©゙’doubtnut

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

ROTATIONAL MOTION

Physics

1. A thin circular ring of mass M and radius R is rotating
about its axis with a constant angular velocity omega.
Four objects each of mass m, are kept gently to the opposite ends of two perpendicular diameters of the ring. The angular velocity of the ring will be
A. $\frac{M \omega}{M+4 m}$
B. $\frac{(M+4 m) \omega}{M}$
C. $\frac{(M-4 m) \omega}{M+4 m}$
D. $\frac{M \omega}{4 m}$

Answer:

D Watch Video Solution

2. The angular momentum of a system of particles is conserved
A. When no external force acts upon the system
B. When no external torque acts upon the system
C. When no external impulse acts upon the system
D. When axis of rotation remains same

Answer:

- Watch Video Solution

3. Two rigid bodies A and B rotate with rotational
kinetic energies E_{A} and E_{B} respectively. The moments of inertia of A and B about the axis of rotation are I_{A} and I_{B} respectively. If $I_{A}=I_{B} / 4$ and $\mathrm{E}_{-}(\mathrm{A})=100 \mathrm{E}_{-}(\mathrm{B})$,
the ratio of angular momentum ($L_{-}(A)$) of A to the angular momentum (L_(B)) of B is
B. 5//4
C. 5
D. $1 / / 4$

Answer:

D Watch Video Solution

4. A uniform heavy disc is rotating at constant angular velocity ω about a vertical axis through its centre and perpendicular to the plane of the disc. Let L be its angular momentum. A lump of plasticine is dropped vertically on the disc and sticks to it. Which of the following will be constant?
A. ω
B. omega andL both
C. L only
D. Neither omega nor L

Answer:

D Watch Video Solution

5. Two discs of moment of inertia I_{1} and I_{2} and angular speeds ω_{1} and ω_{2} are rotating along the collinear axes passing through their center of mass and perpendicular to their plane. If the two are made to
rotate combindly along the same axis the rotational K. E. of system will be

$$
\begin{aligned}
& \text { A. } \frac{I_{1} \omega_{1}+I_{1} \omega_{2}}{2\left(I_{1}+I_{2}\right)} \\
& \text { B. } \frac{\left(I_{1}+I_{2}\right)\left(\omega_{1}+\omega_{2}\right)^{2}}{2} \\
& \text { C. } \frac{\left(I_{1} \omega_{1}+I_{2} \omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}
\end{aligned}
$$

D. None of these

Answer:

- Watch Video Solution

6. A particle performing uniform circular motion gas angular momentum L. If its angular frequency is double
and its kinetic energy halved, then the new angular momentum is :
A. 2 L
B. 4 L
C. $L / 2$
D. $L / 4$

Answer:

D Watch Video Solution

7. A round disc of moment of inertia I_{2} about its axis perpendicular to its plane and passing through its
centre is placed over another disc of moment of inertia
I_{1} rotating with an angular velocity ω about the same axis. The final angular velocity of the combination of discs is.
A. $\frac{I_{2} \omega}{I_{1}+I_{2}}$
B. ω
C. $\frac{I_{1} \omega}{I_{1}+I_{2}}$
D. $\frac{\left(I_{1}+I_{2}\right) \omega}{I_{1}}$

Answer:

- Watch Video Solution

8. Calculate the angular momentum of a body whose rotational energy is 10 joule. If the angular momentum vector coincides with the axis of rotation and its moment of inertia about this axis is $8 \times 10^{-7} \mathrm{~kg} \mathrm{~m}^{\wedge}(2)$
A. $4 \times 10^{-3} \mathrm{kgm}^{2} / \mathrm{s}$
B. $2 \times 10^{-3} \mathrm{kgm}^{2} / \mathrm{s}$
C. $6 \times 10^{-3} \mathrm{kgm}^{2} / \mathrm{s}$
D. None of these

Answer:

9. if the earth is treated as a sphere of radius Radn mass M, Its angular momentum about the axis of its rotation with period T , is
A. $\frac{\pi M R^{3}}{T}$
B. $\frac{M R^{2} \pi}{T}$
c. $\frac{2 \pi M R^{2}}{5 T}$
D. $\frac{4 \pi M R^{2}}{5 T}$

Answer:

D Watch Video Solution

10. If the earth is a point mass of $6 \times 10^{24} \mathrm{~kg}$ revolving around the sun at a distance of $1.5 \times 10^{8} \mathrm{~km}$ and in time $T=3.14 \times 10^{7} s$. then the angular momentum of the earth around the sun is
A. $1.2 \times 10^{18} \mathrm{kgm}^{2} / \mathrm{s}$
B. $1.8 \times 10^{29} \mathrm{kgm}^{2} / \mathrm{s}$
C. $1.5 \times 10^{37} \mathrm{kgm}^{2} / \mathrm{s}$
D.

Answer:

11. An automobile engine develops 100 kilo - watt, when rotating at a speed of 1800 rev / min. Find the torque developed by it.
A. $350 \mathrm{~N}-\mathrm{m}$
B. $440 \mathrm{~N}-\mathrm{m}$
C. $531 \mathrm{~N}-\mathrm{m}$
D. $628 \mathrm{~N}-\mathrm{m}$

Answer:

D Watch Video Solution
12. A constant torque acting on a uniform circular wheel changes its angular momentum from A_{0} to $4 A_{0}$ in 4 seconds. Find the magnitude of this torque.
A. $\frac{3 A_{0}}{4}$
B. A_{0}
C. $4 A_{0}$
D. $12 A_{0}$

Answer:

D Watch Video Solution
13. A wheel having moment of inertia $2 \mathrm{kgm}^{2}$ about its vertical axis, rotates at the rate of $60 r \pm$ about this axis. The torque which can stop the wheel's rotation in one minute would be
A. $\frac{2 \pi}{15} N m$
B. $\frac{\pi}{12} N m$
C. $\frac{\pi}{15} N m$
D. $\frac{\pi}{18} N m$

Answer:

14. Find the torque of a force $\vec{F}=-3 \hat{i}+\hat{j}+5 \hat{k}$ acting at the point $\vec{r}=7 \hat{i}+3 \hat{j}+\hat{k}$

$$
\begin{aligned}
& \text { A. } 14 \hat{i}-38 \hat{j}+16 \hat{k} \\
& \text { B. } 4 \hat{i}+4 \hat{j}+6 \hat{k} \\
& \text { C. }-14 \hat{i}+38 \hat{j}-16 \hat{k} \\
& \text { D. }-21 \hat{i}+3 \hat{j}+5 \hat{k}
\end{aligned}
$$

Answer:

- Watch Video Solution

15. A constant torque of $1000 N-m$ turns a wheel of moment of inertia $200 \mathrm{~kg}-m^{2}$ about an axis through
its centre. Its angular velocity after 3 seconds is.
A. $15 \mathrm{rad} / \mathrm{s}$
B. $10 \mathrm{rad} / \mathrm{s}$
C. $5 \mathrm{rad} / \mathrm{s}$
D. $1 \mathrm{rad} / \mathrm{s}$

Answer:

- Watch Video Solution

16. A torque of $20 N-m$ is applied on a wheel initially
at rest. Calculate the angular momentum of the wheel
after 3 sec .
A. 750 rad
B. 1500 rad
C. 3000 rad
D. 6000 rad

Answer:

- Watch Video Solution

17. A horizontal force F is applied such that the block remains stationary, then which of the following

A. $f=m g$ [where f is the friction force]
B. $\mathrm{F}=\mathrm{N}$ [where N is the normal reaction]
C. F will not produce torque
D. N will not produce torque

(- Watch Video Solution

18. In a bicycle the radius of rear wheel is twice the radius of front wheel. If v_{F} and v_{r} are the speeds of top most points of front and rear wheels respectively, then :

$$
\begin{aligned}
& \text { A. } v_{r}=2 v_{F} \\
& \text { B. } v_{F}=2 v_{r} \\
& \text { C. } v_{F}=v_{r} \\
& \text { D. } v_{F}>v_{r}
\end{aligned}
$$

Answer:

19. The wheel of a car is rotating at the rate of 1200 revolutions per minute. On pressing the accelerator for

10 seconds, it starts rotating at 4500 revolutions per minute. The angular acceleration of the wheel is
A. $30 \mathrm{rad} / \mathrm{sec}^{2}$
B. 1880 degree $/ \mathrm{sec}^{2}$
C. $40 \mathrm{rad} / \mathrm{sec}^{2}$
D. 1980 degree $/ \sec ^{2}$

Answer:

20. A wheel rotates with a constasnt acceleration of $2.0 \mathrm{ra} \frac{d}{s^{2}}$. If the wheel starts from rest, how many evolutions wil it make in the first 10 senconds?
A. 8
B. 16
C. 24
D. 32

Answer:
21. A child is standing with folded hands at the center of a platform rotating about its central axis. The kinetic energy of the system is K. The child now stretches his
arms so that the moment of inertia of the system doubles. The kinetic energy of the system now is
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correc

Answer:

22. Two uniforms discs of equal mass but unequal radii are mounted on fixed horizontal axiles. Light strings are wrapped on each of the discs. The strings are pulled by constant equal forces F for same amount of time as shown in the figure

Angular momenta of discs are L1 and L2 and their kinetic energies are K1 and K2. Which of the following statements true -
$L_{1}=L_{2}$
$L_{1}<L_{2}$

$$
\begin{aligned}
& K_{1}>K_{2} \\
& K_{1}=K_{2}
\end{aligned}
$$

A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

23. Consider a cylinder of mass $M=1 \mathrm{~kg}$ and radius
$R=1$ mlying on a rough horizontal plane. It has a
plank lying on its stop as shown in the figure.

A force $F=55 N$ is applied on the plank moves and
causes the cylinder to roll. The plank always remains
horizontal. there is no slipping at any point of contact.
The acceleration of cylinder is
A. $20 m / s^{2}$
B. $10 \mathrm{~m} / \mathrm{s}^{2}$
C. $5 m / s^{2}$
D. None of these

Answer:

- Watch Video Solution

24. Consider a cylinder of mass $M=1 \mathrm{~kg}$ and radius
$R=1 m$ lying on a rough horizontal plane. It has a plank lying on its stop as shown in the figure.

A force $F=55 N$ is applied on the plank moves and causes the cylinder to roll. The plank always remains horizontal. there is no slipping at any point of contact.

The value of frictional force at A is
A. 7.5 N
B. 5.0 N
C. 2.5 N
D. None of these

Answer:

- Watch Video Solution

25. Consider a cylinder of mass $M=1 \mathrm{~kg}$ and radius
$R=1$ mlying on a rough horizontal plane. It has a plank lying on its stop as shown in the figure.

A force $F=55 N$ is applied on the plank moves and causes the cylinder to roll. The plank always remains horizontal. there is no slipping at any point of contact.

The value of frictional force at B is
B. 5.0 N
C. 2.5 N
D. None of these

Answer:

- Watch Video Solution

26. Statement -1 : Torque is equal to rate of change of
angular momentum .
Statement -2: Angular momentum depends on moment of inertia and angular velocity.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for Statement-1.
C. Statement -1 is False, Statement-2 is True
D. Statement -1 is True, Statement-2 is False.

Answer:

Watch Video Solution

27. Statement -1: Torque due to force is maximum when angle between \vec{r} and $\vec{F} i s 90^{\circ}$.

Statement -2: The unit of torque is newton- meter.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for

Statement-1.
C. Statement -1 is False, Statement-2 is True
D. Statement -1 is True, Statement- 2 is False.

Answer:

- Watch Video Solution

28. Statement -1: It is harder to open and shut the door if we apply force near the hinge

Statement -2 : Torque is maximum at hinge of the door.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation for

Statement-1.
C. Statement -1 is False, Statement-2 is True
D. Statement -1 is True, Statement-2 is False.

Answer:

D Watch Video Solution

29. Five particles of mass 2 kg are attached to the rim of
a circular disc of radius 0.1 m \& negligible mass.
Moment of inertia of the system about an axis passing through the centre of the disc \& perpendicular to its plane is
A. $1 \mathrm{~kg}-m^{2}$
B. $0.1 \mathrm{~kg}-m^{2}$
C. $2 \mathrm{~kg}-m^{2}$
D. $0.2 \mathrm{~kg}-m^{2}$

Answer:

D Watch Video Solution

30. Two discs of the same material and thickness have
radii 0.2 m and 0.6 m . Their moments of inertia about
their axes will be in the ratio of
A. $1: 81$
B. $1: 27$
C. 1:9
D. 1:3

Answer:

- Watch Video Solution

31. A cylinder of 500 g and radius 10 cm has moment of inertia (about its natural axis)
A. $2.5 \times 10^{-3} \mathrm{~kg}-m^{2}$
B. $2 \times 10^{-3} \mathrm{~kg}-m^{2}$
C. $5 \times 10^{-3} \mathrm{~kg}-m^{2}$
D. $3.5 \times 10^{-3} \mathrm{~kg}-m^{2}$

Answer:

D Watch Video Solution

32. A constant torque of $31.4 N-m$ id exterted on a pivoted wheel. If the angular acceleration of the wheel is $4 \pi \mathrm{rad} / \mathrm{s}^{2}$, then the moment of inertia will be.
A. $2.5 \mathrm{~kg}-m^{2}$
B. $2.5 \mathrm{~kg}-\mathrm{m}^{2}$
C. $4.5 \mathrm{~kg}-\mathrm{m}^{2}$
D. $5.5 \mathrm{~kg}-\mathrm{m}^{2}$

Answer:

D Watch Video Solution

33. From a uniform wire, two circular loops are made (i)
P of radius r and (ii) Q of radius $n r$. If the moment of inertia of Q about an axis passing through its center and perpendicular to tis plane is 8 times that of P about a similar axis, the value of n is (diameter of the wire is very much smaller than r or $n r$)
A. 8
B. 6
C. 4
D. 2

Answer:

D Watch Video Solution

34. The moment of inertia of a sphere of mass M and radius R about an axis passing through its centre is $\frac{2}{5} M R^{2}$. The radius of gyration of the sphere about a parallel axis to the above and tangent to the sphere is
A. $\frac{7}{5} R$
B. $\frac{3}{5} R$
C. $\left(\sqrt{\frac{7}{5}}\right) R$
D. $\left(\sqrt{\frac{3}{5}}\right) R$

Answer:

D Watch Video Solution

35. Four particles each of mass m are placed at the corners of a square of side length l. The radius of gyration of the system about an axis perpendicular to the plane of square and passing through its centre is

> A. $\frac{l}{\sqrt{2}}$
> B. $\frac{l}{2}$
C. I
D. $(\sqrt{2}) l$

Answer:

D Watch Video Solution

36. The radius of gyration of a disc of mass 50 g and radius 2.5 cm , about an axis passing through its centre of gravity and perpendicular to the plane is
A. 0.52 cm
B. 1.76 cm
C. 3.54 cm
D. 6.54 cm

Answer:

D Watch Video Solution

37. Moment of inertia of a ring of mass $m=3 \mathrm{gm}$ and radius $r=1 \mathrm{~cm}$ about an axis passing through its edge and parallel to its natural axis is
A. $10 \mathrm{gm}-\mathrm{cm}^{2}$
B. $100 \mathrm{gm}-\mathrm{cm}^{2}$
C. $6 \mathrm{gm}-\mathrm{cm}^{2}$
D. $1 \mathrm{gm}-\mathrm{cm}^{2}$

- Watch Video Solution

38. A disc is of mass M and radius r. The moment of inertia of it about an axis tangential to its edge and in plane of the disc or parallel to its diameter is
A. $\frac{5}{4} M r^{2}$
B. $\frac{M r^{2}}{4}$
C. $\frac{3}{2} M r^{2}$
D. $\frac{M r^{2}}{2}$

Answer:

39. Two spheres each of mass M and radius $R / 2$ are connected at their centres with a mass less rod of length $2 R$. What will be the moment of inertia of the system about an axis passing through the centre of one of the sphere and perpendicular to the rod ?
A. $\frac{21}{5} M r^{2}$
B. $\frac{2}{5} M r^{2}$
C. $\frac{5}{2} M r^{2}$
D. $\frac{5}{21} M r^{2}$

Answer:

Watch Video Solution

40. Three point masses m_{1}, m_{2} and m_{3} are located at the vertices of an equilateral triangle of side α. What is
the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?
A. $\left(m_{2}+m_{3}\right) \frac{a^{2}}{4}$
B. $\left(m_{1}+m_{2}+m_{3}\right) a^{2}$
C. $\left(m_{1}+m_{2}\right) \frac{a^{2}}{4}$
D. $\left(m_{2}+m_{3}\right) a^{2}$

Answer:

41. Three rods each of length L and mass M are placed along X, Y and Z axis in such a way that one end of each of the rod is at the origin. The moment of inertia of this system about Z axis is
A. $\frac{2 M L^{2}}{3}$
B. $\frac{4 M L^{2}}{3}$
C. $\frac{5 M L^{2}}{3}$
D. $\frac{M L^{2}}{3}$

Answer:

42. $A B C$ is a traiangular plate of uniform thickness.

The sides are in the ratio shown in the figure. $I_{A B}, I_{B C}$ and $I_{C A}$ are the moments of inertia of the plate about
$A B, B C$ and $C A$ repectively. Which one of the following relations is correct?

A. $I_{C A}$ is maximum
B. $I_{B C}>I_{A B}$
C. $I_{B C}>I_{A B}$
D. $I_{A B}+I_{B C}=I_{C A}$

Answer:

- Watch Video Solution

43. A 1 m long rod has a mass of 0.12 kg . The moment of inertia about an axis passin through the centre and perpendicular to the length of rod will be
A. $0.01 \mathrm{~kg}-\mathrm{m}^{2}$
B. $0.001 \mathrm{~kg}-\mathrm{m}^{2}$
C. $1 \mathrm{~kg}-\mathrm{m}^{2}$
D. $10 \mathrm{~kg}-\mathrm{m}^{2}$

Answer:

- Watch Video Solution

44. Two rings of same radius and mass are placed such
that their centres are at a common point and their planes are perpendicular to each other. The moment of inertia of the system about an axis passing through the centre and perpendicular to the plane of one of the rings is (mass the ring $=m$, radius $=r$)

$$
\text { A. } \frac{1}{2} m r^{2}
$$

B. $m r^{2}$
C. $\frac{3}{2} m r^{2}$
D. $2 m r^{2}$

Answer:

- Watch Video Solution

45. One quarter sector is cut from a uniform circular disc of radius R. This sector has mass M. It is made to rotate about a line perpendicular to its plane and passing through the centre of the original disc. It
moment of inertia about the axis of rotation is.

A. $\frac{1}{2} M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $\frac{1}{8} M R^{2}$
D. $\sqrt{2} M R^{2}$

Answer:

D Watch Video Solution

46. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre at O as shown. The moment of inertia of the loop about the
axis $X X^{\prime}$ is :

B

A. $\frac{\rho L^{3}}{8 \pi^{2}}$
B. $\frac{\rho L^{3}}{16 \pi^{2}}$
C. $\frac{5 \rho L^{3}}{16 \pi^{2}}$
D. $\frac{3 \rho L^{3}}{8 \pi^{2}}$

Answer:
47. Two discs of same thickness but of different radii are made of two different materials such that their masses are same. The densities of the materials are in the ratio of $1: 3$. The moments of inertia of these discs about
the respective axes passing through their centres and perpendicular to their planes will be in the ratio of A. 1:3
B. 3: 1
C. 1:9
D. 9:1
48. A circular disc of radius R and thickness $R / 6$ has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and recast into a solid sphere. The M.I of the sphere about its diameter as axis of rotation is
A. I
B. $\frac{2 I}{8}$
C. $\frac{I}{5}$
D. $\frac{I}{10}$
49. Three rings, each of mass m and radius r, are so
placed that they touch each other. Find the moment of
inertia about the axis as shown in Fig.

A. $3 M R^{2}$
B. $\frac{3}{2} M R^{2}$
C. $5 M R^{2}$
D. $\frac{7}{2} M R^{2}$

Answer:

D Watch Video Solution

50. The density of a rod $A B$ increases linearly from A to
B its midpoint is O and its centre of mass is at C. four axes pass through $\mathrm{A}, \mathrm{B}, \mathrm{O}$ and C , all perpendicular to the length of the rod. The moment of inertial of the rod about these axes are I_{A}, I_{B}, I_{O} and I_{C} respectively.
A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

51. The moment of inertia of thin square plate $A B C D$ of uniform thickness about an axis passing through the center O and perpendicular to the plane of the plate is

(i) $I_{1}+I_{2}$
(ii) $I_{2}+I_{4}$
(iii) $I_{1}+I_{3}$
(iv) $I_{1}+I_{2}+I_{3}+I_{4}$
where I_{1}, I_{2}, I_{3} and I_{4} are respectively moments of inertia about axes $1,2,3$ and 4 which are in the plane of the plane
A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

52. Moment of inertia doesn't depend on
distribution of particles
mass
position of axis of rotation
None of these
A. 1,2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

- Watch Video Solution

53. Four identical spheres having mass M and radius R are fixed tightly within a massless ring such that the centres of all spheres lie in the plane of ring. The ring is kept on a rough horizontal table as shown. The string is wrapped around the ring can roll without slipping. The
other end of the string is passed over a massless frictionless pulley to a block of mass M. A force F is applied horizontally on the ring, at the same level as the centre, so that the system is in equilibrium.

The moment of inertia of the combined ring system
about the centre of ring will be

A. $\frac{12}{5} M R^{2}$
B. $\frac{48}{15} M R^{2}$
C. $\frac{24}{5} M R^{2}$
D. $\frac{48}{5} M R^{2}$

Answer:
(D) Watch Video Solution
54. Four identical spheres having mass M and radius R
are fixed tightly within a massless ring such that the centres of all spheres lie in the plane of ring. The ring is kept on a rough horizontal table as shown. The string is wrapped around the ring can roll without slipping. The other end of the string is passed over a massless frictionless pulley to a block of mass M. A force F is
applied horizontally on the ring, at the same level as
the centre, so that the system is in equilibrium.

The magnitude of F is
A. Mg
B. 2 Mg
C. $\frac{M g}{2}$
D. None of these

- Watch Video Solution

55. Four identical spheres having mass M and radius R are fixed tightly within a massless ring such that the centres of all spheres lie in the plane of ring. The ring is kept on a rough horizontal table as shown. The string is wrapped around the ring can roll without slipping. The other end of the string is passed over a massless frictionless pulley to a block of mass M. A force F is applied horizontally on the ring, at the same level as the centre, so that the system is in equilibrium.

If the masses of the spheres were doubled keeping their dimensions same, the force of friction between the ring and the horizontal surface would
A. be doubled
B. increase but be less than double
C. remain the same

D. decrease

Answer:

- Watch Video Solution

56. Statement-1 : Radius of gyration of a body is a constant quantity.

Statement-2 : The radius of gyration of a body about an axis of rotation may be defined as the root mean square distance of the particles of the body from the axis of rotation.
A. Statement -1 is true , Statement -2 is True ,

Statement -2 is a correct explanation for

Statement-1.
B. Statement-1 is True , Statement -2 is True ,

Statement-2 is NOT a correct explanation for statement-1.
C. Statement-1 is False, Statement - 2 is True.
D. Statement - 1 is True , Statement -2 is False.

Answer:

D Watch Video Solution

57. Statement-1 : Moment of inertia of a particle is same, whatever be the axis of rotation.

Statement-2 : Moment of inertia depends on mass and perpendicular distance of the particle from its axis of rotation.
A. Statement -1 is true , Statement -2 is True ,

Statement -2 is a correct explanation for

Statement-1.
B. Statement-1 is True , Statement -2 is True ,

Statement-2 is NOT a correct explanation for
statement-1.
C. Statement-1 is False, Statement -2 is True.
D. Statement - 1 is True , Statement -2 is False.

- Watch Video Solution

58. Statement-1 : If earth shrink (without change in mass) to half of its present size, length of the day would become 6 hours.

Statement-2 : When the size of the earth will change, its moment of inertia will also change.
A. Statement -1 is true , Statement -2 is True ,

Statement -2 is a correct explanation for

Statement-1.
B. Statement-1 is True , Statement -2 is True ,

Statement-2 is NOT a correct explanation for
statement-1.
C. Statement-1 is False, Statement - 2 is True.
D. Statement - 1 is True , Statement -2 is False.

Answer:

D Watch Video Solution

59. A uniform rod of length 2 L is placed with one end in contact with the horizontal and is then inclined at an angle a to the horizontal and allowed to fall without slipping at contact point. When it becomes horizontal, its angular velocity will be
A. $\omega=\sqrt{\frac{3 g \sin \alpha}{2 L}}$
B. $\omega=\sqrt{\frac{2 L}{3 g \sin \alpha}}$
C. $\omega=\sqrt{\frac{6 g \sin \alpha}{L}}$
D. $\omega=\sqrt{\frac{L}{g \sin \alpha}}$

Answer:

- Watch Video Solution

60. According to the theorem of parallel axes $I=I_{\mathrm{cm}}+M x^{2}$, the graph between I and x will be
(a)
A.

Answer:

D Watch Video Solution

61. An inclined plane makes an angle 30° with the horizontal. A solid sphere rolling down this inclined
plane from rest without slipping has a linear acceleration equal to
A. $\frac{g}{3}$
B. $\frac{2 g}{3}$
C. $\frac{5 g}{7}$
D. $\frac{5 g}{14}$

Answer:

D Watch Video Solution

62. Moment of inertia of a disc about its own axis is I. Its moment of inertia about a tangential axis in its plane is
A. $\frac{5}{2} I$
B. 31
C. $\frac{3}{2} I$
D. 21

Answer:

D Watch Video Solution

63. One circular ring and one circular disc, both are having the same mass and radius. The ratio of their moments of inertia about the axes passing through their centres and perpendicular to their planes, will be
A. $1: 1$
B. 2:1
C. $1: 2$
D. $4: 1$

Answer:

D Watch Video Solution

64. The moment of inertia of a straight thin rod of mass
M and length I about an axis perpendicular to its length and passing through its one end, is

$$
\text { A. } \frac{M l^{2}}{12}
$$

B. $\frac{M l^{2}}{3}$
C. $\frac{M l^{2}}{2}$
D. $M l^{2}$

Answer: B

- Watch Video Solution

65. Four thin rods of same mass M and same length I,
form a square as shown in figure. Moment of inertia of
this system about an axis through centre O and
perpendicular to its plane is

A. $\frac{4}{3} M l^{2}$
B. $\frac{M l^{2}}{3}$
C. $\frac{M l^{2}}{6}$
D. $\frac{2}{3} M l^{2}$

Answer:

D Watch Video Solution

66. The moment of inertia of a uniform circular ring, having a mass M and a radius R, about an axis tangential to the ring and perpendicular to its plane, is
A. $2 M R^{2}$
B. $\frac{3}{2} M R^{2}$
C. $\frac{1}{2} M R^{2}$
D. $M R^{2}$

- Watch Video Solution

67. The moment of inertia of uniform rectangular plate about an axis passing through its mid-point and parallel to its length I is ($b=$ breadth of rectangular plate)
A. $\frac{M b^{2}}{4}$
B. $\frac{M b^{3}}{6}$
C. $\frac{M b^{3}}{12}$
D. $\frac{M b^{2}}{12}$

Answer:

68. The moment of inertia of a circular ring about an axis passing through its centre and normal to its plane is $200 \mathrm{gm} \times \mathrm{cm}^{2}$. Then moment of inertia about its diameter is
A. $400 \mathrm{gm} \times \mathrm{cm}^{2}$
B. $300 \mathrm{gm} \times \mathrm{cm}^{2}$
C. $200 \mathrm{gm} \times \mathrm{cm}^{2}$
D. $100 \mathrm{gm} \times \mathrm{cm}^{2}$

Answer:
69. The moment of inertia of a thin rod of mass M and length L about an axis perpendicular to the rod at a distance L/4 from one end is
A. $\frac{M L^{2}}{6}$
B. $\frac{M L^{2}}{12}$
C. $\frac{7 M L^{2}}{24}$
D. $\frac{7 M L^{2}}{48}$

Answer:

- Watch Video Solution

70. In pure rolling fraction of its total energy associated with rotation is α for a ring and β for a solid sphere.

Then
(1) $\alpha=1 / 2$
$(2) \beta=2 / 7$
(3) $\beta=2 / 5$
(4) $\alpha=1 / 4$
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

71. A body is rolling down an inclined plane. Its translational and rotational kinetic energies are equal.

The body is not a
(1) solid sphere (2) hollow sphere
(3) solid cylinder
(4) hollow cylinder
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

72. Two cylinders, one hollow (metal) and the other solid (wood) with the same mass identical dimensions
are simulataneously allowed to roll without slipping down an inclined plane from the same height. The hollow cylinder will reach the bottom of the inclined plane first.
by the principle of conservation of energy, the total kinetic energies of both the cylinders are identical when they reach the bottom of the incline.
A. Statement -1 is true , Statement -2 is True ,

Statement -2 is a correct explanation for Statement-1.
B. Statement-1 is True , Statement -2 is True

Statement-2 is NOT a correct explanation for statement-1.
C. Statement-1 is False, Statement - 2 is True.
D. Statement -1 is True, Statement -2 is False.

Answer:

- Watch Video Solution

