©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DISHA PHYSICS (HINGLISH)

WORK, ENERGY AND POWER

Physics

1. A body is acted upon by a force
$\vec{F}=-\hat{i}+2 \hat{j}+3 \hat{k}$. The work done by the
force in displacing it from $(0,0,0)$ to $(0,0,4 m)$

will be -

A. 12J
B. 10J
C. 8 J
D. 6J

Answer:

D Watch Video Solution
2. The work done in pulling a body of mass 5
kg along an inclined plane (angle 60°) with
coefficient of friction 0.2 through 2 m , will be -
A. 98.08 J
B. 94.08 J
C. 90.08 J
D. 91.08 J

Answer:

D Watch Video Solution
3. A force $\vec{F}=\left(7-2 x+3 x^{2}\right) \mathrm{N}$ is applied on a 2 kg mass which displaces it from $\mathrm{x}=0$ to $x=5 \mathrm{~m}$. Work done in joule is -
A. 70
B. 270
C. 35
D. 135

Answer:

- Watch Video Solution

4. An automobile of mass m accelerates from
rest. If the engine supplies a constant power P, the velocity at time t is given by -

$$
\begin{aligned}
& \text { A. } V=\frac{P t}{m} \\
& \text { B. } V=\frac{2 P t}{m} \\
& \text { C. } \sqrt{\frac{P t}{m}} \\
& \text { D. } \sqrt{\frac{2 P t}{m}}
\end{aligned}
$$

Answer:

D Watch Video Solution
5. In the above question, the position (s) at
time (t) is given by -
A. $\left(\frac{2 P t}{m}\right) t$
B. $\left(\frac{8 P}{9 m}\right)^{\frac{1}{2}} t^{3 / 2}$
C. $\left(\frac{9 P}{8 m}\right)^{\frac{1}{2}} t^{1 / 2}$
D. $\left(\frac{8 P}{9 m}\right)^{\frac{1}{2}} t$

Answer:

- Watch Video Solution

6. A particle moving in a straight line is acted by a force, which works at a constant rate and
changes its velocity from u to v in passing over a distance x . The time taken will be -

$$
\begin{aligned}
& \text { A. } x=\frac{v-u}{v^{2}+u^{2}} \\
& \text { B. } x\left(\frac{v+u}{v^{2}+u^{2}}\right) \\
& \text { C. } \frac{3}{2}(x)\left(\frac{v^{2}-u^{2}}{v^{3}-u^{3}}\right) \\
& \text { D. } x\left(\frac{v}{u}\right)
\end{aligned}
$$

Answer:

7. A chain of linear density $3 \mathrm{~kg} / \mathrm{m}$ and length

8 m is lying on the table with 4 m of chain
hanging from the edge. The work done in
lifting the chain on the table will be -
A. 117.6 J
B. 235.2 J
C. 98 J
D. 196 J
8. The work done in lifting water from a well of depth 6 m using a bucket of mass 0.5 kg and volume 2 litre, will be-
A. 73.5 J
B. 147 J
C. 177.6 J
D. 98 J
9. An object of mass 5 kg falls from rest through a vertical distance of 20 m and reaches a velocity of $10 \mathrm{~m} / \mathrm{s}$. How much work is done by the push of the air on the object ? $\left(g=10 m / s^{2}\right)$.
A. 350 J
B. 750 J
C. 200 J

D. 300 J

Answer:

D Watch Video Solution

10. A boy pulls a 5 kg block 20 metres along a
horizontal sur- face at a constant speed with a
force directed 45° above the horizontal. If the coefficient of kinetic friction is 0.20 , how much work does the boy do on the block?
A. 163.32 J
B. 11.55 J
C. 150 J
D. 115 J

Answer:

D Watch Video Solution

11. A uniform chain is held on a frictionless
table with one third of its length hanging over
the edge. IF the chain has a length I and a
mass m, how much work is required to pull the hanging part back on the table ?
A. $\mathrm{mgl} / 10$
B. $\mathrm{mgl} / 5$
C. $\mathrm{mgl} / 50$
D. $\mathrm{mgl} / 2$

Answer:

D Watch Video Solution
12. A bus of mass 1000 kg has an engine which
produces a constant power of 50 kW . If the resistance to motion, assumed constant is

1000 N . The maximum speed at which the bus
can travel on level road and the acceleration
when it is travelling at $25 \mathrm{~m} / \mathrm{s}$, will respectively be -
A. $50 \mathrm{~m} / \mathrm{s}, 1.0 \mathrm{~m} / \mathrm{s}^{2}$
B. $1.0 \mathrm{~m} / \mathrm{s}, 50 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
C. $5.0 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}^{2}$

D. $10 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~m} / \mathrm{s}^{2}$

Answer:

D Watch Video Solution

13. The power output of a $\quad 92 U^{235}$ reactor if
it takes 30 days to use up 2 kg of fuel and if each fission gives 185 MeV of energy (Avogadro number $=6 x x 10^{\wedge}(23) / /$ mole) will be -
A. 58.4 MW

B. 5.84 MW

C. 584 MW
D. 5840MW

Answer:

D Watch Video Solution

14. The stopping distance for a vehicle of mass
M moving with a speed v along a level road,
will be - (μ is the coefficient of friction between
tyres and the road)
A. $\frac{v^{2}}{}$
B. $\frac{2 v^{2}}{\mu g}$
μg
C. $\frac{v^{2}}{2 \mu g}$
D. $\frac{v}{\mu g}$
μg

Answer:

D Watch Video Solution

15. The earth circles the sun once a year. How much work would have to be done on the earth to bring it to rest relative to the sun,
(ignore the rotation of earth about - its own axis) Given that mass of the earth is 6×10^{24} kg and distance between the sun and earth is $1.5 \times 10^{8} \mathrm{~km}-$
A. 2.7×10^{33}
B. 2.7×10^{24}
C. 1.9×10^{23}
D. 1.9×10^{24}

Answer:

16. A particle of mass m is moving in a horizontal circle of radius r, under a centripetal force equal to $\left(-K / r^{2}\right)$, where k is a constant. The total energy of the particle is -
A. $K / 2 r$
B. $-K / 2 r$
C. $K r$
D. $-K / r$

Answer:

- Watch Video Solution

17. The work done by a person in carrying a box of mass 10 kg through a vertical height of

10 m is 4900 J . The mass of the person is -
A. 60 kg
B. 50 kg
C. 40 kg
D. 130kg

Answer:

- Watch Video Solution

18. A uniform rod of length 4 m and mass 20
kg is lying horizontal on the ground. The work done in keeping it vertical with one of its ends touching the ground, will be -
A. 784 J
B. 392 J
C. 196 J

D. 98 J

Answer:

D Watch Video Solution

19. If g is the acceleration due to gravity on the earth's surface, the gain in the potential energy of an object of mass m raised from surface of the earth to a height equal to radius R of the earth is - [$M=$ mass of earth]

$$
\text { A. } \frac{G M m}{2 R}
$$

> в. $\frac{G M}{R}$
> с. $\frac{G M m}{R}$
> D. $\frac{G M}{2 R}$

Answer:

D Watch Video Solution

20. The potential energy between two atoms in a molecule is given by, $U_{(x)}=\frac{a}{x^{12}}-\frac{b}{x^{6}}$, where a and b are positive constant and x is
the distance between the atoms. The atoms is an stable equilibrium, when-

$$
\text { A. } x=0
$$

B. $x=\left(\frac{a}{2 b}\right)^{1 / 6}$
C. $x=\left(\frac{2 a}{b}\right)^{1 / 6}$
D. $x=\left(\frac{11 a}{5 b}\right)^{1 / 6}$

Answer:

D Watch Video Solution

21. A man pushes a wall and fails to displace
it.He does
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution
22. Choose the correct options -
(1))The work done by forces may be equal to change in kinetic energy
(2)The work done by forces may be equal to change in potential energy
(3) The work done by forces may be equal to
change in total energy
(4) The work done by forces must be equal to
change in potential energy.
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:

D Watch Video Solution

23. The system is released from rest with both
the springs in unstretched positions. Mass of each block is 1 kg and force constant of each
spring is $10 \mathrm{~N} / \mathrm{m}$. Extension of horizontal

spring in equilibrium is:

A. 0.2 m
B. 0.4 m
C. 0.6 m
D. 0.8 m

Answer:
(Watch Video Solution
24. The system is released from rest with both
the springs in unstretched positions. Mass of each block is 1 kg and force constant of each
spring is $10 \mathrm{~N} / \mathrm{m}$. Extension of horizontal spring in equilibrium is:
A. 0.2 m
B. 0.4 m
C. 0.6 m
D. 0.8 m

Answer:

D Watch Video Solution

25. In the figure shown, the system is released
from rest with both the springs in unstretched positions. Mass of each block is 1 kg and force constant of each spring is $10 \mathrm{~N} / \mathrm{m}$.

Maximum speed of the block placed horizontally is:
A. $3.21 \mathrm{~m} / \mathrm{s}$
B. $2.21 \mathrm{~m} / \mathrm{s}$
C. $1.93 \mathrm{~m} / \mathrm{s}$

D. $1.26 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

26. As shown in the figure, a uniform sphere is
rolling on a horizontal surface without
slipping, under the action of a horizontal force F.

Statement-1: Power developed due to friction
force is zero. Statement -

2 : Power developed by gravity force is nonzero.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

27. Statement - 1: Sum of work done by the

Newton's 3rd law pair internal forces, acting between two particles may be zero. Statement -

2 : If two particles undergo same displacement
then work done by Newton's 3rd law pair forces on them is of opposite sign and equal magnitude.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

28. Statement - 1: A particle moves along a straight line with constant velocity. Now a constant non-zero force is applied on the particle in direction opposite to its initial velocity. After the force is applied, the net work done by this force may be zero in certain time intervals. Statement - 2 : The work done by a force acting on a particle is zero in any time interval if the force is always perpendicular to velocity of the particle.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

29. A rifle man, who together with his rifle has
a mass of 100 kg , stands on a smooth surface
and fires 10 shots horizontally. Each bullet. has
a mass 10 g and a muzzle velocity of $800 \mathrm{~m} / \mathrm{s}$,
a. What velocity does the rifle man acquire at
the end of 10 shots?
b. If the shots are fired in $10 s$, what will he the average force exerted on him?
c. Compare his kinetic energy with that of 10 bullets
A. $0.8 \mathrm{~m} / \mathrm{s}$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $0.3 \mathrm{~m} / \mathrm{s}$
D. $1.2 \mathrm{~m} / \mathrm{s}$

Answer:
(Watch Video Solution
30. A bullet of mass 10 g travelling horizontally
with a velocity of $300 \mathrm{~m} / \mathrm{s}$ strikes a block of
wood of mass 290 g which rests on a rough
horizontal floor. After impact the block and the
bullet move together and come to rest when
the block has travelled a distance of 15 m . The
coefficient of friction between the block and
the floor will be - (Duration of impact is very short)

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{2}{3}
\end{aligned}
$$

C. $\frac{1}{3}$
D. $\frac{3}{4}$

Answer:

- Watch Video Solution

31. A $20 g$ bullet pierces through a plate of mass $M_{1}=1 \mathrm{~kg}$ and then comes to rest inside
a second plate of mass $M_{2}=2.98 \mathrm{~kg}$ as
shown in Fig. It is found that the two plates,
initially at rest, now move with equal
velocities. Find the percentage loss in the initial velocity of the bullet when it is between
M_{1} and M_{2}. Neglect any loss of material of the plates due to the action of bullet.

A. 20%
B. 25%
C. 30%
D. 45%

Answer:

D Watch Video Solution

32. A bullet of mass 20 g hits a block of mass
1.98 kg suspended from a massless string of
length 100 cm and sticks to it. The bullet flies down at an angle of 30 to the horizontal with a velocity of $200 \mathrm{~m} / \mathrm{s}$. Through what
height the block will rise-

A. 0.15 m
B. 0.30 m
C. 0.45 m
D. 0.75 m

Answer:

- Watch Video Solution

33. A bullet of mass 0.01 kg travelling at a speed of $500 \mathrm{~m} / \mathrm{s}$ strikes a block of mass 2 kg , which is suspended by a string of length 5 m .

The centre of gravity of the block is found to rise a vertical distance of 0.1 m . The speed of the bullet after it emerges from the block will
be -

A. $1.4 \mathrm{~m} / \mathrm{s}$
B. $110 \mathrm{~m} / \mathrm{s}$
C. $220 \mathrm{~m} / \mathrm{s}$
D. $14 \mathrm{~m} / \mathrm{s}$

Answer:

- Watch Video Solution

34. The rate of burning of fuel in a rocket is 50 gm/sec. and comes out with and velocity
$4 \times 10^{3} \mathrm{~m} / \mathrm{s}$. The force exerted by gas on rocket will be -
A. 200 N
B. 250 N
C. $2.5 \times 10^{6} N$

D. $2.5 \times 10^{4} N$

Answer:

D Watch Video Solution

35. A body of mass 1 kg strikes elastically with
another body at rest and continues to move in
the same direction with one fourth of its initial velocity. The mass of the other bodyis-
A. 0.6 kg

B. 2.4 Kg

C. 3 kg
D. 4 kg

Answer:

- Watch Video Solution

36. A ball moving with a speed of $9 m / s$ strikes
an identical ball at rest, such that after the
collision, the direction of each ball makes an
angle of 30° with the original line of motion.
Find the speeds of the two balls after collision.
A. $3 \sqrt{3} m / s, n o$
B. $3 \sqrt{3} m / s, n o$
C. $6 \sqrt{3} m / s, n o$
D. 0,yes

Answer:

37. The mass of a rocket is 500 kg and the relative velocity of the gases ejecting from it is
$250 \mathrm{~m} / \mathrm{s}$ with respect to the rocket. The rate of burning of the fuel in order to give the rocket an initial acceleration $20 \mathrm{~m} / \mathrm{s}^{2}$ in the vertically
upward direction $g=10 \frac{m}{s^{2}}$, will be -
A. $30 \mathrm{~kg} / \mathrm{s}$
B. $60 \mathrm{~kg} / \mathrm{s}$
C. $45 \mathrm{~kg} / \mathrm{s}$
D. $10 \mathrm{~kg} / \mathrm{s}$

Answer:

D Watch Video Solution

38. A slow moving electron collides elastically
with a hydrogen atom at rest. The initial and
final motions are along the same straight line.

What fraction of electron's kinetic energy is
transferred to the hydrogen atom? The mass
of hydrogen atom is 1850 times the mass of
electron.
A. 0.217%
B. 2.17%
C. 0.0217%
D. 21.7%

Answer:

D Watch Video Solution

39. A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move
with a speed v each in mutually perpendicular
directions. The total energy released in the process of explosion is

$$
\text { A. } \frac{1}{2} m v^{2}
$$

B. $m v^{2}$
C. $\frac{3}{2} m v^{2}$
D. $2 m v^{2}$

Answer:

D Watch Video Solution
40. A body of mass M splits into two parts aM and $(1-\alpha) M$ by an internal explosion, which generates kinetic energy T. After explosion if the two parts move in the same direction as before, their relative speed will be -

$$
\text { A. } \sqrt{\frac{T}{(1-\alpha) M}}
$$

B. $\sqrt{\frac{2 T}{\alpha(1-\alpha) M}}$
C. $\sqrt{\frac{T}{2(1-\alpha) M}}$
D. $\sqrt{\frac{2 T}{2(1-\alpha) M}}$

- Watch Video Solution

41. A body of mass 1 kg , initially at rest, explodes and breaks into three fragments of masses in the ratio $1: 1: 3$. The two pieces of equal mass fly off perpendicular to each other with a speed of $30 \mathrm{~m} / \mathrm{s}$ each. What is the velocity of the heavier fragment?
A. $10 \sqrt{2} m / s$
B. $15 \sqrt{2} m / s$
C. $5 \sqrt{2} m / s$

D. $20 \sqrt{2} m / s$

Answer:

- Watch Video Solution

42. A body of mass m moving with a velocity v in the x direction collides with another body of mass M moving in y direction with a velocity V. They coalesce into one body during collision.

$$
\text { A. } \sqrt{\left(m v_{1}\right)+\left(M v_{2}\right)}, \tan ^{-1}\left(\frac{M v_{2}}{m v_{1}}\right)
$$

$$
\begin{aligned}
& \text { B. } \sqrt{\left(m v_{1}\right)+\left(M v_{2}\right)}, \tan ^{-1}\left(\frac{M v_{1}}{m v_{2}}\right) \\
& \text { C. } \sqrt{\left(m v_{1}\right)^{2}+\left(M v_{2}\right)^{2}}, \tan ^{-1}\left(\frac{M v_{2}}{m v_{1}}\right) \\
& \text { D. } \sqrt{\left(m v_{1}\right)^{2}+\left(M v_{2}\right)^{2}}, \tan ^{-1}\left(\frac{M v_{1}}{m v_{2}}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

43. A ball of a mass m hits the floor with as speed v making an angle of incidence θ with the normal. The coefficient of restitution is e.

Find the speed of the reflected ball and the
angle of reflection of the ball.

A. $\tan ^{-1}\left(\frac{\tan \theta}{e}\right), v \sqrt{\sin ^{2} \theta+e^{2} \cos ^{2} \theta}$
B. $\tan ^{-1}\left(\frac{e}{\tan \theta}\right), \frac{1}{v} \sqrt{e^{2} \sin ^{2} \theta+\cos ^{2} \theta}$
C. $\tan ^{-1}(e \tan \theta), \frac{v}{e} \tan \theta$
D. $\tan ^{-1}(e \tan \theta), v \sqrt{\sin ^{-2} \theta+e^{2}}$
44. A tennis ball dropped from a height of 2 m rebounds only 1.5 metre after hitting the ground. What fraction of energy is lost in the impact?
A. $1 / 2$
B. $1 / 4$
C. $1 / 8$
D. $1 / 16$

Answer:

D Watch Video Solution

45. A bullet is fired from the gun. The gun recoils, the kinetic energy of the recoil shall be-
A. equal to the kinetic energy of the bullet
B. less than the kinetic energy of the bullet
C. greater than the kinetic energy of the bullet

D. double that of the kinetic energy of the

 bullet
Answer:

D Watch Video Solution

46. Principle of conservation of linear momentum is duduced from
A. Newton's second law of motion
B. Newton's first law of motion
C. Newton's third law of motion
D. Conservation of angular momentum.

Answer:

D Watch Video Solution

47. During inelastic collision between two bodies, which of the following quantities always remain conserved ?
A. momentum is conserved but kinetic energy is not conserved
B. momentum is not conserved but kinetic energy is conserved
C. neither momentum nor kinetic energy is

conserved

D. both the momentum and kinetic energy
are conserved

Answer:

48. Inelastic collision is the-

A. collision of ideal gas molecules with the
walls of the container
B. collision of electron and positron to an inhilate each other.
C. collision of two rigid solid spheres lying on a frictionless table

D. scattering of a-particles with the nucleus

of gold atom

Answer:

D Watch Video Solution

49. Which of the following statements is false for collisions-
(1)Momentum is conserved in elastic collisions but not in inelastic collisions.
(2)Total-kinetic energy is conserved in elastic
collisions but momentum is not conserved.
(3)Total kinetic energy and momentum both
are conserved in all types of collisions
(4)Total kinetic energy is not conserved in
inelastic collisions but momentum is
conserved
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct
50. Two balls of mass m_{1} and m_{2} where $m_{2}=0.5 m_{1}$, undergo head on collision as shown in figue.

After collision the situation is as shown If $V_{3}=0.5 v_{1}$. Value of V_{4} is
A. 1, 2 and 3 are correct
B. 1 and 2 are correct

C. 2 and 4 are correct

D. 1 and 3 are correct

Answer:

- Watch Video Solution

51. Two balls at the same temperature collide inelastically. Which of the following is not conserved?
(1) Kinetic energy
(2) Velocity
(3) Temperature
(4) Momentum
A. 1, 2 and 3 are correct
B. 1 and 2 are correct
C. 2 and 4 are correct
D. 1 and 3 are correct

Answer:
(Watch Video Solution
52. A small particle of mass $m=2 k g$ moving with constant horizontal velocity $u=10 \mathrm{~m} / \mathrm{s}$ strikes a wedge shaped block of mass
$M=4 k g \quad$ placed on smooth horizontal surface on its inclined surface as shown in
figure. After collision particle starts moving up
the inclined plane. Calculate the velocity of wedge immediately after collision.

A. approx $5.0 \mathrm{~m} / \mathrm{s}$
B. approx10 m/s
C. approx. $15.0 \mathrm{~m} / \mathrm{s}$
D. approx $20.0 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

53. A small particle of mass $m=2 k g$ moving with constant horizontal velocity $u=10 \mathrm{~m} / \mathrm{s}$
strikes a wedge shaped block of mass
$M=4 k g \quad$ placed on smooth horizontal
surface on its inclined surface as shown in
figure. After collision particle starts moving up
the inclined plane. Calculate the velocity of wedge immediately after collision.

A. $27 / 43 \mathrm{~m} / \mathrm{s}$
B. $30 / 43 \mathrm{~m} / \mathrm{s}$
C. $35 / 43 \mathrm{~m} / \mathrm{s}$

D. $40 / 43 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

54. A sphere of mass m and radius r rolls without slipping on the horizontal surface with speed v. During its motion it encounters a fixed rectangular block of height $h=\frac{r}{4}$ as shown. The collision is inelastic. Find the
angular speed of sphere immediately after collision. The body rolls without slipping.
A. zero
B. $2 \mathrm{rad} / \mathrm{sec}$
C. $2.5 \mathrm{rad} / \mathrm{sec}$
D. $3 \mathrm{rad} / \mathrm{sec}$

Answer:

- Watch Video Solution

55. A particle of mass m strikes a wedge of mass M horizontally as shown in the figure.

Statement - 1 : If collision is perfectly inelastic then, it can be concluded that the particle sticks to the wedge.

Statement - 2 : In perfectly inelastic collision
velocity of both bodies is same along common normal just after collision.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:

D Watch Video Solution

56. In an elastic collision between two particles
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1.
C. Statement -1 is False, Statement-2 is

True.
D. Statement -1 is True, Statement-2 is

False.

Answer:
(Watch Video Solution

