©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

THERMODYNAMICS

Physics

1. Six moles of an ideal gas performs a cycle shown in figure. If the temperature are $T_{D}=600 K, T_{B}=800 K, T_{C}=2200 K$ and
$T_{D}=1200 K$, the work done per cycle is

A. 20kJ
B. 30 kJ
C. 40kJ
D. 60 kJ

Answer:

- Watch Video Solution

2. An ideal gas is taken from point A to the point B, as shown in the P-V diagram, keeping the temperature constant. The work done in
the process is

A. $\left(P_{A}-P_{B}\right)\left(V_{B}-V_{A}\right)$
B. $\frac{1}{2}\left(P_{B}-P_{A}\right)\left(V_{B}-V_{A}\right)$
C. $\frac{1}{2}\left(P_{B}-P_{A}\right)\left(V_{B}-V_{A}\right)$
D. $\frac{1}{2}\left(P_{B}+P_{A}\right)\left(V_{B}-V_{A}\right)$

Answer:

D Watch Video Solution

3. In following figs. Variation of volume by change of pressure is shown in Fig. A gas is taken along the path $A B C D A$. The change in
internal energy of the tgas will be:

A. Positive in all caes i to iv
B. Positive in cases i, ii and iii but zero in
case iv

C. Negative in cases i, ii and iii but zero in

case iv
D. Zero in all cases.

Answer:

- Watch Video Solution

4. A monoatomic ideal gas, initially at temperature T_{1}, is enclosed in a cylinder
fitted with a friction less piston. The gas is allowed to expand adiabatically to a
temperature T_{2} by releasing the piston suddenly. If L_{1} and L_{2} are the length of the gas column before expansion respectively, then $\frac{T_{1}}{T_{2}}$ is given by
A. $\left(\frac{L_{1}}{L_{2}}\right)^{2 / 3}$
B. $\frac{L_{1}}{L_{2}}$
C. $\frac{L_{2}}{L_{1}}$
D. $\left(\frac{L_{2}}{L_{1}}\right)^{2 / 3}$

Answer:

5. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T.

Neglecting all vibrational modes, the total internal energy of the system is
A. 4 RT
B. 15RT
C. 9RT
D. 11RT

- Watch Video Solution

6. Two Carnot engines are operated in succession. The first engine receives heat from
a source at $T=800 K$ and rejects to sink at
$T_{2} K$. The second engine receives heat rejected by the first engine and rejects to another sink at $T_{3}=300 K$. If work outputs of the two engines are equal, then find the value of T_{2}.

A. 100 K

B. 300 K

C. 550 K

D. 700 K

Answer:

D Watch Video Solution

7. A Carnot engine whose low temperature reservoir is at $7^{\circ} \mathrm{C}$ has an efficiency of 50%. It is desired to increase the efficiency to $70 \% \mathrm{By}$ low many degrees should the temperature of the high temperature reservoir be increased
A. 840 K
B. 280 K
C. 560 K
D. 380 K

Answer:

D Watch Video Solution

8. An ideal heat engine working between temperature T_{1} and T_{2} has an efficiency η, the
new efficiency if both the source and sink temperature are doubled, will be
A. $\frac{\eta}{2}$
B. η
C. 2η
D. 3η

Answer:

D Watch Video Solution
9. Efficiency of a Carnot engine is 50% when temperature of outlet is 500 K . In order to increase efficiency up to 60% keeping temperature of intake the same what is temperature of outlet?
A. 200 K
B. 400 K
C. 600 K
D. 800 K

- Watch Video Solution

10. A scientist says that the efficiency of his
heat engine which operates at source temperature $127^{\circ} \mathrm{C}$ and sink temperature $27^{\circ} \mathrm{Cis} 26 \%$, then
A. It is impossible
B. It is possible but less probable
C. It is quite probable
D. Data are incomplete.

Answer:

D Watch Video Solution

11. The temperature of sink of Carnot engine is
$27^{\circ} \mathrm{C}$. Efficiency of engine is 25%. Then temeperature of source is
A. 0.5
B. 0.24
C. 0.0075
D. 0.004

Answer:

- Watch Video Solution

12. The temperature of sink of Carnot engine is
$27^{\circ} \mathrm{C}$. Efficiency of engine is 25%. Then temeperature of source is
A. $227^{\circ} C$
B. $327^{\circ} \mathrm{C}$
C. $127^{\circ} \mathrm{C}$
D. $27^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

13. In changing the state of thermodynamics
from A to B state, the heat required is Q and
the work done by the system is W . The change in its internal energy is
A. $\mathrm{Q}+\mathrm{W}$
B. Q-W
C. Q
D. $\frac{Q-W}{2}$

Answer:

D Watch Video Solution

14. The first law of thermodynamics is concerned with the conservation of
A. Momentum
B. Energy
C. Mass

D. Temperature

Answer:

D Watch Video Solution

15. To a system 300 joules of heat is given and
it does 60 joules of work. How much does the internal energy of the system change in this process? (in joule)
A. 654 Joule
B. 156.5 Joule
C. -300 Joule
D. -528.2 Joule

Answer:

- Watch Video Solution

16. 110 J of heat is added to a gaseous system, whose internal energy change is 40 J . Then the amount of external work done is
A. 150J
B. 70J
C. 110J
D. 40 J

Answer:

D Watch Video Solution

17. For free expansion of the gas, which of the following is true?
A. $Q=W=0$ and $\Delta E_{\text {int }}=0$

$$
\text { B. } Q=0, W>0 \text { and } \Delta E_{\text {int }}=-W
$$

C. $W=0, Q>0$, and $\Delta E_{\text {int }}=0$
D. $W>0, Q<0$ and $\Delta E_{\text {int }}=0$

Answer:

- Watch Video Solution

18. In a given process on an ideal gas, $d W=0$ and $d Q<0$. Then for the gas
A. The temperature will decrease
B. The volume will increase
C. The pressure will remain constant
D. The temperature will remain cosntant

Answer: A::C

D Watch Video Solution

19. The specific heat of hydrogen gas at constant pressure is
$C_{P}=3.4 \times 10^{3} \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}$ and at constant
volume is $C_{V}=2.4 \times 10^{3} \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}$. If one kilogram hydrogen gas is heated from $10^{\circ} C$ to $20^{\circ} \mathrm{C}$ at constant pressure the external work done on the gas to maintain it at cosntant pressure is
A. $10^{5} \mathrm{cal}$
B. $10^{4} \mathrm{cal}$
C. $10^{3} \mathrm{cal}$
D. $5 \times 10^{3} \mathrm{cal}$

Answer:
20. Which of the following processes are irreversible?
A. Tranfer of heat by radiation
B. Electrical heating of a nichrome wire
C. Tranfer of heat by conduction
D. Isothermal compression

Answer:

- Watch Video Solution

21. One mole of an ideal gas is taken through the cyclic through the cyclic process shown in the V - T diagram, where $\mathrm{V}=$ volume and T absolutute temperature of the gas. Which of the following statements are correct

A. Heat is given out by the gas
B. Heat is absorbed by the gas
C. The magnitude of the work done by the gas is $R T_{0}(\ln 2)$
D. The magnitude of the work done by the

gas is $V_{0} T_{0}$

Answer:

- Watch Video Solution

22. V-T graph of a process of monoatomic ideal
gas is shown in figure.

Sum of work done by the gas in process abod is-
A. zero
B. positive
C. Negative
D. data is insufficient

Answer:

D Watch Video Solution

23. V-T graph of a process of monoatomic ideal
gas is shown in figure.

Heat is supplied to the gas in process(s)-
A. da,ab and bc
B. da and ab only
C. da only
D. ab and bc only

Answer:

- Watch Video Solution

24. V-T graph of a process of monoatomic ideal
gas is shown in figure.

T

Change in internal energy of the gas is zero in process(s)-
A. da,ab and bc
B. da and bc only
C. da only
D. da and ab only

Answer:

- Watch Video Solution

25. Assertion : It is not possible for a system,
unaided by an external agency to transfer heat
from a body at lower temperature to another body at higher temperature. Reason : According to Clausius statement, " No process
is possible whose sole result is the transfer of heat from a cooled object to a hotter object
A. Statement-1 is True, Statement,

Statement-2 is True, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True:

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is Faslse, Statement-2 is

True.
D. Statement-1 is True, Statement-2 is False.

Answer:

D Watch Video Solution

26. Statement-1: A room can be warmed by opening the door of a refrigerator in a closed
room.

Statement-2: Head flows from lower temperature (refrigerator) to higher temperature (room).
A. Statement-1 is True, Statement,

Statement-2 is True, Statement-2 is a
correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True:

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is Faslse, Statement-2 is

True.
D. Statement-1 is True, Statement-2 is False.

Answer:

D Watch Video Solution

27. Statement-1: In isothermal process whole of the heat energy suppled to the body is converted into internal energy

Statement-2: According to the first law of themodynamics.
$\Delta Q=\Delta U+P \Delta V$
A. Statement-1 is True, Statement,

Statement-2 is True, Statement-2 is a
correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True:

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement-1 is Faslse, Statement-2 is

True.
D. Statement-1 is True, Statement-2 is False.

Answer:

D Watch Video Solution

28. For an isothermal expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is

$$
\begin{aligned}
& \text { A. }-\gamma^{1 / 2} \frac{\Delta V}{V} \\
& \text { B. }-\frac{\Delta V}{V} \\
& \text { C. }-\gamma \frac{\Delta V}{V} \\
& \text { D. }-\gamma^{2} \frac{\Delta V}{V}
\end{aligned}
$$

Answer:

D Watch Video Solution

29. When an ideal gas in a cylinder was compreswsed isothermally by a piston, the work done on the gas found to be 1.5×10^{4} Joule. During this process about
A. 3.6×10^{3} cal of heat flowed out from
the gas
B. 3.6×10^{3} cal of heat flowed into the gas
C. $1.5 \times 10^{4} \mathrm{cal}$ of heat flowed into the gas
D. 1.5×10^{4} cal of heat flowed out from the gas

Answer:

D Watch Video Solution

30. The latent heat of vaporisation of water is
$2240 \mathrm{~J} / \mathrm{gm}$. If the work done in the process of expansion of 1 g of water is 168 J , then increase in internal energy is
A. 2408 J
B. 2240 J
C. 2072 J

D. 1904 J

Answer:

D Watch Video Solution

31. One mole of an ideal gas expands at a constant temperature of $300 K$ from an initial
volume of 10 litres to a final volume of 20
liters. The work done in expanding the gas is
($R=8.31 \mathrm{~J} /$ mole $-K$) (in joules)
A. 750 Joules
B. 1728 Joule
C. 1500 Joules
D. 3456 Joules

Answer:

D Watch Video Solution

32. The pressure in the tyre of a car is four times the atmospheric pressure at 300 K . if this tyre suddenly bursts, Its new temperature will the $(\gamma=1.4)$
A. $300(4)^{1.4 / 0.4}$
B. $300\left(\frac{1}{4}\right)^{-0.4 / 1.4}$
C. $300(2)^{-0.4 / 1.4}$

$$
\text { D. } 300(4)^{-0.4 / 1.4}
$$

Answer:

- Watch Video Solution

33. A monoatomic gas at pressure P_{1} and volume V_{1} is compressed adiabatically to $\frac{1}{8} t h$
of its original volume. What is the final pressure of gas.
A. $\frac{24}{5}$
B. 8
C. $\frac{40}{3}$
D. 32 times its initial pressure

Answer:
(Watch Video Solution
34. An ideal gas at $27^{\circ} C$ is compressed adiabatically to $8 / 27$ of its original volume. If $\gamma=5 / 3$, then the rise in temperature is
A. 450 K
B. 375 K
C. 225 K
D. 405 K

Answer:

- Watch Video Solution

35. A given system undergoes a change in which the work done by the system equals to
the decrease in its internal energy. The system must have undergone an
A. Isothermal change
B. Adiabatic change
C. Isobaric change
D. Isochoric change

Answer:

36. Helium at $27^{\circ} \mathrm{C}$ has a volume of 8 litres. It is suddenly compressed to a volume of 1 litre.

The temperature of the gas will be $[\gamma=5 / 3]$
A. $108^{\circ} \mathrm{C}$
B. $9327^{\circ} \mathrm{C}$
C. $1200^{\circ} \mathrm{C}$
D. $927^{\circ} \mathrm{C}$

Answer:
37. One mole of an ideal gas at an initial temperature true of $T K$ does $6 R$ joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of the gas will be
A. $(T+2.4) K$
B. $(T-2.4) K$
C. $(T+4) K$
D. $(T-4) K$

Answer:

D Watch Video Solution

38. For adiabatic process of an ideal gas the
value of $\frac{d P}{P}$ is equals to
A. $-\sqrt{\gamma \frac{\Delta V}{V}}$
B. $-\frac{\Delta V}{V}$
C. $-\gamma \frac{\Delta V}{V}$
D. $-\gamma^{2} \frac{\Delta V}{V}$

Answer:

D Watch Video Solution

39. If 300 ml of a gas at 27° is cooled to 7° at constant pressure, then its final volume will be
A. 540 ml
B. 350 ml
C. 280 ml

D. 135 ml

Answer:

D Watch Video Solution

40. A sample of gas expands from volume V_{1} to V_{2}. The amount of work done by the gas is greatest when the expansion is
A. isothermal
B. isobaric

C. aidabatic

D. equal in all cases

Answer:

D Watch Video Solution

41. How much work to be done in decreasing
the volume of an ideal gas by an amount of
$2.4 \times 10^{-4} \mathrm{~m}^{3}$ at constant normal pressure of
$1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} ?$
A. 28 joule
B. 27 joule
C. 25 joule
D. 24 joule

Answer:

D Watch Video Solution

42. One mole of a perfect gas in a cylinder fitted with a piston has a pressure P, volume V and temperature T. if the temperature is
increased by 1 K keeping pressure constant, the
increase in volume is

> A. $\frac{2 V}{273}$
> B. $\frac{V}{91}$
> C. $\frac{V}{273}$
> D. V

Answer:
(Watch Video Solution
43. Work done by 0.1 mole of a gas at $27^{\circ} C$ to double its volume at constant pressure is $\left(R=2 \quad\right.$ cal mol $\left.^{-1} .^{\circ} K^{-1}\right)$
A. 54 cal
B. 600 cal
C. 60 cal
D. 546 cal

Answer:

- Watch Video Solution

44. When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{7}$
D. $\frac{5}{7}$

Answer:

45. When heat is given to a gas in an isothermal change, the result will be
A. external work done
B. rise in temperature
C. increase in internal energy
D. external work done and also rise in temp

Answer:

46. An ideal gas expands isothermally from
volume V_{1} to V_{2} and is then compressed to original volume V_{1} adiabatically. Initialy pressure is P_{1} and final pressure is P_{3}. The total work done is W. Then
A. $P_{3}>P_{1}, W>0$
B. $P_{3}<P_{1}, W<0$
C. $P_{3}>P_{1}, W<0$
D. $P_{3}=P_{1}, W=0$

Answer:

D Watch Video Solution

47. An ideal gas expands in such a manner that
its pressure and volume can be related by equation $P V^{2}=$ constant. During this process, the gas is
A. heated
B. cooled
C. neither heated nor cooled

D. first heated and then cooled

Answer:

D Watch Video Solution

48. In the following P-V diagram two adiabatics
cut two isothermals at temperature
T_{1} and $T_{2}(\mathrm{fig})$. The value of $\frac{V_{a}}{V_{d}}$ will be

A. $\frac{V_{b}}{V_{c}}$
B. $\frac{V_{c}}{V_{b}}$
c. $\frac{V_{d}}{V_{a}}$
D. $V_{b} V_{c}$

Answer:

- Watch Video Solution

49. During the melting of a slab of ice at 273 K at atmospheric pressure,
A. Positive work is done on the ice-water
system by the atmosphere
B. Positive work is done by ice-water system
on the atmosphere
C. The internal energy of the ice-water
system increases
D. The internal energy of the ice-water
system decreases

Answer:

D Watch Video Solution

50. One mole of an ideal monoatomaic gas is
taken from A to C along the path $A B C$. The temperature of the gas at A is T_{0}. For the
process $A B C$:

A. Work done by the gas is $R T_{0}$
B. Change in internal energy of the gas is

$$
\frac{11}{2} R T_{0}
$$

C. heat Absorbed by the gas is $\frac{11}{2} R T_{0}$
D. Heat absorbed by the gas is $\frac{13}{2} R T_{0}$

Answer:

- Watch Video Solution

51.

In the figure n mole of a monoatomic ideal gas
undergo the process $A B C$ as shown in the $P-V$ diagram. The process $A B$ is isothermal and $B C$ is isochoric. The temperature of the gas at A is
T_{0} total heat given to the gas during the
process $A B C$ is measured to be
Q. Temperature of the gas at C is equal to
A. T_{0}
B. $3 T_{0}$
C. $6 T_{0}$
D. $2 T_{0}$

Answer:

D Watch Video Solution

52.

In the figure n mole of a monoatomic ideal gas
undergo the process $A B C$ as shown in the $P-V$ diagram. The process $A B$ is isothermal and $B C$ is isochoric. The temperature of the gas at A is
T_{0} total heat given to the gas during the
process $A B C$ is measured to be
Q. Heat absorbed by the gas in the process $B C$
A. $3 n R T_{0}$
B. $n R T_{0}$
C. $2 n R T_{0}$
D. $6 n R T_{0}$

Answer:

D Watch Video Solution

53.

In the figure n mole of a monoatomic ideal gas
undergo the process $A B C$ as shown in the $P-V$ diagram. The process $A B$ is isothermal and $B C$ is isochoric. The temperature of the gas at A is
T_{0} total heat given to the gas during the
process $A B C$ is measured to be
Q. The average molar heat capacity of the gas
in process $A B C$ is

> A. $\frac{Q}{n T_{0}}$
> B. $\frac{Q}{2 n T_{0}}$
> C. $\frac{Q}{3 n T_{0}}$
> D. $\frac{2 Q}{n T_{0}}$

Answer:

D Watch Video Solution
54. Assertion: The isothermal curves intersect each other at a certain point.

Reason: The isothermal changes takes place
rapidly, so the isothermal curves have very little slope.
A. Statement-1 is true, statement-2 is true:

Statement-2 is a correct explanantion for
statement-1
B. Statement-1 is true, statement-2 is true,
statement-2 is NOT a correct

explanantion for statement-1

C. Statement-1 is false, statement-2 is true.
D. Statement- 1 is true, statement- 2 is false.

Answer:

D Watch Video Solution

55. Assertion: In adiabatic compression, the internal energy and temperature of the system get decreased.

Reason: The adiabatic compression is a slow process.
A. Statement- 1 is true, statement-2 is true:

Statement-2 is a correct explanantion for
statement-1
B. Statement-1 is true, statement-2 is true,
statement-2 is NOT a correct
explanantion for statement-1
C. Statement- 1 is false, statement- 2 is true.
D. Statement- 1 is true, statement- 2 is false.

Answer:

D Watch Video Solution

56. Statement I: The specific heat of a gas in an adiabatic process is zwero but it is infinite in an isothermal process.

Statement II: Specific heat of a gas is directly proportional to heat exchanged with the system and inversely proportional to change in termperature.
A. Statement-1 is true, statement-2 is true:

Statement-2 is a correct explanantion for statement-1
B. Statement-1 is true, statement-2 is true, statement-2 is NOT a correct
explanantion for statement-1
C. Statement-1 is false, statement-2 is true.
D. Statement- 1 is true, statement- 2 is false.

Answer:

\square

