©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

OSCILLATIONS

Physics

1. A simple harmonic motion is represented by
$F(t)=10 \sin (20 t+0.5)$. The amplitude of
the S.H.M. is
A. $a=30 \mathrm{~cm}$
B. $a=20 \mathrm{~cm}$
C. $a=10 \mathrm{~cm}$
D. $a=5 \mathrm{~cm}$

Answer:

D Watch Video Solution

2. A particle executes a simple harmonic motion of time period T. Find the time taken
by the particle to go directly from its mean position to half the amplitude.
A. $T / 2$
B. $T / 4$
C. $T / 8$
D. $T / 12$

Answer:
(Watch Video Solution
3. The periodic time of a body executing simple harmonic motion is 3 sec . After how much time from time $t=0$, its displacement will be half of its amplitude
A. $\frac{1}{8} \mathrm{sec}$
B. $\frac{1}{6} \mathrm{sec}$
C. $\frac{1}{4} \mathrm{sec}$
D. $\frac{1}{3} \mathrm{sec}$

Answer:

4. If $x=a \sin \left(\omega t+\frac{\pi}{6}\right)$ and $x=a \cos \omega t$, then what is the phase difference between the two waves?
A. $\pi / 3$
B. $\pi / 6$
C. $\pi / 2$
D. π
5. A body is executing S.H.M. when its displacement from the mean position is 4 cm and 5 cm , the corresponding velocity of the body is $10 \mathrm{~cm} / \mathrm{sec}$ and $8 \mathrm{~cm} / \mathrm{sec}$. Then the time period of the body is
A. $2 \pi \mathrm{sec}$
B. $\pi / 2 \mathrm{sec}$
C. $\pi \mathrm{sec}$
D. $3 \pi / 2 \mathrm{sec}^{`}$

Answer:

D Watch Video Solution

6. If a simple pendulum oscillates with an amplitude of 50 mm and time period of 2 sec , then its maximum velocity is
A. $0.10 m / s$
B. $0.15 \mathrm{~m} / \mathrm{s}$
C. $0.8 \mathrm{~m} / \mathrm{s}$
D. $0.26 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

7. The maximum velocity and the maximum acceleration of a body moving in a simple harmonic oscillator are $2 \mathrm{~m} / \mathrm{s}$ and $4 m / s^{2}$. Then angular velocity will be
A. $3 \mathrm{rad} / \mathrm{sec}$
B. $0.5 \mathrm{rad} / \mathrm{sec}$
C. $1 \mathrm{rad} / \mathrm{sec}$

D. $2 \mathrm{rad} / \mathrm{sec}$

Answer:

D Watch Video Solution

8. The amplitude of a executing $S H M$ is 4 cm

At the mean position the speed of the particle
is $16 \mathrm{~cm} / \mathrm{s}$ The distance of the particle from
the mean position at which the speed the particle becomes $8 \sqrt{3} \mathrm{~cm} / \mathrm{s}$ will be
A. $2 \sqrt{3} \mathrm{~cm}$
B. $\sqrt{3} \mathrm{~cm}$
C. 1 cm
D. 2 cm

Answer:

D Watch Video Solution

9. The amplitude of a particle executing S.H.M.
with frequency of 60 Hz is 0.01 m . The maximum value of the acceleration of the particle is
A. $144 \pi^{2} m / \sec ^{2}$
B. $144 \pi^{2} m / \mathrm{sec}^{2}$
C. $\frac{144}{\pi^{2}} m / \sec ^{2}$
D. $288 \pi^{2} m / \sec ^{2}$

Answer: A

D Watch Video Solution

10. A particle executes simple harmonic motion with an angular velocity and maximum
acceleration of $3.5 \mathrm{rad} / \mathrm{sec}$ and $7.5 \mathrm{~m} / \mathrm{s}^{2}$

respectively. The amplitude of oscillation

A. 0.28 m
B. 0.36 m
C. 0.53 m
D. 0.61 m

Answer:
(Watch Video Solution
11. What is the maximum acceleration of the particle doing the SHM $\gamma=2 \sin \left[\frac{\pi t}{2} \phi\right]$ where gamma is in cm ?
A. $\frac{\pi}{2} \mathrm{~cm} / \mathrm{s}^{2}$
B. $\frac{\pi^{2}}{2} \mathrm{~cm} / \mathrm{s}^{2}$
C. $\frac{\pi}{4} \mathrm{~cm} / \mathrm{s}^{2}$
D. $\frac{\pi}{4} \mathrm{~cm} / \mathrm{s}^{2}$

Answer:

12. The total energy of a particle executing
S.H.M. is proportional to
A. Displacement from equilibrium position
B. Frequency of oscillation
C. Velocity in equilibrium position
D. Square of amplitude of motion

Answer:
(Watch Video Solution
13. When the displacement is half the amplitude, the ratio of potential energy to the total energy is

> A. $\frac{1}{2}$
> B. $\frac{1}{4}$
C. 1
D. $\frac{1}{8}$

Answer:

14. A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic energy changes into potential energy is
A. $f / 2$
B. f
C. $2 f$
D. $4 f$

Answer:

15. A particle executes simple harmonic motion
with a frequency. (f). The frequency with which
its kinetic energy oscillates is.
A. $f / 2$
B. f
C. $2 f$
D. $4 f$

Answer:

D Watch Video Solution
16. The kinetic energy of a particle executing SHM is 16 J . When it is in its mean position. If the amplitude of oscillation is 25 cm and the mass of the particle is 5.12 kg , the time period of its oscillation in second is
A. $\frac{\pi}{5} \mathrm{sec}$
B. $2 \pi \mathrm{sec}$
C. $20 \pi \mathrm{sec}$
D. $5 \pi \mathrm{sec}$

Answer:

- Watch Video Solution

17. The displacement x (in metres) of a particle performing simple harmonic motion is related to time t (in seconds) as
$x=0.05 \cos \left(4 \pi t+\frac{\pi}{4}\right)$.the frequency of the motion will be
A. 0.5 Hz
B. 1.0 Hz

C. 1.5 Hz

D. 2.0 Hz

Answer:

D Watch Video Solution

18. A particle executes simple harmonic motion
between $x=-A$ and $x=+A$. The time
taken
for
it
to go
from
$0 \rightarrow A / 2 i s T_{1}$ and $\rightarrow g o o m A / 2 \rightarrow(A) i s\left(T_{2}\right)$
. Then.
A. $T_{1}<T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}=T_{2}$
D. $T_{1}<2 T_{2}$

Answer:

- Watch Video Solution

19. A cylinder piston of mass M sides smoothlly inside a long cylinder closed at and enclesing a cartin mass of gas The cylinder is
kept with its axis horizantal if the pistan is distanced from its equations positions it oscillation simple harmoniically. THe period of oscillation will be

A. $T=2 \pi S \sqrt{\left(\frac{M h}{P A}\right)}$
B. $T=2 \pi \sqrt{\left(\frac{M A}{P h}\right)}$

> C. $T=2 \pi \sqrt{\left(\frac{M}{P A h}\right)}$
> D. $T=2 \pi \sqrt{M P h A}$

Answer:

D Watch Video Solution

20. A particle is performing simple harmonic motion along x-axis with amplitude $4 c m$ and time period 1.2 sec . The minimum time taken by the particle to move from
$x=2 c m \rightarrow x=+4 c m$ and back again is given by
A. 0.6 sec
B. 0.4 sec
C. 0.3 sec
D. 0.2 sec

Answer:
(Watch Video Solution
21. A spring of Force- constant K is cut into
two pieces sach that one piece is double the
length of the other. Then the long pieces will have a force - constant of
A. $(2 / 3) K$
B. $(3 / 2) K$
C. 3 K
D. 6 K

Answer:
22. A simple pendulum has time period T_{1}.

When the point of suspension moves vertically
up according to the equation $y=k t^{2}$ where
$k=1 \mathrm{~m} / \mathrm{s}^{2}$ and ' t ' is time then the time period of the pendulum is T_{2} then $\left(T_{1} / T_{2}\right)^{2}$ is
A. $2 / 3$
B. $5 / 6$
C. $6 / 5$
D. $3 / 2$

Answer:

D Watch Video Solution

23. A particle constrained to move along the x axis in a
potential $V=k \mathrm{x}^{2}$ is subjected to an external
time dependent
force $\vec{f}(t)$ here k is a constant, x the distance
from the origin,
and t the time. At some time T, when the particle
has zero velocity at $x=0$, the external force is removed.

Choose the incorrect options -
(1) Particle executes SHM
(2) Particle moves along +x direction
(3) Particle moves along - x direction
(4) Particle remains at rest
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

24. Three simle harmionic motions in the same
direction having the same amplitude (a) and
same period are superposed. If each differs in phase from the next by 45°, then.
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

25. For a particle executing simple harmonic motion, which
of the following statements is correct?
(1) The total energy of the particle always remains the same
(2) The restoring force is maximum at the
extreme positions
(3) The acceleration of the particle is maximum at the equilibrium position
(4) The acceleration of the particle is maximum at the equilibrium position
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:
26. The differential equation of a particle undergoing SHM is given
by a $a \frac{d^{2} \mathrm{x}}{d t^{2}}+b \mathrm{x}=0$. The particle starts from the extreme position.

The ratio of the maximum acceleration to the maximum velocity of the particle is -

$$
\begin{aligned}
& \text { A. } \frac{b}{a} \\
& \text { B. } \frac{a}{b} \\
& \text { C. } \sqrt{\frac{a}{b}}
\end{aligned}
$$

D. $\sqrt{\frac{b}{a}}$

Answer: D

- Watch Video Solution

27. The differential equation of a particle undergoing SHM is
given by a $a \frac{d^{2} \mathrm{x}}{d t^{2}}+b \mathrm{x}=0$ ltbr.gt The particle starts from the extreme position

The equation of motion may be given by :
A. $x=A \sin \left(\sqrt{\frac{b}{a}}\right) t$
B. $x=A \cos \left(\sqrt{\frac{b}{a}}\right) t$
С. $x=A \sin \left(\sqrt{\frac{b}{a}} t+0\right)$

28. Statement-1 : In S.H.M., the motion is 'to
and fro' and
periodic.
Statement-2 : Velocity of the particle
(v) $=\omega \sqrt{k^{2}-x^{2}}$ (where x is the displacement
and k is amplitude)
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a
correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT
a correct explanation for Statement-1.
C. Statement -1 is False, Statement-2 is True
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

29. Assertion: In simple harmonic motion the velocity is maximum when the acceleration is minimum

Reason : Displacement and velocity of $S H M$ differ in phase by $\frac{\pi}{2}$
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a
correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT
a correct explanation for Statement-1.
C. Statement -1 is False, Statement-2 is

True. (d) Statement - 1 is True, Statement-

2 is False.
D. Statement -1 is True, Statement-2 is

False.

Answer:
(Watch Video Solution
30. STATEMENT-1 : The graph of total energy of
a particle in $S . H . M$ w.r.t. position is a straight line with zero slope. STATEMENT-2 : Total graph of total energy of a particle in S.H.M. remains constant throughout its motion.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a
correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT
a correct explanation for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

\square

