# đず doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS (HINGLISH)

## FRICTION

Mcq S

1. The coefficent of friction $\mu$ and the angle of friction $\lambda$ are related as
A. $\sin \lambda=\mu$
B. $\cos \lambda=\mu$
C. $\tan \lambda=\mu$
D. None of these

Answer: C

D Watch Video Solution
2. A force of 98 N is required to just start moving a body of mass 100 kg over ice. The coefficient of static friction is
A. 0.6
B. 0.4
C. 0.2
D. 0.1

## Answer: D

## D Watch Video Solution

3. A block weighs W is held against a vertical wall by applying a horizontal force $F$. The
minimum value of $F$ needed to hold the block
is
A. Less than W
B. Equal to W
C. Greater than W
D. Data is insufficent

Answer: C

- Watch Video Solution

4. The maximum static frictional force is
A. Equal to twice the area of surface in
contact
B. Independent of the area of surface in
contact
C. Equal to the area of surface in contact
D. None of the above

Answer: B
5. Maximum value of static friction is .
A. Limiting friction
B. Rolling friction
C. Normal reaction
D. Coefficient of friction

Answer: A
6. Pulling force making an angle $\theta$ to the horizontal is applied on a block of weight $W$ placed on a horizontal table. If the angle of friction is $\alpha$, then the magnitude of force is $\alpha$, then the magnitude of force required to move the body is equal to

$$
\begin{aligned}
& \text { A. } \frac{W \sin \alpha}{>\operatorname{an}(\theta-\alpha)} \\
& \text { B. } \frac{W \cos \alpha}{\cos (\theta-\alpha)} \\
& \text { C. } \frac{W \sin \alpha}{\cos (\theta-\alpha)} \\
& \text { D. } \frac{W \tan \alpha}{\sin (\theta-\alpha)}
\end{aligned}
$$

## - Watch Video Solution

7. 



In the figure shown, a block of weight 10 N resting on a horizontal surface. The coefficent of static friction between the block and the surface $\mu_{s}=0.4$. A force of 3.5 N will keep the block in uniform motion, once it has been set in motion. A horizontal force force of 3 N is applid to the block, then the block will
A. Move over the surface with constant velocity
B. Move having accelerated motion over
the surface
C. Not move
D. First it will move with a constant velocity
for some time and then will have accelerated motion

## Answer: C

8. Two masses $A$ and $B$ of 10 kg and 5 kg , respectively, are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown. The coefficient of static friction between $A$ and the table is 0.2 .

The minimum mass $C$ that should be placed
on $A$ to prevent it from moving is equal to

A. 15 kg
B. 10 kg
C. 5 kg
D. 12 kg

## D Watch Video Solution

9. The limiting friction is
A. Always greater than the dynamic friction
B. Always less than the dynamic friction
C. Equal to the dynamic friction
D. Sometimes greater and sometimes less
than the dynamic friction

## D Watch Video Solution

10. Which is a suitable method to decrease

## friction

A. Ball and bearings
B. Lubrication
C. polishing
D. all the above

## Answer: D

## D Watch Video Solution

11. A uniform rope of length $L$ meters is lying over a table. If the coefficient of friction be $\mu$, then the maximum length $L_{1}$ of the part of the rope which can overhang the edge without sliding is

$$
\begin{aligned}
& \text { A. } \frac{l}{\mu} \\
& \text { B. } \frac{l}{\mu+l}
\end{aligned}
$$

C. $\frac{\mu l}{1+\mu}$
D. $\frac{\mu l}{\mu-1}$

## Answer: C

## - Watch Video Solution

12. Which of the following statements is not true
A. The coefficient of friction between two
surfaces increases as the surface in
contact are made rough
B. The force of friction acts in a direction
opposite to the applied force
C. Rolling friction is greater than sliding

## friction

## D. The coefficient of friction between wood

and wood is less than 1

## Answer: C

## D Watch Video Solution

13. A block of 1 kg is stopped against a wall by
applying a force $F$ perpendicular to the wall. If $\mu=0.2$ then minimum value of F will be
A. 980 N
B. 49 N
C. 98 N
D. 490 N

Answer: B
14. A heavy uniform chain lies on a horizontal table-top. If the coefficient of friction between the chain and table surface is 0.25 , then the maximum fraction of length of the chain, that can hang over one edge of the table is
A. 0.2
B. 0.25
C. 0.35
D. 0.15

## - Watch Video Solution

15. The blocks $A$ and $B$ are arranged as shown in the figure. The pulley is frictionless. The mass of $A$ is 10 kg . The coefficient of friction of A with the horizontal surface is 0.20 . The minimum mass of $B$ to start the motion will be


## A. 2 kg

B. 0.2 kg
C. 5 kg
D. 10 kg

Answer: A

## D Watch Video Solution

16. Work done by a frictional force is
A. negative
B. positive
C. zero
D. all of the above

## Answer: D

## D Watch Video Solution

17. L changes partly from a table which is kept in equilibrium by friction. The maximum length
that can withstand without slipping is $l$, then
the chain is

$$
\begin{aligned}
& \text { A. } \frac{l}{L} \\
& \text { B. } \frac{l}{L+l} \\
& \text { C. } \frac{l}{L-l} \\
& \text { D. } \frac{L}{L+l}
\end{aligned}
$$

Answer: C
( Watch Video Solution
18. When two surfaces are coated with a lubricant, then they
A. Stick to each other
B. Slide upon each other
C. Roll upon each other
D. None of these

Answer: B
(D) Watch Video Solution
19. A 20 kg block is initially at rest on a rough
horizontal surface. A horizontal force of 75 N is required to set the block in motion. After it
is in motion, a horizontal force of 60 N is required to keep the block moving with constant speed. The coefficient of static friction is
A. 0.38
B. 0.44
C. 0.52
D. 0.6

Answer: A

## D Watch Video Solution

20. A block $A$ with mass 100 kg is resting on another block $B$ of mass 200kg. As shown in
figure a horizontal rope tied to a wall hold it.

The coefficient of friction between $A$ and $B$ is
0.2 while coefficient of friction between $B$ and
the ground is 0.3 . the minimum required
force $F$ to start moving $B$ will be.

A. 900 N

B. 100 N

C. 1100 N
D. 1200 N

Answer: C

## - Watch Video Solution

21. To avoid slipping while walking on ice, one
should take smaller steps because of the
A. Friction of ice is large
B. Larger normal reaction
C. Friction of ice is small
D. Smaller normal reaction.

Answer: B
22. A box is lying on an inclined plane what is the coefficient of static friction if the box starts sliding when an angle of inclination is $60^{\circ}$
A. 1.173
B. 1.732
C. 2.732
D. 1.677

Answer: B

## - Watch Video Solution

23. A block of mass 2 kg is kept on the floor.

The coefficient of static friction is 0.4 . If a force $F$ of $2.5 N$ is applied on the block as shown in the figure, the frictional force between the block and the floor will be.

A. 2.5 N
B. 5 N
C. 7.84 N
D. 10 N

Answer: A

## D Watch Video Solution

## 24. Which one of the following is not used to

A. Oil
B. Ball bearings
C. Sand
D. Graphite

## Answer: C

## D Watch Video Solution

25. If a ladder weighting $250 N$ is placed against a smooth vertical wall having coefficient of friction between it and floor 0.3,
then what is the maximum force of friction available at the point of contact between the ladder and the floor?
A. 75 N
B. 50 N
C. 35 N
D. 25 N

Answer: A

D Watch Video Solution
26. A body of mass 2 kg is kept by pressing to a vertical wall by a force of 100 N . The coefficient of friction between wall and body is 0.3. Then the frictional force is equal to
A. 2 N
B. 20 N
C. 50 N
D. 100 N

Answer: B

D Watch Video Solution
27. A horizontal force of 10 N is necessary to
just hold a block stationary against as well.

The coefficient of friction between the block and the wall is 0.2 . The weight of the block is

A. 2 N
B. 20 N
C. 10 N
D. none of the above

Answer: A

D Watch Video Solution
28. The coefficient of static friction, $\mu_{s}$ between block A of mass 2 kg and the table as
shown in the figure is 0.2 . What would be the
maximum mass value of block $B$ so that the
two blocks do not move? The string and the pulley are assumed to be smooth and massless. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. 2.0 kg
B. 4.0 kg
C. 0.2 kg

## D. 0.4 kg

## Answer: D

## D Watch Video Solution



If mass of $A=10 \mathrm{~kg}$, coefficent of static friction
$=0.2$ coefficient of kinetic friction $=0.2$ then mass of $B$ to start motion is
A. 2 kg
B. 2.2 kg
C. 4.8 kg
D. 200 kg

Answer: A
( Watch Video Solution
30. A uniform metal chain is placed on a rough
table such that the one end of chain hangs down over the edge of the table, when onethird of its length hang over the edge, the chain starts sliding. Then the coefficient of static friction is
A. $\frac{3}{4}$
B. $\frac{1}{4}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$

## Answer: D

## D Watch Video Solution

31. A lift is moving down with an acceleration equal to the acceleration due to gravity. A body of mass $M$ kept on the floor of the lift is pulled horizontally If the coefficient of friction is $\mu$ then the frictional resistance offered by the body is .
A. $m g$
B. $\mu m g$
C. $2 \mu m g$
D. zero

## Answer: D

## D Watch Video Solution

32. If a ladder weighting $250 N$ is placed against a smooth vertical wall having coefficient of friction between it and floor 0.3, then what is the maximum force of friction
available at the point of contact between the ladder and the floor?
A. 75 N
B. 50 N
C. 35 N
D. 25 N

Answer: A
( Watch Video Solution
33. Which one of the following statements is

## correct

A. Rolling friction is greater than sliding
friction
B. Rolling friction is less than sliding
friction
C. Rolling friction is equal to sliding friction
D. Rolling friction and sliding friction are
same

Answer: B

## D Watch Video Solution

34. The maximum speed that can be achieved
without skidding by a car on a circular
unbanked road of radius $R$ and coefficient of
static friction $\mu$, is
A. $\mu R g$
B. $R g \sqrt{\mu}$
C. $\mu \sqrt{R g}$

## D. $\sqrt{\mu R g}$

## Answer: D

## D Watch Video Solution

35. A car is moving along a straight horizontal
road with a speed $v_{0}$. If the coefficient of
friction between the tyres and the road is $\mu$,
the shortest distance in which the car can be
stopped is

$$
\text { A. } \frac{v_{0}^{2}}{2 \mu g}
$$

> B. $\frac{v_{0}}{\mu g}$ C. $\left(\frac{v_{0}}{\mu g}\right)^{2}$ D. $\frac{v_{0}}{\mu}$

Answer: A

## - Watch Video Solution

36. A block of mass 5 kg is on a rough horizontal surface and is at rest. Now a force of 24 N is imparted to it with negligible impulse. If the coefficient of kinetic friction is
0.4 and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, then the acceleration of the block is
A. $0.26 m / s^{2}$
B. $0.39 \mathrm{~m} / \mathrm{s}^{2}$
C. $0.69 m / s^{2}$
D. $0.88 \mathrm{~m} / \mathrm{s}^{2}$

Answer: D

- Watch Video Solution

37. A body of mass 2 kg is being dragged with
uniform velocity of $2 \mathrm{~m} / \mathrm{s}$ on a rough
horizontal plane. The coefficient of friction between the body and the surface is 0.20 . The amount of heat generated in 5 sec is
. (4.2joule $/$ cal and $\left.g=9.8 m / s^{2}\right)$
A. 9.33 cal
B. 10.21 cal
C. 12.67 cal

## D. 13.34 cal

## Answer: A

## D Watch Video Solution

38. Two carts of masses 200 kg and 300 kg on horizontal rails are pushed apart. Suppose the coefficient of friction between the carts and the rails are same. If the 200 kg cart travels a distance of $36 m$ and stops. Then the distance travelled by the cart weighing 300 kg is : (if
both have same initial speed)

A. 32 m
B. 24 m
C. 16 m
D. 12 m

Answer: C

D Watch Video Solution
39. A body B lies on a smooth horizontal table and another body A is placed on B . The coefficient of friction between A and B is $\mu$.

What acceleration given to $B$ will cause
slipping to occur between $A$ and $B$
A. $\mu g$
B. $g / \mu$
C. $\mu / g$
D. $\sqrt{\mu g}$
40. A 60 kg body is pushed with just enough force to start it moving across a floor and the same force continues to act afterwards. The coefficient of static friction and sliding friction are 0.5 and 0.4 respectively. The acceleration of the body is
A. $6 m / s^{2}$
B. $4.9 m / s^{2}$
C. $3.92 m / s^{2}$

## D. $1 \mathrm{~m} / \mathrm{s}^{2}$

## Answer: D

## D Watch Video Solution

41. A car turns a corner on a slippery road at a
constant speed of $10 \mathrm{~m} / \mathrm{s}$. If the coefficient of
friction is 0.5 , the minimum radius of the arc in meter in which the car turns is
A. 20
B. 10
C. 5
D. 4

## Answer: A

## D Watch Video Solution

42. A motorcyclist of mass $m$ is to negotiate a curve of radius $r$ with a speed $v$. The minimum value of the coefficient of friction so that this negotiation may take place safely, is
A. $v^{2} r g$
B. $\frac{v^{2}}{g r}$
C. $\frac{g r}{v^{2}}$
D. $\frac{g}{v^{2} r}$

Answer: B

## D Watch Video Solution

43. On a rough horizontal surface, a body of mass 2 kg is given a velocity of $10 \mathrm{~m} / \mathrm{s}$. If the
coefficient of friction is 0.2 and $g=10 \mathrm{~m} / \mathrm{s}^{2}$,
the body will stop after covering a distance of
A. 10 m
B. 25 m
C. 50 m
D. 250 m

Answer: B
( Watch Video Solution
44. A block of mass 50 kg can slide on a rough
horizontal surface. The coefficient of friction between the block and the surface is 0.6 . The least force of pull acting at an
angle of $30^{\circ}$ to the upwawrd drawn ve3rtical
which causes the block to just slide is
A. 29.43 N
B. 219.6 N
C. 21.96 N
D. 294.3 N

## Answer: D

## D Watch Video Solution

45. A body of 10 kg is acted by a force of 129.4

N if $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$. The acceleration of the block is $10 \mathrm{~m} / \mathrm{s}^{2}$. What is the coefficient of kinetic friction
A. 0.03
B. 0.01
C. 0.3

## D. 0.25

## Answer: C

## D Watch Video Solution

46. Assuming the coefficient of friction between the road and tyres of a car to be 0.5, the maximum speed with which the car can move round a curve of 40.0 m radius without slipping, if the road is unbanked, should be
A. $25 \mathrm{~m} / \mathrm{s}$
B. $19 \mathrm{~m} / \mathrm{s}$
C. $14 \mathrm{~m} / \mathrm{s}$
D. $11 \mathrm{~m} / \mathrm{s}$

## Answer: C

## D Watch Video Solution

47. Consider a car moving along a straight horizontal road with a speed of $72 \mathrm{~km} / \mathrm{h}$. If the coefficient of kinetic friction between the tyres and the road is 0.5 , the shortest distance
in which the car can be stopped is

$$
\left[g=10 m s^{-2}\right]
$$

A. 30 m
B. 40 m
C. 72 m
D. 20 m

Answer: B
( Watch Video Solution
48. A 500 kg horse pulls a cart of mass 1500 kg along a level road with an acceleration of $1 m s^{-2}$. ms . If the coefficient of sliding friction is 0.2 , then the force exerted by the horse in forward direction is
A. 3000 N
B. 4000 N
C. 5000 N
D. 6000 N

Answer: D
49. Find the maximum speed at which a car can turn round a curve of 30 m radius on a level road if coefficient of friction between the tyres and road is 0.4. Takeg $=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. $9.84 \mathrm{~m} / \mathrm{s}$
B. $10.84 \mathrm{~m} / \mathrm{s}$
C. $7.84 \mathrm{~m} / \mathrm{s}$
D. $5.84 \mathrm{~m} / \mathrm{s}$

Answer: B

## D Watch Video Solution

50. A block of mass 50 kg slides over a horizontal distance of 1 m . If the coefficient of
friction between their surface is 0.2 , then work done against friction is (take $g=9.8 m / s^{2}$ ):
A. 98 J
B. 72 J
C. 56 J
D. 34 J

## Answer: A

## D Watch Video Solution

51. On the horizontal surface of a truck ( $\mu=0.6$ ) a block of mass 1 kg is placed. If the truck is accelerating at the rate of $5 \mathrm{~m} / \mathrm{sec}^{2}$ then friction force on the block will be
B. 6 N
C. 5.88 N
D. 8 N

## Answer: A

## - Watch Video Solution

52. A vehicle of mass $M$ is moving on a rough
horizontal road with a momentum $P$ If the coefficient of friction between the tyres and the road is $\mu$ is then the stopping distance is .
A. $\frac{P}{2 \mu M g}$
B. $\frac{P^{2}}{2 \mu M g}$
C. $\frac{P}{2 \mu M^{2} g}$
D. $\frac{P^{2}}{2 \mu M^{2} g}$

Answer: D

## D Watch Video Solution

53. A body of weight 64 N is pushed with just enough force to start it moving across a horizontal floor and the same force continues
to act afterwards. If the coefficients of static and dynamic friction are 0.6 and 0.4
respectively, the acceleration of the body will be (Acceleration due to gravity $=\mathrm{g}$ )

> A. $\frac{g}{6.4}$
> B. 0.64 g
> C. $\frac{g}{32}$
> D. 0.2 g

## Answer: D

54. When a body is moving on a surface, the

## force of friction is called

A. Static friction
B. Dynamic friction
C. Limiting friction

D. Rolling friction

Answer: B
( Watch Video Solution
55. A block of mass 10 kg is placed on a rough
horizontal surface having coefficient of friction
$\mu=0.5$. If a horizontal force of $100 N$ is
acting on it, then acceleration of the body will be.
A. $0.5 m / s^{2}$
B. $5 m / s^{2}$
C. $10 m / s^{2}$
D. $15 m / s^{2}$
56. It is easier to roll a barrel than pull it along the road. This statement is
A. false
B. true
C. Ucertain
D. Not possible

Answer: B
57. A marble block of mass 2 kg lying on ice when given a velocity of $6 \mathrm{~m} / \mathrm{s}$ is stopped by friction in 10s. Then the coefficient of friction is
A. 0.01
B. 0.02
C. 0.03
D. 0.06

## Answer: D

## D Watch Video Solution

58. A horizontal force of 129.4 N is applied on a

10 kg block which rests on a horizontal
surface. If the coefficient of friction is 0.3 , the acceleration should be
A. $9.8 m / s^{2}$
B. $10 m / s^{2}$
C. $12.6 m / s^{2}$

## D. $19.6 \frac{m}{s^{2}}$

## Answer: B

## D Watch Video Solution

59. A 60 kg weight is dragged on a horizontal surface by a rope upto 2 metres. If coefficient of friction is $\mu=0.5$ the angle of rope with the surface is $60^{\circ}$ and $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$, then work done is
A. 294 joules
B. 315 joules
C. 588 joules
D. 197 joules

Answer: B

- Watch Video Solution

60. A car having a mass of 1000 kg is moving at a seed of 30 metres $/ \mathrm{sec}$. Brakes are applied to bring the car to rest if the frictional force
between the tyres and the road surface is

## 5000 newtons, t he car will come to reast in

A. 5 sec
B. 10 sec
C. 12 sec
D. 6 sec

Answer: D
( Watch Video Solution
61. if $\mu_{s}, \mu_{k}$ and $\mu_{r}$ are coefficeints of static friction, sliding friction and rolling friction, then.

> A. $\mu_{s}<\mu_{k}<\mu_{r}$
> B. $\mu_{k}<\mu_{r}<\mu_{s}$
> C. $\mu_{r}<\mu_{k}<\mu_{s}$
> D. $\mu_{r}=\mu_{k}=\mu_{s}$

Answer: C

- Watch Video Solution

62. A body of mass 5 kg rests on a rough
horizontal surface of coefficient of friction 0.2.

The body is pulled through a distance of 10 m by a horizontal force of 25 N . The kinetic energy acquired by it is $\left(g=10 m s^{2}\right)$
A. 330 J
B. 150 J
C. 100 J
D. 50 J

Answer: B
63. A motorcycle is travelling on a curved track of radius 500 m . If the coefficient of friction between road and tyres is 0.5 , the speed avoiding skidding will be
A. $50 \mathrm{~m} / \mathrm{s}$
B. $75 \mathrm{~m} / \mathrm{s}$
C. $25 \mathrm{~m} / \mathrm{s}$
D. $35 \mathrm{~m} / \mathrm{s}$

Answer: A

## D Watch Video Solution

64. A fireman of mass 60 kg slides down a pole.

He is pressing the pole with a force of 600N.

The coefficient of friction between the hands
and the pole is 0.5 , with what acceleration will
the fireman slide down $\left(g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$
A. $1 m / s^{2}$
B. $2.5 m / s^{2}$
C. $10 m / s^{2}$
D. $5 m / s^{2}$

## Answer: D

## D Watch Video Solution

65. A block of mass $m=5 \mathrm{~kg}$ is resting on a rough horizontal surface for which the coefficient of friction is 0.2 . When a force
$F=40 N$ is applied, the acceleration of the
block will be $\left(g=10 m / s^{2}\right)$.

A. $5.73 \mathrm{~m} / \mathrm{sec}^{2}$
B. $8.0 \mathrm{~m} / \mathrm{sec}^{2}$
C. $3.17 \mathrm{~m} / \mathrm{sec}^{2}$
D. $10.0 \mathrm{~m} / \mathrm{sec}^{2}$

Answer: A

D Watch Video Solution
66. A body is moving along a rough horizontal
surface with an initial velocity $6 \mathrm{~m} / \mathrm{s} \mathrm{m}$ If the
body comes to rest after travelling 9 m , then
the coefficient of sliding friction will be
A. 0.4
B. 0.2
C. 0.6
D. 0.8

Answer: B
67. Consider a car moving on a straight road
with a speed of $100 \mathrm{~m} / \mathrm{s}$. The distance at which car can be stopped is $\left[\mu_{k}=0.5\right]$
A. 100 m
B. 400 m
C. 800 m
D. 1000 m

Answer: D
68. A cylinder of 10 kg is sliding in a plane with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. If the coefficient of friction between the surface and cylinder is
0.5 then before stopping, it will cover. $\left(g=10 m / s^{2}\right)$
A. 2.5 m
B. 5 m
C. 7.5 m
D. 10 m

## Answer: D

## - Watch Video Solution

69. When a body is lying on a rough inclined
plane and does not move, the force of friction
A. is equal to $\mu R$
B. is less than $\mu R$
C. is greater than $\mu R$
D. is equal to $R$

Answer: B

## D Watch Video Solution

70. When a body is placed on a rough plane inclined at an angle $\theta$ to the horizontal, its acceleration is
A. $g(\sin \theta-\cos \theta)$
B. $g(\sin \theta-\mu \cos \theta)$
C. $g(\mu \sin \theta 1-\cos \theta)$
D. $g \mu(\sin \theta-\cos \theta)$

Answer: B

## D Watch Video Solution

71. A block is at rest on an inclined plane making an angle $\alpha$ with the horizontal. As the
angle $\alpha$ of the incline is increased the block starts slipping when the angle of inclination becomes $\theta$. The coefficient of static friction between the block and the surface of the inclined plane is or A body starts sliding down
at an angle $\theta$ to the horizontal. Then the

## coefficient of friction is equal to

A. $\sin \theta$
B. $\cos \theta$
C. $\tan \theta$
D. independent of $\theta$

Answer: C
72. A given object taken $n$ time more time to
slide down $45^{\circ}$ rough inclined plane as it taken to slide down a perfectly smooth $45^{\circ}$ incline The coefficient of kintic friction between the object and the incline is .
A. $\left(1-\frac{1}{n^{2}}\right)$
B. $\frac{1}{1-n^{2}}$
C. $\sqrt{\left(1-\frac{1}{n^{2}}\right)}$
D. $\sqrt{\frac{1}{1-n^{2}}}$

Answer: A

## - Watch Video Solution

73. The force required just to move a body up
an inclined plane is double the force required
just to prevent the body sliding down. If the
coefficient of friction is 0.25 , the angle of
inclination of the plane is
A. $36.8^{\circ}$
B. $45^{\circ}$

## C. $30^{\circ}$

D. $42.6^{\circ}$

## Answer: A

## D Watch Video Solution

74. Starting from rest, a body slides down at
$45^{\circ}$ inclined plane in twice the time it takes to
slide down the same distance in the absence of friction. The coefficient of friction between the body and the inclined plane is
A. 0.33
B. 0.25
C. 0.75
D. 0.8

## Answer: C

## D Watch Video Solution

75. The coefficient of friction between a body and the surface of an inclined plane at $45^{\circ}$ is
0.5. if $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the acceleration of the body downwards I $m / s^{2}$ is
A. $\frac{4.9}{\sqrt{2}}$
B. $4.9 \sqrt{2}$
C. $19.6 \sqrt{2}$
D. 4.9

Answer: A

- Watch Video Solution

76. A box is placed on an inclined plane and
has to be pushed down.The angle of inclination is
A. Equal to angle of friction
B. More than angle of friction
C. Equal to angle of repose
D. Less than angle of repose

Answer: D

- Watch Video Solution

77. A force of 750 N is applied to a block of mass 102 kg to prevent it from sliding on a plane with an inclination angle $30^{\circ}$ with the horizontal. If the coefficients of static friction and kinetic friction between the block and the plane are 0.4 and 0.3 respectively, then the frictional force acting on the block is
A. 750 N
B. 500 N
C. 345 N

## D. 250 N

## Answer: D

## D Watch Video Solution

78. A block is lying on an inclined plane which makes $60^{\circ}$ with the horizontal. If coefficient of
friction between block and plane is 0.25 and $g=10 \mathrm{~m} / \mathrm{s}^{2}$, , then acceleration of the block when it moves along the plane will be
A. $2.50 \mathrm{~m} / \mathrm{s}^{2}$
B. $5.00 \mathrm{~m} / \mathrm{s}^{2}$
C. $7.4 m / s^{2}$
D. $8.66 m / s^{2}$

## Answer: C

## D Watch Video Solution

79. A body of mass 100 g is sliding from an inclined plane of inclination $30^{\circ}$. What is the frictional force experienced if $\mu=1.7$.

> A. $1.7 \times \sqrt{2} \times \frac{1}{\sqrt{3}} N$
> B. $1.7 \times \sqrt{3} \times \frac{1}{2} N$
> C. $1.7 \times \sqrt{3} N$
> D. $1.7 \times \sqrt{2} \times \frac{1}{3} N$

Answer: B

## - Watch Video Solution

80. A body takes just twice the time as long to slide down a plane inclined at $30^{\circ}$ to the horizontal as if the plane were frictionless. The
coefficient of friction between the body and
the plane is
A. $\frac{\sqrt{3}}{4}$
B. $\sqrt{3}$
C. $\frac{4}{3}$
D. $\frac{3}{4}$

Answer: A
( Watch Video Solution
81. A brick of mass 2 kg begins to slide down on
a plane inclined at an angle of $45^{\circ}$ with the
horizontal. The force of friction will be
A. $19.6 \sin 45^{\circ}$
B. $19.6 \cos 45^{\circ}$
C. $9.8 \sin 45^{\circ}$
D. $9.8 \cos 45^{\circ}$

Answer: A

D Watch Video Solution
82. The upper half of an inclined plane with
inclination $\phi$ is perfectly smooth while the
lower half is rough. A body starting from rest at the top will again come to rest at the bottom if the coefficient of friction for the lower half is given by
A. $\mu=\sin \theta$
B. $\mu=\cos \theta$
C. $\mu=2 \cos \theta$
D. $\mu=2 \tan \theta$

## Answer: D

## D Watch Video Solution

83. A body is sliding down an inclined plane
having coefficient of friction 0.5 . If the normal
reaction is twice that of resultant downward
force along the inclined plane, then find the angle between the inclined plane and the horizontal.
A. $15^{\circ}$
B. $30^{\circ}$
C. $45^{\circ}$
D. $60^{\circ}$

## Answer: C

## D Watch Video Solution

84. A body of mass 10 kg is lying on a rough
plane inclined at an angle of $30^{\circ}$ to the horizontal and the coefficient of friction is 0.5 .
the minimum force required to pull the body up the plane is
A. 914 N
B. 91.4 N
C. 9.14 N
D. 0.914 N

Answer: B
( Watch Video Solution
85. A block of mass 1 kg slides down on a rough inclined plane of inclination $60^{\circ}$ starting from its top. If the coefficient of kinetic friction is 0.5 and length of the plane is

1 m , then work done against friction is (Take

$$
\left.g=9.8 m / s^{2}\right)
$$

A. 9.82 J
B. 4.94 J
C. 2.45 J
D. 1.96 J

Answer: C

## D Watch Video Solution

86. A block of mass 10 kg is placed on an
inclined plane when the angle of inclination is
$30^{\circ}$. The block just begins to slide down the
plane. The force of static friction is
A. 10 kg wt
B. 89 kg w
C. 49 kg wt

## D. 5 kg wt

## Answer: D

## D Watch Video Solution

87. A body of 5 kg weight kept on a rough
inclined plane of angle $30^{\circ}$ starts sliding with
a constant velocity. Then the coefficient of
friction is (assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )
A. $1 / \sqrt{3}$
B. $2 / \sqrt{3}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$

Answer: A

## D Watch Video Solution

88. 300 J of work is done in slide a 2 kg block up
an inclined plane of height 10 m . 'Taking $\mathrm{g}=10$
$\mathrm{m} / / \mathrm{s}^{\wedge}(2)$, work done against friction is
A. 100 J
B. 200 J
C. 300 J
D. zero

Answer: A

## D Watch Video Solution

89. A 2 kg mass starts from rest on an inclined smooth surface with inclination $30^{\circ}$ and
length 2 m . How much will it travel before
coming to rest on a frictional surface with

## frictional coefficient of 0.25

A. 4 m
B. 6 m
C. 8 m
D. 2 m

Answer: A
( Watch Video Solution
90. A block rests on a rough inclined plane making an angle of $30^{\circ}$ with horizontal. The coefficient of static friction between the block and inclined plane is 0.8 . If the frictional force on the block is $10 N$, the mass of the block in $k g$ is $\left(g=10 m / s^{2}\right)$
A. 2.0
B. 4.0
C. 1.6
D. 2.5

Answer: A

## - Watch Video Solution

91. A body takes time $t$ to reach the bottom of
a smooth inclined plane of angle $\theta$ with the
horizontal. If the plane is made rough, time
taken now is $2 t$.The coefficient of friction of
the rough surface is
A. $\frac{2}{3} \tan \theta$
B. $\frac{1}{4} \tan \theta$
C. $\frac{1}{2} \tan \theta$
D. $\frac{3}{4} \tan \theta$

## Answer: D

## D Watch Video Solution

92. A block is kept on an inclined plane of inclination $\theta$ of length $l$. the velocity of particle at the bottom of inclined is (the coefficient of friction is $\mu$ )
A. $\sqrt{2 g l(\mu \cos \theta-\sin \theta)}$
B. $\sqrt{2 g l(\sin \theta-\mu \cos \theta)}$
C. $\sqrt{2 g l(\sin \theta+\mu \cos \theta)}$
D. $\sqrt{2 g l(\cos \theta+\mu \sin \theta)}$

Answer: B

## D Watch Video Solution

93. A block of mass $m$ lying on a horizontal
plane, is acted upon by a horizontal force $p$ and another force $Q$ inclined at angle $\theta$ to
the vertical .The block will remain in equilibrium if the coefficient of friction between it and the surface is (assume $p>Q$ )

A. $\frac{(P+Q \sin \theta)}{(m g+Q \cos \theta)}$
B. $\frac{(P \cos \theta+Q)}{(m g-Q \sin \theta)}$
C. $\frac{(P+Q \cos \theta)}{(m g+Q \sin \theta)}$
D. $\frac{(\Psi n \theta-Q)}{(m g-Q \cos \theta)}$

## Answer: A

## D Watch Video Solution

94. Which of the following is correct, when a person walks on the rough surface.
A. The frictional force exerted by the
surface keeps him moving
B. The force which the man exerts on the
floor keeps him moving
C. The reaction of the force which the man
exerts on floor keeps him moving
D. None of the above

Answer: C

## - Watch Video Solution

95. A block of mass 0.1 is held against a wall
applying a horizontal force of 5 N on block. If
the coefficient of friction between the block and the wall is 0.5 , the magnitude of the frictional force acting on the block is:
A. 2.5 N
B. 0.98 N
C. 4.9 N
D. 0.49 N

Answer: B
96. A body of mass $M$ is kept $n$ a rough horizontal surfasce (friction coefficient $=\mu$ ).

A person is trying to pull he body by applying
a horizontal force but the body is not moving.
The force by the surface on $A$ is $F$, where
A. $F=M g$
B. $F=\mu M g f$
C. $M g \leq F \leq M g \sqrt{1+u^{2}}$

# D. $M g \geq F \geq M g \sqrt{1+u^{2}}$ 

## Answer: C

## D Watch Video Solution

97. What is the maximum value of the force $F$
such that the block shown in the arrangement,

## does not move?


A. 20 N
B. 10 N
C. 12 N

## D. 15 N

## Answer: A

## D Watch Video Solution

98. A block $P$ of mass $m$ is placed on horizontal
frictionless plane. A second block of same mass $m$ is placed on it and is connected to a spring of spring constant $k$, the two blocks are pulled by distance A. Block Q oscillates without slipping. What is the maximum value of

## frictional force between the two blocks.


A. kA
B. $\frac{k A}{2}$
C. Zero

## D. $\mu_{s} m g$

Answer: B

## D Watch Video Solution

99. A block of mass $m$ lying on a rough
horizontal surface of friction coefficient $\mu$ is
pulled by a force $F$ as shown, the limiting
friction between the block and surface will be

$\mu$
A. $\mu m g$
B. $\mu\left[m g+\left(\frac{F}{2}\right)\right]$
C. $\mu\left[m g-\left(\frac{F}{2}\right)\right]$
D. $\mu\left[m g-\left(\frac{\sqrt{3} F}{2}\right)\right]$

Answer: C
100. A 40kg slab rests on a frictionless floor as
shown in the figure. A 10kg block rests on the top of the slab. The static coefficient of friction between the block and slab is 0.60 while the kinetic friction is 0.40 . The 10 kg block is acted upon by a horizontal force 100N. if $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the resulting acceleration of the slab will be.

A. $1 m / s^{2}$
B. $1.5 m / s^{2}$
C. $2 m / s^{2}$
D. $6.1 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

## D Watch Video Solution

101. A block of mass 2 kg rests on a rough
inclined plane making an angle of $30^{\circ}$ with
the horizontal. The coefficient of static friction
between the block and the plane is 0.7 . The frictional force on the block is
A. $9.8 N$
B. $0.7 \times 9.8 \times \sqrt{3} N$.
C. $9.8 \times \sqrt{3} N$
D. $0.8 \times 9.8 N$

Answer: A
( Watch Video Solution
102. When a bicycle is motion the force of friction exerted by the ground on the two wheels is such that is acts .
A. In the backward direction on the front
wheel and in the forward direction on
the rear wheel
B. In the forward direction on the front
wheel and in the backward direction on
the rear wheel
C. In the backward direction on both front and the rear wheels
D. In the forward direction on both front and the rear

## Answer: A::C

## D Watch Video Solution

103. An insect crawls up a hemispherical surface very slowly (see the figure). The coefficient of friction between the insect and
the surface is $1 / 3$. If the line joining the centre of the hemispherical surface to the insect makes an angle $\alpha$ with the vertical, the maximum possible value of $\alpha$ is given by

A. $\cot \alpha=3$
B. $\tan \alpha=3$
C. $\sec \alpha=3$

$$
\text { D. } \operatorname{cosec} \alpha=3
$$

## Answer: A

## D Watch Video Solution

104. Assertion: On a rainy day, it is difficult to
drive a car or bus at high speed.

Reason: The value of coefficient of friction is
lowered due to wetting of the surface.
A. If both assertion and reason are true
and $t$ he reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false
D. If the assertion and reason both are
false

## - Watch Video Solution

105. Assertion : When a bicycle is in motion,
the force of friction exerted by the ground on
the two wheels is always in forward direction.
Reason : The frictional force acts only when
the bodies are in contact
A. If both assertion and reason are true
and t he reason is the correct
explanation of the assertion.
B.
C.
D. If assertion is false but reason is true.

## Answer: D

## D Watch Video Solution

106. Assertion: Pulling a lawn roller is easier
than pushing it.

Reason: Pulling increases the apparent weight and hence the force of friction.
A. If both assertion and reason are true
and $t$ he reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false
D. If the assertion and reason both are
false

## - Watch Video Solution

107. Assertion : Angle of repose is equal to angle of limiting friction.

Reason : When the body is just at the point of motion, the force of friction in this stage is called as limiting friction.
A. If both assertion and reason are true
and t he reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false
D. If the assertion and reason both are false

Answer: B

## D Watch Video Solution

108. Assertion: Two bodies of masses $M$ and $m(M>m)$ are allowed to fall from the same
height if the air resistance for each be the same then both the bodies will reach the earth simultaneously.

Reason: For same air resistance, acceleration of both the bodies will be same.
A. If both assertion and reason are true
and $t$ he reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false
D. If the assertion and reason both are

false

## Answer: D

## D Watch Video Solution

109. Assertion: Friction is a self-adjusting force.

Reason: Friction does not depend upon mass of the body
A. If both assertion and reason are true
and $t$ he reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false
D. If the assertion and reason both are

false

## Answer: D

## D Watch Video Solution

110. Assertion : The value of dynamic friction is
less than the limiting friction.

Reason : Once the motion has started, the inertia of rest has been overcome.
A. If both assertion and reason are true
and $t$ he reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false
D. If the assertion and reason both are
false

## - Watch Video Solution

111. Assertion: The acceleration of a body down
a rough inclined plane is grater than the acceleration due to gravity.

Reason: The body is able to slide on an inclined plane only when its acceleration is greater than acceleration due to gravity.
A. If both assertion and reason are true
and $t$ he reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false
D. If the assertion and reason both are

false

## Answer: D

## D Watch Video Solution

112. A force of 19.6 N when applied parallel to
the surface just moves a body of mass 10 kg kept on a horizontal surface. If a 5 kg mass is kept on the first mass, the orce applied parallel to the surface to just move the combined body is
A. 29.4 N
B. 39.2 N
C. 18.6 N
D. 42.6 N

## Answer:

## D Watch Video Solution

113. If the normal force is doubled, the coefficient of friction is
A. Not charnged
B. Halved
C. Doubled
D. Tripled

## Answer:

## D Watch Video Solution

114. 



A body of weight 50 N placed on a horizontal surface is just moved by a force of 28.2 N . the frictional force and the narmal reaction are

A. $10 \mathrm{~N}, 15 \mathrm{~N}$

B. $20 \mathrm{~N}, 30 \mathrm{~N}$
C. $2 \mathrm{~N}, 3 \mathrm{~N}$
D. $5 \mathrm{~N}, 6 \mathrm{~N}$

Answer: B

- Watch Video Solution

115. 



Block A weighing 100 kg rests on a block B and is tied with a horizontal string to the wall at C .

Block B weighs 200 kg . The coefficient of friction between $A$ and $B$ is 0.25 and between $B$ and the surface is $1 / 3$. The horizontal force $P$ necessary to move the block B should be $\left(g=10 m / s^{2}\right)$
A. 1150 N
B. 1250 N
C. 1300 N
D. 1420 N

Answer: B

- Watch Video Solution


116. 

A rough vertical board has an acceleration $a$
so that a 2 kg block pressing against it dows
not fall. The coefficient of friction between the
block and the board should be
A. $>g / a$
B. $<g / a$
C. $=g / a$
D. $>a / g$

Answer:

D Watch Video Solution
117. A stone weighing 1 kg and sliding on ice
with a velocity of $2 \mathrm{~m} / \mathrm{s}$ is stopped by friction
in 10 sec . The force of friction (assuming it to be constant) will be
A. $-20 N$
B. $-0.2 N$
C. $0.2 N$
D. 20 N

## Answer:

118. A body of mass 10 kg slides a long a rough
horizontal surfce. The coefficient of friction is
$1 / \sqrt{3}$. Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$. The least force which acts at an angle of $30^{\circ}$ to the horizontal is
A. 25 N
B. 100 N
C. 50 N
D. $\frac{50}{\sqrt{3}} N$

## Answer: C

## D Watch Video Solution

119. A lift is moving down with an acceleration equal to the acceleration due to gravity. A body of mass $M$ kept on the floor of the lift is pulled horizontally If the coefficient of friction
is $\mu$ then the frictional resistance offered by the body is .
A. $M g$
B. $\mu M g$
C. $2 \mu M g$
D. zero

## Answer:

## D Watch Video Solution

120. In the above question, if the lift is moving upwards with a uniform velocity, then the frictional resistance offered by the body is
A. Mg
B. $\mu M g$
C. $2 \mu M g$
D. zero

## Answer:

## D Watch Video Solution

121. A body of mass 2 kg is moving on the ground comes to rest after some time. The coefficient of kinetic friction between the body
and the ground is 0.2 . The etardation in the body is
A. $9.8 m / s^{2}$
B. $4.73 \mathrm{~m} / \mathrm{s}^{2}$
C. $2.16 m / s^{2}$
D. $1.96 \mathrm{~m} / \mathrm{s}^{2}$

Answer:
( Watch Video Solution
122. A cyclist moves in a circular track of radius

100 m . If the coefficient of friction is 0.2 , then
the maximum velocity with which the cyclist can take the turn with leaning inwards is
A. $9.8 \mathrm{~m} / \mathrm{s}$
B. $1.4 \mathrm{~m} / \mathrm{s}$
C. $140 \mathrm{~m} / \mathrm{s}$
D. $14 \mathrm{~m} / \mathrm{s}$

## Answer:

123. A block of mass 5 kg lies on a rough
horizontal table. A force of 19.6 N is enough to
keep the body sliding at uniform velocity. The coefficient of sliding friction is
A. 0.5
B. 0.2
C. 0.4
D. 0.8

## Answer:

## D Watch Video Solution

124. A motor car has a width 1.1 m between wheels. Its centre of gravity is 0.62 m above the ground and the coefficient of friction between the wheels and the road is 0.8 . What
is the maximum possible speed, if the centre of gravity inscribes a circle of radius 15 m ?
(Road surface is horizontal)
A. $7.64 \mathrm{~m} / \mathrm{s}$
B. $6.28 \mathrm{~m} / \mathrm{s}$
C. $10.84 \mathrm{~m} / \mathrm{s}$
D. $11.23 \mathrm{~m} / \mathrm{s}$

## Answer: C

## - Watch Video Solution

125. A child weighing 25 kg slides down a rope hanging from the branch of a tall tree. If the
force of friction acting against him is 2 N , what is the acceleration of the child
A. $22.5 m / s^{2}$
B. $8 m / s^{2}$
C. $5 m / s^{2}$
D. $9.72 m / s^{2}$

Answer: D
( Watch Video Solution

