C. 110 m
D. 100 m

Answer:

D Watch Video Solution
42. A ball ' A ' is projected from origin with an initial velocity $v_{0}=700 \mathrm{~cm} / \mathrm{sec}$ in a direction 37° above the horizontal as shown in fig
.Another ball 'B' 300 cm from origin on a line
37° above the horizontal is released from rest at the instant A starts. How far will B have
fallen when it is hit by A ?

A. 9 cm
B. 90 cm
C. ${ }^{`} 0.9 \mathrm{~cm}$
D. 900 cm

Answer:

D Watch Video Solution

43. A ball projected with speed ' u ' at an angle of projection 15° has range R . The other angle of projection at which the range will not be same with same initial speed 'u' is
A. 45°
B. 35°
C. 90°
D. 75°

Answer:

D Watch Video Solution

44. A projectille can have the same range R for two angles of projection. If t_{1} and t_{2} be the time of flight in the two cases, then find the relation between t_{1}, t_{2} and R.

$$
\text { A. } t_{1} t_{2} \alpha 1 / R^{2}
$$

B. $t_{1} t_{2} \alpha R^{2}$
C. $t_{1} t_{2} \alpha 1 / R$
D. $t_{1} t_{2} \alpha R$

Answer:

D Watch Video Solution

45. Velocity at a general point $P(x, y)$ for a
horizontal projectile motion is given by
$v=\sqrt{\left(v_{\mathrm{x}}^{2}+v_{\mathrm{y}}{ }^{2}\right)}, \tan \alpha=\frac{v_{y}}{v_{x}}$

α is angle made by v with horizontal in
clockwise direction Trajectory equation for a
horizontal projectile motion is given by

$$
x=v_{x} t=u t
$$

$$
y=-(1 / 2) g t^{2}
$$

eliminating t , we get $y=-(1 / 2) \frac{g x^{2}}{u^{2}}$
A ball rolls off top of a stair way with a horizontal velocity $\mathrm{u} \mathrm{m} / / \mathrm{s}$. If the steps are h m
high and b meters wide, the ball will just hit the edge of nth step if n^{\wedge} (th) equals to

$$
\text { A. } \frac{h u^{2}}{g b^{2}}
$$

B. $\frac{u^{2} g}{g b^{2}}$
C. $\frac{2 h u^{2}}{g b^{2}}$
D. $\frac{2 u^{2}}{h b^{2}}$

Answer:

D Watch Video Solution

46. elocity at a general point $P(x, y)$ for a horizontal projectile motion is given by
$v=\sqrt{\left(v_{\mathrm{x}}^{2}+v_{\mathrm{y}}{ }^{2}\right)}, \tan \alpha=\frac{v_{y}}{v_{x}}$

α is angle made by v with horizontal in
clockwise direction Trajectory equation for a
horizontal projectile motion is given by

$$
x=v_{x} t=u t
$$

$$
y=-(1 / 2) g t^{2}
$$

eliminating t , we get $y=-(1 / 2) \frac{g x^{2}}{u^{2}}$
5An aeroplane is in a level flying at an speed of
$144 \mathrm{~km} / / \mathrm{hr}$ at an altitude of 1000 m . How far horizontally from a given target should a bomb be released from it to hit the target ?
A. 571.43
B. 671.43
C. 471.34
D. 371.34

Answer:

D Watch Video Solution

47. Velocity at a general point $P(x, y)$ for a
horizontal projectile motion is given by
$v=\sqrt{\left(v_{\mathrm{x}}^{2}+v_{\mathrm{y}}{ }^{2}\right)}, \tan \alpha=\frac{v_{y}}{v_{x}}$

α is angle made by v with horizontal in
clockwise direction Trajectory equation for a
horizontal projectile motion is given by

$$
x=v_{x} t=u t
$$

$$
y=-(1 / 2) g t^{2}
$$

eliminating t , we get $y=-(1 / 2) \frac{g x^{2}}{u^{2}}$
An aeroplane is flying horizontally with a
velocity of $720 \mathrm{~km} / \mathrm{h}$ at an altitude of 490 m .
When it is just vertically above the target a bomb is dropped from it. How far horizontally it missed the target?

A. 1000 m

B. 2000 m
C. 100 m
D. 200 m

Answer:

D Watch Video Solution

48. Statement -1 : Two projectiles are launched
from the top of a cliff with same initial speed
with different angles of projection. They reach
the ground with the same speed. Statement -2
: The work done by gravity is same in both the case
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.

B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution
49. Statement-1 : A man projects a stone with speed u at some angle. He again projects a stone with same speed such that time of flight
now is different. The horizontal ranges in both
the cases may be same. (Neglect air friction)

Statement-2 : The horizontal range is same for two projectiles projected with same speed if one is projected at an angle q with the horizontal and other is projected at an angle $\left(90^{\circ} \theta\right)$ with the horizontal. (Neglect air friction)
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

50. A particle completes 1.5 revolutions in a circular path of radius 2 cm . The angular displacement of the particle will be - (in radian)
A. 6π
B. 3π
C. 2π
D. π

Answer:

51. A particle revolving in a circular path completes first one third of circumference in 2
sec , while next one third in 1 sec . The average
angular velocity of particle will be - ("in
"rad//sec)
A. $2 \pi / 3$
B. $\pi / 3$
C. $4 \pi / 3$
D. $5 \pi / 3$

- Watch Video Solution

52. The ratio of angular speeds of minute hand
and hour hand of a watch is
A. $1: 12$
B. 6:1
C. $12: 1$
D. 1: 6

Answer:

- Watch Video Solution

53. The angular displacement of a particle is given by $\theta=\omega_{0} t+\frac{1}{2} \alpha^{2}$, and α are constatnt velocity at time, $t=2 \mathrm{sec}$ will be ("in" rad//sec)-
A. 1
B. 5
C. 3
D. 4

Answer:

D Watch Video Solution

54. Find the magnitude of the linear acceleration of a particle moving in a circle of
radius 10 cm with uniform speed completing the circle in 4 s .
A. $5 \pi c m / s^{2}$
B. $2.5 \pi \mathrm{~cm} / \mathrm{s}^{2}$
C. $5 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
D. $2.5 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$

Answer:

D Watch Video Solution

55. A cane filled with water is revolved in a vertical circle of radius 4 m and water just does not fall down. The time period of revolution will be -
A. 1s
B. 10 s
C. 8 s
D. 4 s

Answer:

D Watch Video Solution
56. The length of second's hand in watch is

1 cm . The change in Velocity of its tip in 15
seconds is
A. 0

$$
\begin{aligned}
& \text { B. } \frac{\pi}{30 \sqrt{2}} \mathrm{~cm} / \mathrm{s} \\
& \text { C. } \frac{\pi}{3} \mathrm{~cm} / \mathrm{s} \\
& \text { D. } \frac{\pi \sqrt{2}}{30} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Answer:

D Watch Video Solution

57. An electron is moving in a circular orbit of radius 5.3×10^{-11} metre around the atomic nucleus at a rate of 6.6×10^{15} revolutions per
second. The centripetal force acting on the electron will be - (The mass of the electron is $\left.9.1 \times 10^{-31} \mathrm{~kg}\right)$
A. $8.3 \times 10^{-8} N$
B. $3.8 \times 10^{-8} N$
C. $4.15 \times 10^{-8} N$
D. $2.07 \times 10^{-8} N$

Answer:

D Watch Video Solution
58. An air craft executes a horizontal loop of radius 1 km with steady speed of $900 \mathrm{kmh}^{-1}$.

Compare its centripetal acceleration with the acceleration due to gravity.
A. $1: 6.38$
B. $6.38: 1$
C. $2.25: 98$
D. $2.5: 9.8$

Answer:

D Watch Video Solution
59. A car driver is negotiating a curve of radius 100 m with a speed of $18 \mathrm{~km} / \mathrm{hr}$. The angle through which he has to lean from the vertical will be -
A. $\tan ^{-1} \frac{1}{40}$
B. $\tan ^{-1} \frac{1}{4}$
C. $\tan ^{-1}\left(\frac{1}{2}\right)$
D. $\tan ^{-1}\left(\frac{1}{20}\right)$

- Watch Video Solution

60. Statement-1 : If net force \vec{F} acting on a system is changing in direction only, the linear momentum (\vec{p}) of system changes in direction. Statement - 2 : In case of uniform circular motion, magnitude of linear momentum is constant but direction
A. Statement- 1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

\square

