©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

THERMAL EXPANSION AND

CALORIMETRY

Physics

1. A galss flask is filled up to a mark with 50 cc
of mercury at $18^{\circ} \mathrm{C}$. If the flask and contents
are heated to $38^{\circ} C$, how mech mercury will be above the mark (α for glass is $9 \times 10^{-6} /{ }^{\circ} C$ and coeffiecient of real expansion of mercury is $\left.180 \times 10^{-6} /{ }^{\circ} C\right)$?
A. $0.85 \mathrm{c} \mathrm{c}^{\prime}$
B. $0.46 c c$
C. $0.153 c c$
D. $0.05 c c$

Answer:

2. The coefficient of apparent expansion of mercury in a glass vessel is $153 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and in a steel vessel is $114 \times 10^{-6} /{ }^{\circ} C$. If α for steel is $12 \times 10^{-6} /{ }^{\circ} C$, then that of glass is

> A. $9 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
> B. $6 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
> C. $36 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
> D. $\left.27 \times 10^{-6} /{ }^{\circ}\right) \mathrm{C}$

Answer:

D Watch Video Solution

3. An iron tyre is to be fitted onto a wooden
wheel 1.0 m in diameter. The diameter of the
tyre is 6 mm smaller than that of wheel the
tyre should be heated so that its temperature
increases by a minimum of (coefficient of
volume expansion of iron is $3.6 \times 10^{-5} /{ }^{\circ} \mathrm{C}$)
A. $167^{\circ} \mathrm{C}$
B. $334^{\circ} C$
C. $500^{\circ} \mathrm{C}$
D. $1000^{\circ} C$

Answer:

D Watch Video Solution

4. A rod of length 20 cm is made of metal. It expands by 0.075 cm when its temperature is raised from $0^{\circ} C$ to $100^{\circ} C$. Another rod of different metal B having the same length
expands by 0.045 cm for the same change in
temperature. A third rod of the same length is
composed of two parts, one of metal A and
the oher of metal B. This rod expandss by
0.060 cm for the same change in temperature.

The portion made of metal A has the length :
A. 20 cm
B. 10 cm
C. 15 cm
D. 18 cm

- Watch Video Solution

5. A glass flask of volume one litre at $0^{\circ} \mathrm{C}$ is
filled, level full of mercury at this temperature.
The flask and mercury are now heated to $100^{\circ} \mathrm{C}$. How much mercury will spill out if coefficient of volume expansion of mercury is
$1.82 \times 10^{-4} /{ }^{\circ} C$ and linear expansion of glass is $0.1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ respectively?
A. $21.2 c c$
B. ${ }^{15} 15 \mathrm{cc}$

C. $1.52 c c$

D. $2.12 c c$

Answer:

- Watch Video Solution

6. The apparent coefficient of expansion of
liquid, when heated in a copper vessel is C and when heated in a silver vessel is S. If A is
the linear coefficient of expansion of Copper, linear expansion coefficient of silver is
A. $\frac{C+S-3 A}{3}$
B. $\frac{C+3 A-S}{3}$
C. $\frac{S+3 A-C}{3}$
D. $\frac{S-3 A+C}{3}$

Answer:

- Watch Video Solution

7. The apparent coefficient of expansion of liquid, when heated in a copper vessel is C and when heated in a silver vessel is S. If A is
the linear coefficient of expansion of Copper, linear expansion coefficient of silver is
A. 18.8 mm
B. 9.2 mm
C. $7.4 m m$
D. 4.5 mm

Answer:
(Watch Video Solution
8. A piece of metal weighs 46 g in air and 30 g in lipuid of density $1.24 \times 10^{3} \mathrm{kgm}^{-3}$ kept at $27^{0} C$. When the temperature of the liquid is raised to $42^{0} C$ the metal piece weights 30.5 g .

The density of the liqued at $42^{0} C$ is $1.20 \times 10^{3} \mathrm{kgm}^{-3}$. Calculate the coefficient of linear expandsion of the metal.

$$
\begin{aligned}
& \text { А. } 3.316 \times 10^{-5} /{ }^{\circ} C \\
& \text { В. } 2.316 \times 10^{-5} /{ }^{\circ} C \\
& \text { C. } 4.316 \times 10^{-5} /{ }^{\circ} C
\end{aligned}
$$

D. None of these

Answer:

D Watch Video Solution

9. 2 kg of ice at $20^{\circ} \mathrm{C}$ is mixed with 5 kg of
water at $20^{\circ} \mathrm{C}$ in an insulating vessel having a negligible heat capacity. Calculate the final mass of water remaining in the container. It is given that the specific heats of water \& ice are $1 \mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ and 0.5
$\mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ while the latent heat of fusion of ice is $80 \mathrm{kcal} / \mathrm{kg}$
A. 7 kg
B. 6 kg
C. 4 kg
D. $2 k g$

Answer:
(Watch Video Solution
10. A lead bullet just melts when stopped by an obstacle. Assuming that 25 per cent of the
heat is absorbed by the obstacle, find the velocity of the bullet if its initial temperature is $27^{\circ} \mathrm{C}$. (Melting point of lead $=327^{\circ} \mathrm{C}$, specific heat of lead $=0.03 \mathrm{cal} / \mathrm{g} .{ }^{\circ} \mathrm{C}$, latent heat
of fusion
of
lead
$=6 c a l / g, J=4.2 J / c a l)$.
A. $410 \mathrm{~m} / \mathrm{sec}$
B. $1230 \mathrm{~m} / \mathrm{sec}$
C. $307.5^{\text {m }} / / \mathrm{sce}$

D. none of the above

Answer:

D Watch Video Solution

11. The temperature of equal masses of three different liquids A, B and C are $12^{\circ} \mathrm{C}, 19^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ respectively. The temperature when A and B are mixed is $16^{\circ} C$
and when B and C are mixed it is $23^{\circ} \mathrm{C}$. What
should be the temperature when A and C are mixed?
A. 18.2^(@)C'
B. $22^{\circ} C$
C. $20.2^{\circ} \mathrm{C}$
D. $25.2^{\circ} \mathrm{C}$

Answer:
(Watch Video Solution
12. 50 gmof copper is heated to increase its
temperature by $10^{\circ} \mathrm{C}$. If the same quantity of
heat is given to 10 gmof water, the rise in its
temperature is (Specific heat of copper
$=420 J o \underline{e}-k g^{-1} \circ C^{-1}$
A. $5^{\circ} C$
B. $6^{\circ} C$
С. $7^{\circ} C$
D. $8^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

13. A beaker contains 200 g of water. The heat
capacity of the beaker is equal to that of 20 g of water. The initial temperature of water in the beaker is $20^{\circ} \mathrm{C}$. If 440 g of hot water at $92^{\circ} C$ is poured in it, the final temperature (neglecting radiation loss) will be nearest to
A. $58^{\circ} \mathrm{C}$
B. $68^{\circ} \mathrm{C}$
C. $73^{\circ} \mathrm{C}$

D. $78^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

14. Calorie is defined as the amount of heat
required to raise temperature of 1 g of water by $1^{\circ} C$ and it is defined under which of the following conditions?
A. From $14.5^{\circ} \rightarrow 15.5^{\circ} \mathrm{C}$ at 760 mm of Hg
B. From 98.5° to $99.5^{\circ} \mathrm{C}$ at 760 mm of Hg
C. From $13.5^{\circ} \mathrm{Cto} 14.5^{\circ} \mathrm{Cat} 760 \mathrm{~mm}$ of Hg
D. From $3.5^{\circ} C^{\prime \prime}$ to" $4.5^{\wedge}(@$ at 760 mm of Hg

Answer:

D Watch Video Solution

15. 5A bullet moving with a uniform velocity v , stops suddenly after hitting the target and the whole mass melts be m, specific heat S, initial temperature $25^{\circ} C$, melting point
$475^{\circ} \mathrm{C}$ and the latent heat L . Then v is given by
A. $m L=m S(475-25)+(1) /(2)\left(m v^{\wedge}(2)\right) /(J){ }^{`}$

$$
\begin{aligned}
& \text { В. } m S(475-25)+m L=\frac{1}{2} \frac{m v^{2}}{2 J} \\
& \text { C. } m S(475-25)+m L=\frac{1}{2} \frac{m v^{2}}{J} \\
& \text { D. } m S(475-25)+m L=\frac{1}{2} \frac{m v^{2}}{2 J}
\end{aligned}
$$

Answer:

D Watch Video Solution

16. A stationary object at $4^{\circ} C$ and weighing
3.5 kg falls from a height of 2000 m on a snow mountain at $0^{\circ} C$. If the temperature of the object just before hitting the snow is $0^{\circ} C$ and the object comes to rest immediately?
$\left(\mathrm{g}=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)$ and heatofice $=3.5 \times x 10^{\wedge}(5)$
joule //sec), then the object will melt
A. $2 k g o f i c e$
B. 200 gmofice
C. 20 gmofice

D. 2gmofice

Answer:

D Watch Video Solution

17. The density of a substance at $0^{\circ} C$ is $10 g / c c$ and at $100^{\circ} C$, its density is $9.7 g / c c$.

The coefficient of linear expansion of the substance is
A. 10^{-2}
B. 10^{-2}
C. 10^{-3}
D. $10^{\wedge}(-4)$

Answer:

D Watch Video Solution

18. The real coefficient of volume expansion of glycerine is $0.000597 p e{ }^{\circ} \mathrm{C}$ and linear coefficient of expansion of glass is
0.000009 par $^{\circ} C$. Then the apparent volume coefficient of glycerine is

A. $0.000597 p e r{ }^{\circ} C$

B. 0.000057^{\wedge} (@) C’
C. 0.00027 Per $^{\circ} C$
D. 0.0006 per ^(@)C’

Answer:
(Watch Video Solution
19. A constant volume gas thermometer shows pressure readings of 50 cm and 90 cm of mercury at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively, The temperature of the bath when pressure reading is 60 cm of mercury.
A. $25^{\circ} C$
B. $40^{\circ} \mathrm{C}$
C. $15^{\circ} C$
D. $12.5^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

20.

Time (minute)

A student takes 50 g wax (specific heat $=0.6 \mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C}$) and heats it till it boils.

The graph between temperature and time is
as follows. Heat supplied to the wax per minute and boiling point are respectively.
A. $500 \mathrm{cal}, 50^{\circ} \mathrm{C}$

B. $1000 \mathrm{cal}, 100^{\circ} \mathrm{C}$

C. $1500 \mathrm{cal}, 200^{\circ} \mathrm{C}$
D.

Answer:

- Watch Video Solution

Heat is supplied to a certain homogeneous sample of matter, at a uniform rate. Its
temperature is plotted against time, as shown

Which of the following conclusions can be drawn?
(i) Its specific heat capacity is greater in the solid state than the liquid state.
(ii) Its specific heat capacity is greater in the
liquid state than in the solid state.
(iii) Its latent heat of vaporization is greater than its latent heat of fusion.
(iv) Its latent heat of vaporization is smaller than its latent heat of fusion
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. and 4 are correct
D. 1 and 3 are correct

Answer:
22. A bimetallic strip is formed out of two identical strips one of copper and the other of brass. The co-efficients of linear expansion of the two metals are α_{C} and α_{B}. On heating, the the strip bends to form an are of radius of curvature R. Then R is
A. 1, 2 and 3 are correc
B. 1 and 2 are correct
C. 2 and 4 are correct

D. 1 and 3 are correct

Answer:

D Watch Video Solution

23. When a bimetallic strip is heated, it
A. does not bend at all
B. gets twisted in the form of an helix
C. bends in the form of an arc with the more expandable metal inside.

D. Bend in the form of an arc with the more

expandable metal outside

Answer:

D Watch Video Solution

24. In a thermally insulated tube of cross sectional area $4 \mathrm{~cm}^{2}$ a liquid of thermal expansion coefficeint $10^{3} K^{-1}$ is flowing. Its velocity at the entrance is $0.1 \mathrm{~m} / \mathrm{s}$. At the middle of the tube a heater of a power of 10
kW is heating the liquid. The specific heat capacity of the liquid is $1.5 \mathrm{~kJ} /(\mathrm{kg}, \mathrm{K})$, and its density is $1500 \mathrm{~kg} / \mathrm{m}^{3}$ at the entrance.
Q. The rise in temperature of the liquid as it pass through the tube is

$$
\begin{aligned}
& \text { A. } \frac{1000}{9} \cdot{ }^{\circ} C \\
& \text { B. } \frac{1}{9} \cdot{ }^{\circ} C \\
& \text { C. } \frac{500}{9} \cdot{ }^{\circ} C \\
& \text { D. none }
\end{aligned}
$$

Answer:
25. In a thermally insulated tube of cross sectional area $4 \mathrm{~cm}^{2}$ a liquid of thermal expansion coefficeint $10^{3} K^{-1}$ is flowing. Its velocity at the entrance is $0.1 \mathrm{~m} / \mathrm{s}$. At the middle of the tube a heater of a power of 10
kW is heating the liquid. The specific heat capacity of the liquid is $1.5 \mathrm{~kJ} /(\mathrm{kg}, \mathrm{K})$, and its density is $1500 \mathrm{~kg} / \mathrm{m}^{3}$ at the entrance.
Q. What is the density of liquid at the exit?

$$
\text { A. } 1450 \mathrm{~kg} / \mathrm{m}^{3}
$$

B. $1400 \mathrm{~kg} / \mathrm{m}^{3}$
C. $1350 \mathrm{~kg} / \mathrm{m}^{3}$
D. none of these

Answer:

D Watch Video Solution

26. In a thermally insulated tube of cross sectional area $4 \mathrm{~cm}^{2}$ a liquid of thermal expansion coefficeint $10^{3} K^{-1}$ is flowing. Its velocity at the entrance is $0.1 \mathrm{~m} / \mathrm{s}$. At the
middle of the tube a heater of a power of 10
kW is heating the liquid. The specific heat capacity of the liquid is $1.5 \mathrm{~kJ} /(\mathrm{kg}, \mathrm{K})$, and its density is $1500 \mathrm{~kg} / \mathrm{m}^{3}$ at the entrance.
Q. How much bigger is the volume rate of flow at the end of the tube than at the entrance in cubic meters?
A. 9×10^{-5}
B. $\frac{1}{3} \times 10^{-5}$
C. $\frac{4}{9} \times 10^{-5}$
D. none

Answer:

- Watch Video Solution

27. Statement-1: Fahrenheit is the smallest unit

measuring temperature

Statement-2: Fahrenheit was the first
temperature scale used for measuring
temperature
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is false, statement-2 is true.
D. Statement- 1 is true, statement- 2 is false.

Answer:

D Watch Video Solution

28. Statement-1: A brass disc is just fitted in a hole in a steel plate. The system mst be cooled to loosen the disc from the hole Statement-2: The coefficient of linear expansion for brass is greater than the coefficient of linear expansion for steel.
A. Statement- 1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is false, statement-2 is true.
D. Statement- 1 is true, statement- 2 is false.

Answer:

D Watch Video Solution

29. Statement-1: Latent heat of fusion of ice is
$336000 \mathrm{Jkg}^{-1}$

Statement-2: Latent heat refers to change of state without any change in temperature.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.

C. Statement-1 is false, statement-2 is true.

D. Statement-1 is true, statement-2 is false.

Answer:

- Watch Video Solution

