© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS (HINGLISH)

ROTATIONAL MOTION

Problems

1. The distance between the carbon atom and
the oxygen atom in a carbon monoxide
molecule is $1.1 \AA \AA$. Given, mass of carbon atom
is 12 a.m.u. and mass of oxygen atom is 16 a.m.u., calculate the position of the centre of mass of the carbon monoxide molecule
A. $6.3 \AA$ from the carbon atom
B. 1 Å from the oxygen atom
C. $0.63 \AA$ from the carbon atom
D. $0.12 \AA$ from the oxygen atom

Answer: C

2. The velocities of three particles of masses $20 \mathrm{~g}, 30 \mathrm{~g}$ and 50 g are $10 \hat{i}, 10 \hat{j}$ and $10 \hat{k}$ respectively. The velocity of the centre of mass of the three particles is

> А. $2 \vec{i}+3 \hat{j}+5 \hat{k}$
> В. $10(\hat{i}+\hat{j}+\hat{k})$
C. $20 \hat{i}+30 \hat{j}+5 \hat{k}$
D. $2 \hat{i}+30 \hat{j}+50 \hat{k}$
3. 4 Masses $8 \mathrm{~kg}, 2 \mathrm{~kg}, 4 \mathrm{~kg}$ and 2 kg are placed at the corners $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively of a square $A B C D$ of diagonal 80 cm . The distance of centre of mass from A will be
A. 20 cm
B. 30 cm
C. 40 cm
D. 60 cm

Answer: B

- Watch Video Solution

4. The coordinates of the positions of particles
of mass 7,4 and 10 gm are $(1,5,-3),(2,5,7)$ and
$(3,3,-1)$ respectively. Find the position of the center of mass of the system?
A. $\left(-\frac{15}{7}, \frac{85}{17}, \frac{1}{7}\right) c m$
B. $\left(\frac{15}{7},-\frac{85}{17}, \frac{1}{7}\right) c m$
C. $\left(\frac{15}{7}, \frac{85}{21},-\frac{1}{7}\right) c m$
D. $\left(\frac{15}{7}, \frac{85}{21}, \frac{7}{3}\right) c m$

Answer: C

D Watch Video Solution

5. The angular velocity of second's hand of a
watch will be.
A. $\frac{\pi}{60} \mathrm{rad} / \mathrm{sec}$
B. $\frac{\pi}{30} \mathrm{rad} / \mathrm{sec}$
C. $\pi \mathrm{rad} / \mathrm{sec}$

D. $30 \pi \mathrm{rad} / \mathrm{sec}$

Answer: B

D Watch Video Solution

6. The wheel of a car is rotating at the rate of

1200 revolutions per minute. On pressing the
accelerator for 10 seconds, it starts rotating at
4500 revolutions per minute. The angular acceleration of the wheel is
A. 30 radians $/ \sec ^{2}$
B. 1880 degrees $/ \mathrm{sec}^{2}$
C. 40 radians $/ \mathrm{sec}^{2}$
D. 1980 degrees $/ \mathrm{sec}^{2}$

Answer: D

- Watch Video Solution

7. Angular displacement (θ) of a flywheel
varies with time as $\theta=a t+b t^{2}+c t^{3}$ then angular acceleration is given by
A. $a+2 b t-3 c t^{2}$
B. $2 b-6 t$
C. $a+2 b-6 t$
D. $2 b+6 c t$

Answer: D

D Watch Video Solution
8. A wheel completes 2000 revolutions to cover the 9.5 km distance, then the diameter of the wheel is
A. 1.5 m
B. 1.5 cm
C. 7.5 cm
D. 7.5 cm

Answer: A

D Watch Video Solution

9. A wheel is at rest. Its angular velocity increases uniformly and becomes $60 \mathrm{rad} / \mathrm{sec}$ after 5 sec . The total angular displacement is
A. 600 rad
B. 75 rad
C. 300 rad
D. 150 rad

Answer: D

D Watch Video Solution

10. A wheel initially at rest, is rotated with a uniform angular acceleration. The wheel rotates through an angle θ_{1} in first one second
and through an additional angle θ_{2} in the next one second. The ratio θ_{2} / θ_{1} is :
A. 4
B. 2
C. 3
D. 1

Answer: C
(Watch Video Solution
11. As a part of a maintenance inspection the compressor of a jet engine is made to spin according to the graph as shown. Find the number of revolutions made by the compressor during the test?

A. 9000
B. 16570
C. 12750
D. 11250

Answer: D

D Watch Video Solution

12. Figure shows a small wheel fixed coaxially on a bigger one of double the radius. The system rotates about the common axis. The strings supporting A and B do not slip on the wheels. If x and y be the distances travelled by
A and B in the same time interval, then

A. $x=2 y$
B. $x=y$
C. $y=2 x$
D. None of these

Answer: C

D Watch Video Solution

13. The position vector of a particle is $\vec{r}=(3 \hat{i}+4 \hat{j})$ metre and its angular
velocity $\vec{\omega}=(\hat{j}+2 \hat{k}) r^{-1}$ then its linear
velocity is (in $m s^{-1}$)
A. $(8 \hat{i}-6 \hat{j}+3 \hat{k})$
B. $(3 \hat{i}+6 \hat{j}+8 \hat{k})$
C. $-(3 \hat{i}+6 \hat{j}+6 \hat{k})$
D. $(6 \hat{i}+8 \hat{j}+3 \hat{k})$

Answer: A

D Watch Video Solution

14. Five particles of mass 2 kg each are attached to the rim of a circular disc of radius
0.1 m and negligible mass. Moment of inertia
of the system about the axis passing through
the centre of the disc and perpendicular to its plane is
A. $1 \mathrm{kgm}^{2}$
B. $0.1 \mathrm{kgm}^{2}$
C. $2 \mathrm{kgm}^{2}$
D. $0.2 \mathrm{kgm}^{2}$

Answer: B

D Watch Video Solution
15. A circular disc X of radius R is made from an
iron plate of thickness t, and another disc Y of
radius 4 R is made from an iron plate of thickness $\frac{t}{4}$. Then the relation between the moment of inerita I_{X} and I_{Y} is

$$
\begin{aligned}
& \text { A. } I_{Y}=64 I_{X} \\
& \text { B. } I_{Y}=32 I_{X} \\
& \text { C. } I_{Y}=16 I_{X} \\
& \text { D. } I_{Y}=I_{X}
\end{aligned}
$$

16. Moment of inertia of a uniform circular disc
about a diameter is I. Its moment of inertia
about an axis perpendicular to its plane and passing through a point on its rim will be.
A. 51
B. 61
C. 3 I
D. 41

Answer: B

D Watch Video Solution

17. Four thin rods of same mass M and same
length I, form a square as shown in figure.

Moment of inertia of this system about an axis
through centre O and perpendicular to its
plane is

D. $\frac{2}{3} M l^{2}$

Answer: A

D Watch Video Solution

18. Three rings each of mass M and radius R are arranged as shown in the figure. The moment of inertia of the system about YYc will
be

A. $3 M R^{2}$
B. $\frac{3}{2} M R^{2}$
C. $5 M R^{2}$
D. $\frac{7}{2} M R^{2}$

Answer: D

D Watch Video Solution

19. Let I be the moment of interia of a uniform
square plate about an axis $A B$ that passses
through its centre and is parallel to two its
sides. $C D$ is a line in the plane of the plate
that passes through the centre of the plate
and makes an angle θ with $A B$. The moment of inertia of the plate about the axis $C D$ is then equal to-
A. I
B. $l \sin ^{2} \theta$
C. $l \cos ^{2} \theta$
D. $l \cos ^{2} \frac{\theta}{2}$

Answer: A

D Watch Video Solution

20. Three rods each of length L and mass M are placed along X, Y and Z axis in such a way
that one end of each of the rod is at the
origin. The moment of inertia of this system about Z axis is
A. $\frac{2 M L^{2}}{3}$
B. $\frac{4 M L^{2}}{3}$
C. $\frac{5 M L^{2}}{3}$
D. $\frac{M L^{2}}{3}$

Answer: A
(Watch Video Solution
21. Three point masses each of mass m are placed at the corners of an equilateral triangle of side 'a'. Then the moment of inertia of this
system about an axis passing along one side of the triangle is
A. $m a^{2}$
B. $3 m a^{2}$
C. $\frac{3}{4} m a^{2}$
D. $\frac{2}{3} m a^{2}$

Answer: C
22. Two uniform identical rods each of mass M
and length I are joined to form a cross as
shown in figure. Find the moment of inertia of
the cross about a bisector as shown doted in
the figure

A. $\frac{M l^{2}}{6}$
B. $\frac{M l^{2}}{12}$
C. $\frac{M l^{2}}{3}$
D. $\frac{M l^{2}}{4}$

Answer: B

D Watch Video Solution

23. The moment of inertia of a rod of length l
about an axis passing through its centre of mass and perpendicular to rod is I. The moment of inertia of hexagonal shape formed by six such rods, about an axis passing through its centre of mass and perpendicular to its plane will be
A. 161
B. 40 Ol
C. 601
D. 801

Answer: C

D Watch Video Solution
24. The moment of inertia of HCl molecule about an axis passing through its centre of mass and perpendicular to the line joining the
H^{+}and Cl^{-}ions will be (if the inter atomic distance is $1 A^{\circ}$)

A. $0.61 \times 10^{-47} \mathrm{~kg} . \mathrm{m}^{2}$
B. $1.61 \times 10^{-47} \mathrm{~kg} . \mathrm{m}^{2}$
C. $0.061 \times 10^{-47} \mathrm{~kg} . \mathrm{m}^{2}$
D. 0

Answer: B
(Watch Video Solution
25. Four masses are joined to a light circular
frame as shown in the figure. The radius of gyration of this system about an axis passing through the centre of the circular frame and perpendicular to its plane would be

A. $a / \sqrt{2}$
B. $a / 2$
C. a
D. 2 a

Answer: C

- Watch Video Solution

26. Four particles each of mass m are placed at the corners of a square of side length l. The radius of gyration of the system about an axis
perpendicular to the plane of square and passing through its centre is

$$
\begin{aligned}
& \text { A. } \frac{5}{2} M\left(4 r^{2}+5 R^{2}\right) \\
& \text { B. } \frac{2}{5} M\left(4 r^{2}+5 R^{2}\right) \\
& \text { C. } \frac{2}{5} M\left(4 r^{2}+5 r^{2}\right) \\
& \text { D. } \frac{5}{2} M\left(4 r^{2}+5 r^{2}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

27. What is the moment of inertia of a solid sphere of density ρ and radius R about its diameter?

$$
\begin{aligned}
& \text { A. } \frac{105}{176} R^{5} \rho \\
& \text { B. } \frac{105}{176} R^{2} \rho \\
& \text { C. } \frac{176}{105} R^{5} \rho \\
& \text { D. } \frac{176}{105} R^{2} \rho
\end{aligned}
$$

Answer: C

- Watch Video Solution

28. Two circular discs A and B of equal masses

and thicknesses. But are made of metals with
densities $\quad d_{A}$ and $d_{B}\left(d_{A}>d_{B}\right)$. If their moments of inertia about an axis passing
through the centre and normal to the circular
faces be I_{A} and I_{B}, then.
A. $I_{A}=I_{B}$
B. $I_{A}>I_{B}$
C. $I_{A}<I_{B}$
D. $I_{A} \geq<I_{B}$

Answer: C

- Watch Video Solution

29. A force of $(2 \hat{i}-4 \hat{j}+2 \hat{k}) \mathrm{N}$ act a point $(3 \hat{i}+2 \hat{j}-4 \hat{k})$ metre form the origin. The magnitude of torque is
A. Zero
B. $24.4 \mathrm{~N}-\mathrm{m}$
C. $0.244 \mathrm{~N}-\mathrm{m}$
D. $2.444 \mathrm{~N}-\mathrm{m}$

Answer: B

- Watch Video Solution

30. The resultant of the system in the figure is
a force of 8 N parallel to the given force through R. The value of PR equals to

A. $1 / 4 R Q$
B. $3 / 8 R Q$
C. $3 / 5 R Q$
D. $2 / 5 R Q$

Answer: C

D Watch Video Solution

31. A horizontal heavy uniform bar of weight W is supported at its ends by two men. At the instant, one of the men lets go off his end of
the rod, the other feels the force on his hand changed to
A. W
B. $\frac{W}{2}$
C. $\frac{3 W}{4}$
D. $\frac{W}{4}$

Answer: D

D Watch Video Solution
32. Consider a body, shown in figure, consisting of two identical balls, each of mass
M connected by a light rigid rod. If an impulse $J=M V$ is imparted to the body at one of its ends what would be it angular velocity?

L

A. v / L
B. $2 v / L$

C. $v / 3 L$

D. $v / 4 L$

Answer: A

- Watch Video Solution

33. A thin circular ring of mass M and radius R
is rotating about its axis with a constant angular velocity omega. Four objects each of mass m, are kept gently to the opposite ends
of two perpendicular diameters of the ring.

The angular velocity of the ring will be

$$
\begin{aligned}
& \text { A. } \frac{M \omega}{M+4 m} \\
& \text { B. } \frac{(M+4 m) \omega}{M} \\
& \text { C. } \frac{(M-4 m) \omega}{M+4 m} \\
& \text { D. } \frac{M \omega}{4 m}
\end{aligned}
$$

Answer: A

D Watch Video Solution

34. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the edge of the platform. Now the platform is given an angular velocity ω_{0}. When the tortoise move along a chord of the platform with a constant velocity (with respect to the platform),

Answer: B

(Watch Video Solution

35. The position of a particle is given by $\vec{r}=\hat{i}+2 \hat{j}-\hat{k}$ and its momentum is
$\vec{p}=3 \hat{i}+4 \hat{j}-2 \hat{k}$. The angular momentum
is perpendicular to
A. X-axis
B. Y-axis
C. Z-axis
D. Line at equal angles to all the three axes

Answer: A
(Watch Video Solution
36. Two discs of moment of inertia I_{1} and I_{2}
and angular speeds ω_{1} and ω_{2} are rotating along the collinear axes passing through their center of mass and perpendicular to their plane. If the two are made to rotate combindly along the same axis the rotational K. E. of system will be

$$
\begin{aligned}
& \text { A. } \frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{2\left(I_{1}+I_{2}\right)} \\
& \text { B. } \frac{\left(I_{1}+I_{2}\right)\left(\omega_{1}+\omega_{2}\right)^{2}}{2} \\
& \text { C. } \frac{\left(I_{1} \omega_{1}+I_{2} \omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}
\end{aligned}
$$

D. None of these

Answer: C

- Watch Video Solution

37. A smooth uniform rod of length L and mass
M has two identical beads of negligible size each of mass m which can slide freely along the rod. Initially the two beads are at the centre of the rod and the system is rotating with an angular velocity ω_{0} about an axis
perpendicular to the rod and passing through
the midpoint of the rod. There are no external
forces. When the beads reach the ends of the rod, the angular velocity of the system is

A. ω_{0}
B. $\frac{M \omega_{0}}{M+12 m}$
C. $\frac{M \omega_{0}}{M+2 m}$

D. $\frac{M \omega_{0}}{M+6 m}$

Answer: D

- Watch Video Solution

38. Moment of inertia of uniform rod of mass
M and length L about an axis through its
centre and perpendicular to its length is given
by $\frac{M L^{2}}{12}$. Now consider one such rod pivoted at its centre, free to rotate in a vertical plane.

The rod is at rest in the vertical position. A
bullet of mass M moving horizontally at a speed v strikes and embedded in one end of the rod. The angular velocity of the rod just after the collision will be

> A. $\frac{v}{L}$
> B. $\frac{2 v}{L}$
> C. $\frac{3 v}{2} L$
> D. $\frac{6 v}{L}$

Answer: C

39. A solid cylinder of mass 2 kg and radius
0.2 m is rotating about its own axis without
friction with angular velocity 3 rads/s. A particle of mass 0.5 kg and moving with a velocity $5 \mathrm{~m} / \mathrm{s}$ strikes the cylinder and sticks to
it as shown in figure. The angular momentum of the cylinder before collision will be?
$3 \mathrm{rad} / \mathrm{s}$
A. $0.12 \mathrm{~J}-\mathrm{s}$
B. $12 \mathrm{~J}-\mathrm{s}$
C. $1.2 \mathrm{~J}-\mathrm{s}$
D. $1.12 \mathrm{~J}-\mathrm{s}$

Answer: A

D Watch Video Solution
40. In the above problem the angular velocity
of the system after the particle sticks to it will be?
A. $0.3 \mathrm{rad} / \mathrm{s}$
B. $5.3 \mathrm{rad} / \mathrm{s}$
C. $10.3 \mathrm{rad} / \mathrm{s}$
D. $89.3 \mathrm{rad} / \mathrm{s}$

Answer: C

- Watch Video Solution

41. A ring of radius 0.5 m and mass 10 kg is rotating about its diameter with angular velocity of $20 \mathrm{rad} / \mathrm{s}$. Its KE is :-
A. 10J
B. 100J
C. 500J
D. 250J

Answer: D

D Watch Video Solution

42. An automobile engine develops 100 kW, when rotating at a speed of $1800 \mathrm{rev} / \mathrm{min}$.

Find the torque developed by it.
A. $350 \mathrm{~N}-\mathrm{m}$
B. $440 \mathrm{~N}-\mathrm{m}$
C. $531 \mathrm{~N}-\mathrm{m}$
D. $628 \mathrm{~N}-\mathrm{m}$

Answer: C

D Watch Video Solution

43. A body of moment of inertia of $3 \mathrm{kgm}^{2}$ rotating with an angular velocity or $2 \mathrm{rad} / / \mathrm{s}$
has the same kinetic energy as a mass of 12 kg moving with a velocity of
A. $8 \mathrm{~m} / \mathrm{s}$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m} / \mathrm{s}$
D. $1 \mathrm{~m} / \mathrm{s}$

Answer: D
(Watch Video Solution
44. A disk and a ring of the same mass are rolling to have the same kinetic energy. What is ratio of their velocities of centre of mass
A. $\sqrt{4}: \sqrt{3}$
B. $\sqrt{3}: \sqrt{4}$
C. $\sqrt{3}: \sqrt{2}$
D. $\sqrt{2}: \sqrt{3}$

Answer: A

D Watch Video Solution
45. A wheel rotating at an angular speed of 20
$\mathrm{rad} / \mathrm{s}$ ils brought to rest by a constant trouque in 4.0 secons. If the moiment of inertia of the wheel about the axis of rotation is $0.20 \mathrm{~kg}-m^{2}$ find the work done by the torque in the first two seconds.
A. 10J
B. 20J
C. 30J
D. 40J

Answer: C

- Watch Video Solution

46. If the angular momentum of any rotating
body increases by 200%, then the increase in
its kinetic energy
A. 4
B. 8
C. 2
D. 1

Answer: B

- Watch Video Solution

47. A ring, a solid sphere and a thin disc of different masses rotate with the same kinetic energy. Equal torques are applied to stop
them. Which will make the least number of rotations before coming to rest?
A. Disc
B. Ring
C. Solid sphere

D. All will make same number of rotations

Answer: D

- Watch Video Solution

48. The angular velocity of a body is
$\vec{\omega}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad$ and \quad a torque
$\vec{\tau}=\hat{i}+2 \hat{j}+3 \hat{k}$ acts on it. The rotational power will be
A. 20W

B. 15 W

C. $\sqrt{17} W$
D. $\sqrt{14} W$

Answer: A

D Watch Video Solution

49. A fly wheel of M.I. $0.32 \mathrm{kgm}^{2}$ is rotated steadily at $120 \mathrm{rad} / \mathrm{s}$ by 50 w electric motor.

Then the value of the frictional couple opposing rotation is,
A. 4608 J
B. 1152J
C. 2304J
D. 6912J

Answer: C
(Watch Video Solution
50. A solid cylinder of mass M and radius R
rolls without slipping down an inclined plane of length L and height h. What is the speed of its center of mass when the cylinder reaches
its bottom
A. $\sqrt{\frac{3}{4} g h}$
B. $\sqrt{\frac{4}{3} g h}$
C. $\sqrt{4 g h}$
D. $\sqrt{2 g h}$
51. A sphere rolls down on an inclied plane of
inclination θ. What is the acceleration as the sphere reaches bottom?

5
A. $\frac{5}{7} g \sin \theta$
B. $\frac{3}{5} g \sin \theta$
C. $\frac{2}{7} g \sin \theta$
D. $\frac{2}{5} g \sin \theta$
52. A solid ring, sphere and a disc are rolling down from the top of the same height, then the sequence to reach on the surface is
A. Ring, disc, sphere
B. sphere, disc, ring
C. Disc, ring, sphere
D. Sphere, ring, disc
53. A thin uniform circular ring is rolling down
an inclined plane of inclination 30° without
slipping. Its linear acceleration along the inclined plane will be
A. $g / 2$
B. $g / 3$
C. $g / 4$
D. $2 \mathrm{~g} / 3$

Answer: C

D Watch Video Solution

54. A sphere and circular disc of same mass and radius are allowed to roll down an inclined plane from the same height without slipping. Find the ratio of times taken by these two to come to the bottom of incline :
A. $15: 14$
B. $\sqrt{15}: \sqrt{14}$

C. 14: 15

$$
\text { D. } \sqrt{14}: \sqrt{15}
$$

Answer: D

D Watch Video Solution

55. A solid sphere of mass 0.1 kg and radius 2 cm rolls down an inclined plane 1.4 m in length (slope 1 in 10). Starting from rest, what will be its final velocity?
A. $1.4 \mathrm{~m} / \mathrm{sec}$
B. $0.14 \mathrm{~m} / \mathrm{sec}$
C. $14 \mathrm{~m} / \mathrm{sec}$
D. $0.7 \mathrm{~m} / \mathrm{sec}$

Answer: A

- Watch Video Solution

56. A solid sphere rolls down an inclined plane and its velocity at the bottom is v_{1}. Then same sphere slides down the plane (without
friction) and let its velocity at the bottom be v_{2}. Which of the following relation is correct

$$
\begin{aligned}
& \text { А. } v_{1}=v_{2} \\
& \text { В. } v_{1}=\frac{5}{7} v_{2} \\
& \text { С. } v_{1}=\frac{7}{5} v_{2}
\end{aligned}
$$

D. None of these

Answer: D
(Watch Video Solution
57. A cord is wound round the circumference of wheel of radius r. The axis of the wheel is horizontal and fixed and moment of inertia about it is I. A weight $m g$ is attached to the end of the cord and falls from rest. After
falling through a distance h, the angular velocity of the wheel will be.
A. $\sqrt{\frac{2 g h}{I+m r}}$
B. $\sqrt{\frac{2 m g h}{I+m r^{2}}}$
C. $\sqrt{\frac{2 m g h}{I+2 m r^{2}}}$

D. $\sqrt{2 g h}$

Answer: B

D Watch Video Solution

58. In the following figure, a body of mass m is
tied at one end of a light string and this string
is wrapped around the solid cylinder of mass
M and radius R. At the moment $t=0$ the
system starts moving. If the friction is
negligible, angular velocity at time t would be

A. $\frac{m g R t}{(M+m)}$
B. $\frac{2 M g t}{(M+2 m)}$
C. $\frac{2 m g t}{R(M-2 m)}$
D. $\frac{2 m g t}{R(M+2 m)}$

Answer: D

D Watch Video Solution

59. A block of mass 2 kg hangs from the rim of a wheel of radius 0.5 m . On releasing from rest
the block falls through 5 m height in 2 s . The
moment of inertia of the wheel will be

A. $1 \mathrm{~kg}-m^{2}$
B. $3.2 \mathrm{~kg}-m^{2}$
C. $2.5 \mathrm{~kg}-m^{2}$
D. $1.5 \mathrm{~kg}-\mathrm{m}^{3}$

Answer: D

D Watch Video Solution

60. A ring whose diameter is 1 meter, oscillates
simple harmonically in a vertical plane about a
nail fixed at its circumference. The time period
will be
A. $1 / 4 \mathrm{sec}$
B. $1 / 2 \mathrm{sec}$
C. 1 sec

D. 2 sec

Answer: D

D Watch Video Solution

61. A number of holes are drilled along a diameter of a disc of radius R. To get minimum time period of oscillations the disc should be suspended from a horizontal axis passing
through a hole whose distance from the centre should be
A. $\frac{R}{2}$
B. $\frac{R}{\sqrt{2}}$
C. $\frac{R}{2 \sqrt{2}}$
D. zero

Answer: B
(D) View Text Solution

Practice Problems Problems Based On Centre Of Mass

1. Where will be the centre of mass on combining two masses m and $M(M>m)$?
A. Towards m
B. Towards M
C. Between m and M
D. Anywhere

Answer: B

2. Two objects of masses 200 g and 500 g possess velocities $10 \hat{i} m s^{-1}$ and
$3 \hat{i}+5 \hat{j} m s^{-1}$ respectively. The velocity of their centre of mass in $m s^{-1}$ is
A. $5 \hat{i}-25 \hat{j}$
B. $\frac{5}{7} \hat{j}-25 \hat{j}$
C. $5 \hat{i}+\frac{25}{7} \hat{j}$
D. $25 \hat{j}-\frac{5}{7} \hat{j}$

Answer: C
3. In the $H C I$ molecule, the separation between the nuclei of the two atoms is about $1.27 \AA\left(1 \AA=10^{-10} m\right)$. Find the approximate location of the c.m of the molecule, given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus ?
A. 1 Å
B. $2.5 \AA$
C. $1.24 \AA$

D. $1.5 \AA$

Answer: C

D Watch Video Solution

4. Four particles of masses $m, 2 m, 3 m$ and $4 m$ are arranged at the corners of a parallelogram with each side equal to a and one of the angle between two adjacent sides is 60°. The parallelogram lies in the $x-y$ plane with mass m
at the origin and 4 m on the x -axis. The centre of mass of the arrangement will be located at
A. $\left(\frac{\sqrt{3}}{2} a, 0.95 a\right)$
B. $\left(0.95 a, \frac{\sqrt{3}}{4} a\right)$
C. $\left(\frac{3 a}{4}, \frac{a}{2}\right)$
D. $\left(\frac{a}{2}, \frac{3 a}{4}\right)$

Answer: B

D Watch Video Solution

5. A system consists of 3 particles each of mass
' m ' are located at $(1,1)(2,2)$ and $(3,3)$. The coordinates of the centre of mass are
A. $(6,6)$
B. $(3,3)$
C. $(2,2)$
D. $(1,1)$

Answer: C

D Watch Video Solution
6. If a bomb is thrown at a certain angle with
the horizontal and after exploding on the way the different fragments move in different directions then the centre of mass
A. Would move along the same parabolic path
B. Would move along a horizontal path
C. Would move along a vertical line
D. None of these

Answer: A

D Watch Video Solution

7. Four identical spheres each of mass m are
placed at the corner of square of side 2 m .
Taking the point of intersection of the diagonals as the orgin the coordinates of the centre of mass are ?
A. $(0,0)$
B. $(1,1)$
C. $(-1,1)$
D. ${ }^{`}(1,-1)$

Answer: A

D Watch Video Solution

8. Two particles A and B initially at rest, move towards each other by mutual force of attraction. At the instant when the speed of A is n and the speed of B is $3 n$, the speed of the centre of mass of the system is
A. Zero
B. v
C. 1.5 v
D. 3 v

Answer: A

D Watch Video Solution

9. A uniform circular plate of uniform thickness
has a diameter of 56 cm . A circular portion of
diameter 42 cm is removed from the edge of
the plate. Find the position of the centre of mass of the remaining portion.
A. 3 cm
B. 6 cm
C. 9 cm
D. 12 cm

Answer: C
(Watch Video Solution
10. Two point masses m and M are separated by a distance L. The distance of the centre of mass of the system from m is
A. $L(m / M)$
B. $L(M / m)$
C. $L\left(\frac{M}{m+M}\right)$
D. $L\left(\frac{m}{m+M}\right)$

Answer: C

D Watch Video Solution

11. Three identicle particle each of mass 1 kg are placed with their centres on a straight line.

Their centres are marked A, B and C respectively. The distance of centre of mass of the system from A is.
A. $\frac{K L+K M+L M}{3}$
B. $\frac{K L+K M}{3}$
C. $\frac{K L+L M}{3}$
D. $\frac{K M+L M}{3}$

- Watch Video Solution

12. Two particles of mass 1 kg and 3 kg move towards each other under their mutual force of attraction. No other force acts on them.

When the relative velocity of approach of the two particles is $2 \mathrm{~m} / \mathrm{s}$, their centre of mass has a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. When the relative velocity of approach becomes $3 \mathrm{~m} / \mathrm{s}$, the velocity of the centre of mass is $0.75 \mathrm{~m} / \mathrm{s}$.
A. $0.5 \mathrm{~m} / \mathrm{s}$

B. $0.75 \mathrm{~m} / \mathrm{s}$

C. $1.25 \mathrm{~m} / \mathrm{s}$

D. Zero

Answer: A

D Watch Video Solution

Practice Problems Problems Based On Angular Displacement Velocity And Acceleration

1. In rotational motion of a rigid body, all particles move with
A. Same linear and angular velocity
B. Same linear and different angular
velocity
C. With different linear velocities and same
angular velocities
D. With different linear velocities and different angular velocities

Answer: C

- Watch Video Solution

2. The angula speed of a fly-wheel making 120 revolutions /minute is:
A. $\pi \mathrm{rad} / \mathrm{sec}$
B. $2 \pi \mathrm{rad} / \mathrm{sec}$
C. $4 \pi \mathrm{rad} / \mathrm{sec}$
D. $4 \pi^{\prime} \mathrm{rad} / \mathrm{sec}$

Answer: C

D Watch Video Solution

3. A body starting from rest gains an angular speed of 540 r.p.m in 6 second. The angular acceleration of the body is
A. $3 \pi \mathrm{rad} / \mathrm{sec}$
B. $9 \pi \mathrm{rad} / \mathrm{sec}$
C. $18 \pi \mathrm{rad} / \mathrm{sec}$
D. $54 \pi \mathrm{rad} / \mathrm{sec}$

Answer: A

- Watch Video Solution

4. A car is moving at a speed of $72 \mathrm{~km} / \mathrm{h}$. The diameter of its wheels is 0.5 m . If the wheels are stopped in 20 rotations by applying brakes, calcualte the angular retardation produced by the brakes.

$$
\text { A. }-25.5 \mathrm{rad} / \mathrm{s}
$$

$$
\text { B. }-29.5 \mathrm{rad} / \mathrm{s}
$$

C. $-33.5 \mathrm{rad} / \mathrm{s}$

$$
\text { D. }-45.5 \mathrm{rad} / \mathrm{s}
$$

Answer: A

D Watch Video Solution

5. A wheel is rotating at 900 rpm about its
axis. When the power is cut off, it comes to
rest in 1 min . The angular retardation (in rad
s^{-2}) is
A. $\pi / 2$
B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 8$

Answer: A

D Watch Video Solution

6. A particle P is moving in a circle of radius r with a uniform speed u. C is the centre of the
circle and $A B$ is diameter. The angular velocity of P about A and V are in the ratio :
A. $1: 1$
B. 1:2
C. 2:1
D. $4: 1$

Answer: B
(Watch Video Solution
7. Two particles having mass ' M ' and ' m ' are moving in a circular path having radius $R \& r$ respectively. If their time period are same then the ratio of angular velocity will be :-

> A. $\frac{r}{R}$
> B. $\frac{R}{r}$
> C. 1
> D. $\sqrt{\frac{R}{r}}$

Answer: C

8. A ody is in pure rotation. The linear speed v of a particle, the distance r of the particle from the axis and the angular velocity ω of the body are related as $\omega=\frac{v}{r}$. Thus

$$
\text { A. } \omega \propto \frac{1}{r}
$$

B. $\omega \propto r$
C. $\omega=0$
D. ω in independent of r

Answer: D

D Watch Video Solution

9. A strap is passing over a wheel of radius 30
cm . During the time the wheel moving with
initial constant velocity of $2 \mathrm{rev} / \mathrm{sec}$. comes to
rest the strap covers a distance of 25 m . The deceleration of the wheel in rad/s is
A. 0.94
B. 1.2
C. 2.0
D. 2.5

Answer: A

D Watch Video Solution

10. A particle starts rotating from rest. Its angular displacement is expressed by the following equation $\theta=0.025 t^{2}-0.1 t$ where
θ is in radian and t is in seconds. The angular acceleration of the particle is
A. $0.5 \mathrm{rad} / \mathrm{sec}$ at the end of 10 sec
B. $0.3 \mathrm{rad} / \mathrm{sec}$ at the end of 2 sec
C. $0.05 \mathrm{rad} / \mathrm{sec}$ at the end of 1 sec
D. Constant $0.05 \mathrm{rad} / \mathrm{sec}$

Answer: D

- Watch Video Solution

11. The planes of two rigid discs are perpendicular to each other. They are rotating about their axes. If their angular velocities are
$3 \mathrm{rad} / \mathrm{sec}$ and $4 \mathrm{rad} / \mathrm{sec}$ respectively, then the resultant angular velocity of the system would be
A. $1 \mathrm{rad} / \mathrm{sec}$
B. $7 \mathrm{rad} / \mathrm{sec}$
C. $5 \mathrm{rad} / \mathrm{sec}$
D. $\sqrt{12} \mathrm{rad} / \mathrm{sec}$

Answer: C

D View Text Solution
12. A sphere is rotating about a diameter
A. The particles on the surface of the sphere do not have any linear
acceleration
B. The particles on the diameter mentioned
above do not have any linear
acceleration
C. Different particles on the surface have
different angular speeds

D. All the particles on the surface have

 same linear speedAnswer: B

D Watch Video Solution

13. A rigid body rotates about a fixed axis with
variable angular velocity equal to (a - bt) at time t where a and b are constants. The angle through which it rotates before it comes to rest is
A. $\frac{(a-b) a}{2}$
B. $\frac{a^{2}}{2 b}$
C. $\frac{a^{2}-b^{2}}{2 b}$
D. $\frac{a^{2}-b^{2}}{2 a}$

Answer: B

D Watch Video Solution
14. When a ceiling fan is switched on, it makes

10 rotations in the first 3 seconds. Assuming a
uniform angular acceleration, how many rotation it will make in the next 3 seconds?
A. 10
B. 20
C. 30
D. 40

Answer: C
(Watch Video Solution
15. When a ceiling fan is switched off, its angular velocity reduces to 50% while it makes

36 rotations. How many more rotations will it make before coming to rest?(Assume uniform angular retardation)
A. 36
B. 24
C. 18
D. 12
16. Let \vec{A} be a unit vecrtor along the axis of rotation of a purely rotating body and \vec{B} be a unit vector along the velocity of a particle P of
the body away from the axis. The value of $\vec{A} \cdot \vec{B}$ is
A. 1
B. -1
C. 0

D. None of these

Answer: C

(D) Watch Video Solution

Practice Problems Problems Based On Torque Couple

1. Let \vec{F} be the force acitng on a paritcle having positon vector \vec{r} and \vec{T} be the torque of this force about the origin. Then
A. $\vec{r} \cdot \vec{T}=0$ and $\vec{F} \cdot \vec{T}=0$
B. $\vec{r} \cdot \vec{T}=0$ and $\vec{F} \cdot \vec{T} \neq 0$
C. $\vec{r} \cdot \vec{T} \neq 0$ and $\vec{F} \cdot \vec{T}=0$
D. $\vec{r} \cdot \vec{T} \neq 0$ and $\vec{F} \cdot \vec{T} \neq 0$

Answer: A

D Watch Video Solution
2. A couple produces.
A. Purely linear motion

B. Purely rotational motion

C. Linear and rotational motion
D. No motion

Answer: B

D Watch Video Solution

3. For a system to be in equilibrium, the torques acting on it must balance. This is true only if the torques are taken about
A. The centre of the system
B. The centre of mass of the system
C. Any point on the system
D. Any point on the system or outside it

Answer: D

D Watch Video Solution

4. The torque of the force
$\vec{F}=(2 \hat{i}-3 \hat{j}+4 \hat{k}) N$ acting at the point
$\vec{r}=(3 \hat{i}+2 \hat{j}+3 \hat{k}) m$ about the origin be
A. $-17 \hat{i}+6 \hat{j}+13 \hat{k}$
B. $-6 \hat{i}+6 \hat{j}-12 \hat{k}$
C. $17 \hat{i}-\hat{j}-13 \hat{k}$
D. $6 \hat{i}-6 \hat{j}+12 \hat{k}$

Answer: C

D Watch Video Solution

5. Two men A and B are carrying a uniform bar of length L on their shoulders. The bar is
held horizontally such that A gets one-fourth
load. If A is at one end of the bar, the distance of B from that end is
A. $L / 3$
B. $L / 2$
C. $2 L / 3$
D. $3 L / 4$

Answer: C
(Watch Video Solution
6. A uniform meter scale balances at the 40 cm
mark when weights of 10 g and 20 g are
suspended from the 10 cm and 20 cm marks.
The weight of the metre scale is
A. 50 g
B. 60 g
C. 70 g
D. 80 g

Answer: C

7. A cubical block of side L rests on a rough
horizonta surface with coefficient of friction μ.

A horizontal force F is applied on the block as
shown. If the coefficient of friction is
sufficiently high so that the block does not
slide before toppling, the minimum force
required to topple the block is

A. Infinitesimal
B. $m g / 4$
C. $m g / 2$
D. $m g(1-\mu)$

Answer: C

- Watch Video Solution

8. When a force of 6.0 N is exerted at 30° to a wrench at a distance of 8 cm from the nut, it is just able to loosen the nut. What force F would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut?

A. 3 N
B. 6 N
C. 4 N
D. 1.5 N

Answer: D

D Watch Video Solution

9. A person supports a book between his
finger and thumb as shown (the point of grip
is assumed to be at the corner of the book). If
the book has a weight of W then the person is
producing a torque on the book of

A. $W \frac{a}{2}$ anticlockwise
B. $W \frac{b}{2}$ anticlockwise
C. Wa anticlockwise
D. Wa clockwise

Answer: A

- Watch Video Solution

10. Particles of masses $1 \mathrm{~g}, 2 \mathrm{~g}, 3 \mathrm{~g}, \ldots100 \mathrm{~g}$ re kept at the marks $1 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm},100 \mathrm{~cm}$, respectively on a metre scale. Find the moment of inertia of the system of particle about a perpendicular bisector of the metre scale.
A. 55 cm mark
B. 60 cm mark
C. 66 cm mark
D. 72 cm mark

Answer: C

D Watch Video Solution

11. A uniform cube of side a and mass m rests on a rough horizontal table. A horizontal force

F is applied normal to one of the faces at a point that is directly above the centre of the
face, at a height $3 a / 4$ above the base. The minimum value of F which the cube begins to tip about the edge is(Assume that the cube does not slide).

> A. $\frac{m g}{4}$
> B. $\frac{2 m g}{3}$
> C. $\frac{3 m g}{4}$
> D. $m g$

Answer: B

Practice Problems Problems Based On Moment

 Of Inertia1. A circular disc of radius R and thickness
$R / 6$ has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and recast into a solid sphere. The $M . I$ of the sphere about its diameter as axis of rotation is
A. I
B. $\frac{2 I}{8}$
C. $\frac{I}{5}$
D. $\frac{I}{10}$

Answer: C

D Watch Video Solution

2. The moment of inertia of a meter scale of mass 0.6 kg about an axis perpendicular to the scale and located at the 20 cm position on the scale in kg m is (Breadth of the scale is negligible)
A. 0.074
B. 0.104
C. 0.148
D. 0.208

Answer: B

D Watch Video Solution

3. Two discs of the same material and
thickness have radii 0.2 m and 0.6 m . Their
moments of inertia about their axes will be in
the ratio of
A. 1: 81
B. $1: 27$
C. 1:9
D. 1:3

Answer: A
(Watch Video Solution
4. A circular disc is to be made by using iron and aluminium, so that it acquires maximum moment of inertia about its geometrical axis. It is possible with
A. Iron and aluminium layers in alternate order
B. Aluminium at interior and iron
surrounding it
C. Iron at interior and aluminium
surrounding it

D. Either (a) or (c)

Answer: B

D Watch Video Solution

5. The moment of inertia of semicircular ring about its centre is
A. $M R^{2}$
B. $\frac{M R^{2}}{2}$
C. $\frac{M R^{2}}{4}$

D. None of these

Answer: A

D Watch Video Solution

6. Moment of inertia of a disc about its own
axis is I. Its moment of inertia about a
tangential axis in its plane is
A. $\frac{5}{2} I$
B. $3 I$
C. $\frac{3}{2} I$
D. $2 I$

Answer: A

- Watch Video Solution

7. A wheel of mass 10 kg has a moment of inertia of $160 \mathrm{~kg}-\mathrm{m}^{2}$ about its own axis, the radius of gyration will be
A. 10 m
B. 8 m
C. 6 m
D. 4 m

Answer: D

D Watch Video Solution

8. Four particles each of mass m are placed at
the corners of a square of side length l. The radius of gyration of the system about an axis
perpendicular to the plane of square and passing through its centre is
A. $\frac{l}{\sqrt{2}}$
B. $\frac{l}{2}$
C. l
D. $(\sqrt{2}) l$

Answer: A
(Watch Video Solution
9. The moment of inertia of a straight thin rod of mass M and length I about an axis perpendicular to its length and passing through its one end, is

$$
\begin{aligned}
& \text { A. } \frac{m l^{2}}{12} \\
& \text { B. } \frac{7}{48} m l^{2} \\
& \text { C. } \frac{13}{48} m l^{2} \\
& \text { D. } \frac{19}{48} m l^{2}
\end{aligned}
$$

Answer: B
10. Three point masses m_{1}, m_{2} and m_{3} are located at the vertices of an equilateral triangle of side α. What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?
A. $\left(m_{2}+m_{3}\right) \frac{a^{2}}{4}$
B. $\left(m_{1}+m_{2}+m_{3}\right) a^{2}$
C. $\left(m_{1}+m_{2}\right) \frac{a^{2}}{2}$
D. $\left(m_{2}+m_{3}\right) a^{2}$

Answer: A

- Watch Video Solution

11. In a rectangle $A B C D(B C=2 A B)$. The moment of inertia along which the axis will be minimum

A. BC
B. BD
C. HF
D. EG

Answer: D

D Watch Video Solution

12. Two loops P and Q are made from a uniform wire. The redii of P and Q are r_{1} and r_{2} respectively, and their moments of
inertia are I_{1} and I_{2} respectively, If

$$
I_{2}=4 I_{1}, \text { then } \frac{r_{2}}{r_{1}} \text { equals- }
$$

A. $4^{2 / 3}$
B. $4^{1 / 3}$
C. $4^{-2 / 3}$
D. $4^{-1 / 3}$

Answer: B
(Watch Video Solution
13. The moment of inertia of a sphere about its
diameter is I. Four such spheres are arranged
as shown in figure. Find the moment of inertia of the system about the axis XX'. (radius of each sphere is $2 R$).

A. 31
B. 51
C. 71
D. 91

Answer: D

D Watch Video Solution

14. Three identical thin rods each of length l
and mass M are joined together to from a
letter H. What is the moment of inertia of the system about one of the sides of H ?
A. $\frac{M l^{2}}{3}$
B. $\frac{M l^{2}}{4}$
C. $\frac{2 M l^{2}}{3}$
D. $\frac{4 M l^{2}}{3}$

Answer: D

D Watch Video Solution

15. Moment of inertia of a sphere of mass M and radius R is I. Keeping M constant if a
graph is plotted between I and R, then its form
would be
A.
B. $\xrightarrow[R]{\text { ? }}$

16. Three particles are situated on a light and

rigid rod placed along Y -axis. If the system rotates about X-axis, the M.I. of the system is : | $4 \mathrm{~kg} \bigotimes_{(0,3 \mathrm{~m})}^{\mathrm{y}}$ |
| ---: |
| O |
| $2 \mathrm{~kg} \quad(0,-2 \mathrm{~m})$ |
| 3 kg |

A. 92J
B. 184J
C. 276J
D. 46J

Answer: B

D Watch Video Solution

17. On account of melting of ice at the north pole the moment of inertia of spinning earth -
A. Increases
B. Decreases
C. Remains unchanged
D. Depends on the time

Answer: A

D Watch Video Solution
18. According to the theorem of parallel axes
$I=I_{\mathrm{cm}}+M x^{2}$, the graph between I and x

Answer: C

19. What is the moment of inertia of a square sheet of side l and mass per unit area μ about an axis passing through the centre and perpendicular to its plane

> A. $\frac{\mu l^{2}}{12}$
> B. $\frac{\mu l^{2}}{6}$
> C. $\frac{\mu l^{4}}{12}$
> D. $\frac{\mu l^{4}}{6}$

Answer: D
20. The adjoining figure shows a disc of mass M and radius R lying in the $X-Y$ plane with its
centre on X - axis at a distance a from the origin. Then the moment of inertia of the disc about the X-axis is

A. $M\left(\frac{R^{2}}{2}\right)$
B. $M\left(\frac{R^{2}}{4}\right)$
C. $M\left(\frac{R^{2}}{4}+a^{2}\right)$
D. $M\left(\frac{R^{2}}{2}+a^{2}\right)$

Answer: B

D Watch Video Solution

21. We have two spheres, one of which is hollow and the other solid. They have identical masses and moment of intertia about their
respective diameters. The ratio of their radius
is given by.
A. $5: 7$
B. $3: 5$
C. $\sqrt{3}: \sqrt{5}$
D. $\sqrt{3}: \sqrt{7}$

Answer: C
(Watch Video Solution
22. From a uniform wire, two circular loops are made (i) P of radius r and (ii) Q of radius $n r$.

If the moment of inertia of Q about an axis passing through its center and perpendicular to tis plane is 8 times that of P about a similar axis, the value of n is (diameter of the wire is very much smaller than r or $n r$)
A. 8
B. 6
C. 4
D. 2

Answer: D

D Watch Video Solution

23. One quarter sector is cut from a uniform
circular disc of radius R. This sector has mass
M. It is made to rotate about a line perpendicular to its plane and passing
through the centre of the original disc. It moment of inertia about the axis of rotation
is.

A. $\frac{1}{2} M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $\frac{1}{8} M R^{2}$
D. $\sqrt{2} M R^{2}$

Answer: A

D Watch Video Solution

24. Two discs of same thickness but of different radii are made of two different materials such that their masses are same. The densities of the materials are in the ratio of
$1: 3$. The moments of inertia of these discs
about the respective axes passing through
their centres and perpendicular to their planes will be in the ratio of
A. $1: 3$
B. $3: 1$
C. 1:9
D. $9: 1$

Answer: B

D Watch Video Solution
25. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre at O as shown. The moment of inertia of the loop about the axis $X X^{\prime}$ is:

> A. $\frac{\rho L^{3}}{8 \pi^{2}}$ B. $\frac{\rho L^{3}}{16 \pi^{2}}$
C. $\frac{5 \rho L^{3}}{16 \pi^{2}}$
D. $\frac{3 \rho L^{3}}{8 \pi^{2}}$

Answer: D

D Watch Video Solution

26. If a solid sphere and solid cylinder of same mass and radius rotate about their own axis the M.I. will be greater for
A. Solid sphere

B. Solid cylinder

C. Both

D. Equal both

Answer: A

D Watch Video Solution

27. Two point masses of 0.3 kg and 0.7 kg are fixed at the ends of a rod of length 1.4 m and of negligible mass. The rod is set rotating about an axis perpendicular to its length with
a uniform angular speed. The point on the rod
through which the axis should pass in order
that the work required for rotation of the rod is minimum, is located at a distance of
A. 0.4 m from mass of 0.3 kg
B. 0.98 from mass of 0.3 kg
C. 0.70 m from mass of 0.7 kg
D. 0.98 m from mass of 0.7 kg

Answer: B

28. A circular disc A of radius r is made from an
iron plate of thickness t and another circular disc B of radius $4 r$ is made from an iron plate of thickness $t / 4$. The relation between the moments of inertia I_{A} and I_{B} is (about an axis passing through centre and perpendicular to the disc)
A. $I_{A}>I_{B}$
B. $I_{A}=I_{B}$
C. $I_{A}<I_{B}$

D. Depends on the actual values of t and r

Answer: C

D Watch Video Solution

29. A thin wire of length I and mass m is bent
in the form of a semicircle as shown in the
figure. Its moment of inertia about an axis
joining its free ends will be

A. $\frac{M l^{2}}{2}$
B. $\frac{M l^{2}}{\pi^{2}}$
C. $\frac{2 M l^{2}}{\pi^{2}}$
D. $\frac{M l^{2}}{2 \pi^{2}}$

Answer: D

- Watch Video Solution

30. If l_{1} is the moment of inertia of a thin rod about an axis perpendicular to its length and passing through its centre of mass and l_{2} is
the moment of inertia (about central axis) of
the ring formed by bending the rod, then the ratio of I_{1} to I_{2} is
A. $l: l=1: 1$
B. $l: l=\pi: 3$
C. $l: l=\pi: 4$
D. $l: l=3: 5$

Answer: B

D Watch Video Solution
31. Four solids are shown in cross section. The sections have equal heights and equal maximum widths. They have the same mass.

The one which has the largest rotational inertia about a perpendicular through the centre of mass is

B.
C.

Answer: A

D View Text Solution

32. The moment of inertia I of a solid sphere
having fixed volume depends upon its volume

V as
A. $I \propto V$
B. $I \propto V^{2 / 3}$
C. $I \propto V^{5 / 3}$
D. $I \propto V^{3 / 2}$

Answer: C

D Watch Video Solution

33. A thin rod of length L of mass M is bent at the middle point O at an angle of 60°. The moment of inertia of the rod about an axis passing through O and perpendicular to the
plane of the rod will be

A. $\frac{M L^{2}}{6}$
B. $\frac{M L^{2}}{12}$
C. $\frac{M L^{2}}{24}$
D. $\frac{M L^{2}}{3}$

Answer: B

D Watch Video Solution

Practice Problems Problems Based On Angular

 Momentum1. The motion of planets in the solar system is an exmaple of the conservation of

A. Mass

B. Linear momentum

C. Angular momentum

D. Energy

Answer: C

D Watch Video Solution

2. A disc is rotating with angular velocity ω. If a child sits on it, what is conserved?
A. Kinetic energy
B. Potential energy

C. Linear momentum

D. Angular momentum

Answer: D

- Watch Video Solution

3. A particle of mass m moves along line $P C$
with velocity v as shown. What is the angular
momentum of the particle about O ?

A. mvL
B. mvl
C. mvr
D. Zero

Answer: B
4. Two rigid bodies A and B rotate with rotational kinetic energies E_{A} and E_{B} respectively. The moments of inertia of A and B about the axis of rotation are I_{A} and I_{B} respectively. If $I_{A}=I_{B} / 4$ and $\mathrm{E}_{-}(\mathrm{A})=100 \mathrm{E}_{-}(\mathrm{B})$, the ratio of angular momentum ($\left.L_{-}(A)\right)$ of A to the angular momentum ($L_{-}(B)$) of B is
A. 25
B. $5 / 4$
C. 5
D. $1 / 4$

Answer: C

D Watch Video Solution

5. A uniform heavy disc is rotating at constant angular velocity ω about a vertical axis through its centre and perpendicular to the plane of the disc. Let L be its angular momentum. A lump of plasticine is dropped
vertically on the disc and sticks to it. Which of the following will be constant?
A. ω
B. ω and L both
C. L only
D. Neither ω nor L

Answer: C
(Watch Video Solution
6. A equilaterial triangle $A B C$ formed from a uniform wire has two small identical beads initially located at A. The triangle is set rotating about the vertical axis $A O$. Then the beads are released from rest simultaneously and allowed to slide down. one long. $A B$ and
the other along $A C$ as shown. Neglecting frictional effects, the quantities that are
conserved as the beads slide down, are.

A. Angular velocity and total energy (kinetic and potential)
B. Total angular momentum and total
energy
C. Angular velocity and moment of inertia
about the axis of rotation
D. Total angular momentum and moment
of inertia about the axis of rotation

Answer: B

D Watch Video Solution

7. A thin circular ring of mass m and radius R

 is rotating about its axis with a constant angular velocity ω. Two objects each of massM are attached gently to the opposite ends of a diameter of the ring. The ring now rotates with an angular velocity $\omega^{\prime}=$
A. $\frac{\omega(M-2 m)}{M+2 m}$
B. $\frac{\omega}{m+2 M} m$
c. $\frac{\omega M}{M+m}$
D. $\frac{\omega(M+2 m)}{M}$

Answer: B

D Watch Video Solution

8. The earth E moves in an elliptical orbit with
the sun S at one of the foci as shown in figure.
Its speed of motion will be maximum at the point

A. C
B. A
C. B
D. D

Answer: B

D Watch Video Solution

9. A rigid spherical body is spinning around an axis without any external torque. Due to change in temperature, the volume increases
by 1%. What will be the percentage change in angular velocity?
A. Will increase approximately by 1%
B. Will decrease approximately by 1%
C. Will decrease approximately by 0.67%
D. Will decrease approximately by 0.33%

Answer: C

D Watch Video Solution

10. A uniform disc of mass M and radius R is
rotating about a horizontal axis passing
through its centre with angular velocity ω. A
piece of mass m breaks from the disc and flies
off vertically upwards. The angular speed of
the disc will be

$$
\begin{aligned}
& \text { A. } \frac{(M-2 m) \omega}{(M-m)} \\
& \text { B. } \frac{(M+2 m) \omega}{(M+m)} \\
& \text { C. } \frac{(M-2 m) \omega}{(M+m)} \\
& \text { D. } \frac{(M+2 m) \omega}{(M-m)}
\end{aligned}
$$

Answer: A

D Watch Video Solution

11. A particle undergoes uniform circular motion. About which point on the plane of the circle, will the angular momentum of the particle remain conserved?
A. Centre of the circle
B. On the circumference of the circle
C. Inside the circle

D. Outside the circle

Answer: A

- Watch Video Solution

12. A thin uniform circular disc of mass M and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular velocity ω. another disc of the same dimensions but of mass $M / 4$ is placed gently
on the first disc coaxially. The angular velocity of the system now is
A. $2 \omega / 5$
B. $2 \omega / \sqrt{5}$
C. $4 \omega / 5$
D. $4 \omega / \sqrt{5}$

Answer: C
(Watch Video Solution
13. A smooth sphere A is moving on a frictionless horizontal plane with angular speed ω and centre of mass velocity v. It collides elastically and head on with an identical sphere B at rest. Neglect friction everywhere. After the collision, their angular speeds are ω_{A} and ω_{B} respectively. Then

$$
\text { A. } \omega_{A}<\omega_{B}
$$

$$
\text { B. } \omega_{A}=\omega_{B}
$$

$$
\text { C. } \omega_{A}=\omega
$$

D. $\omega=\omega_{B}$

Answer: C

D Watch Video Solution

14. A cubical block of side a is moving with
velocity v on a horizontal smooth plane as
shown. It hits a ridge at point 0 . The angular

A. $3 \mathrm{v} / / 4 \mathrm{a}$
B. $3 \mathrm{v} / / 2 \mathrm{a}$
C. $\frac{\sqrt{3} v}{\sqrt{2} a}$
D. Zero

Answer: A
15. A stick of length L and mass M lies on a frictionless horizontal surface on which it is
free to move in any way. A ball of mass m moving with speed v collides elastically with
the stick as shown in the figure. If after the collision the ball comes to rest, then what would be the mass of the ball?

A. $m=2 M$
B. $m=M$
C. $m=M / 2$
D. $m=M / 4$

Answer: D

- Watch Video Solution

16. In a playground there is a merry-go-round of mass 120 kg and radius 4 m . The radius of gyration is 3 m . A child of mass 30 kg runs at a
speed of $5 \mathrm{~m} / \mathrm{sec}$ tangent to the rim of the merry-go-round when it is at rest and then jumps on it. Neglect friction and find the angular velocity of the merry-go-round and child
A. $0.2 \mathrm{rad} / \mathrm{sec}$
B. $0.1 \mathrm{rad} / \mathrm{sec}$
C. $0.4 \mathrm{rad} / \mathrm{sec}$
D. $0.8 \mathrm{rad} / \mathrm{sec}$

Answer: C

Practice Problems Problems Based On Kinetic Energy Work And Power

1. A ball rolls without slipping. The radius of gyration of the ball about about an axis passing through its center of mass is K. If radius of the ball be R, then the fraction of total energy associated with its rotational energy be

$$
\text { A. } \frac{K^{2}}{R^{2}}
$$

> B. $\frac{K^{2}}{K^{2}+R^{2}}$
> C. $\frac{R^{2}}{K^{2}+R^{2}}$
> D. $\frac{K^{2}+R^{2}}{R^{2}}$

Answer: B

D Watch Video Solution

2. In a bicycle the radius of rear wheel is twice
the radius of front wheel. If v_{F} and v_{r} are the
speeds of top most points of front and rear wheels respectively, then :
A. $v=2 \mathrm{v}$
B. $\mathrm{v}=2 \mathrm{v}$
C. $\mathrm{v}=\mathrm{v}$
D. $v>v$

Answer: C

D Watch Video Solution

3. The total kinetic energy of a body of mass 10 kg and radius 0.5 m moving with a velocity of 2
m / s without slipping is 32.8 joule. The radius of gyration of the body is
A. 0.25 m
B. 0.2 m
C. 0.5 m
D. 0.4 m

Answer: D

D View Text Solution
4. The moment of inertia of a body about a given axis is $2.4 k g-m^{2}$. To produce a rotational kinetic energy of 750 J , an angular acceleration of $5 \mathrm{rad} / \mathrm{s} 2$ must be applied about that axis for
A. 6 sec
B. 5 sec
C. 4 sec
D. 3 sec
5. A solid sphere of mass 500 gm and radius 10
cm rolls without slipping with the velocity
$20 \mathrm{~cm} / \mathrm{s}$. The total kinetic energy of the sphere will be
A. 0.028 J
B. 280 J
C. 140 J
D. 0.014 J

Answer: D

- Watch Video Solution

6. The ratio of rotational and translatory
kinetic energies of a solid sphere is
A. $\frac{2}{9}$
B. $\frac{2}{7}$
C. $\frac{2}{5}$
D. $\frac{7}{2}$

Answer: C

D Watch Video Solution

7. A hollow cylinder open at both ends slides
without rotating, and then rolls without
slipping with the same speed. The ratio of the
kinetic energy in the two cases is (taken in order)
A. $1: 1$
B. $4: 1$
C. $1: 2$
D. 2:1

Answer: C

- Watch Video Solution

8. If a spherical ball rolls on a table without
slipping, the fraction of its total energy
associated with rotation is
A. $\frac{2}{5}$
B. $\frac{2}{7}$
C. $\frac{3}{5}$
D. $\frac{3}{7}$

Answer: B

D Watch Video Solution

9. A body si rolling without slipping on a horizontal plane. If the rotational energy of the body is 40% of the total kinetic energy then the body might be:
A. Cylinder
B. Hollow sphere
C. Solid cylinder
D. Ring

Answer: B

D Watch Video Solution
10. A body of moment of inertia of $3 \mathrm{kgm}^{2}$
rotating with an angular velocity or $2 \mathrm{rad} / / \mathrm{s}$
has the same kinetic energy as a mass of 12 kg moving with a velocity of
A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Answer: A
(Watch Video Solution
11. What is the ratio of the rolling kinetic energy and rotational kinetic energy in the motion of a disc ?
A. 1:1
B. 2:7
C. 1:2
D. 3:1

Answer: D

- Watch Video Solution

12. A solid sphere is moving on a horizontal
plane. Ratio of its translational kinetic energy
and rotational kinetic energy is
A. $1 / 5$
B. $5 / 2$
C. $3 / 5$
D. $5 / 7$

Answer: B

D Watch Video Solution
13. The speed of rolling of a ring of mass m
changes from V to 3 V . What is the change in
its kinetic energy
A. $3 M V^{2}$
B. $4 M V^{2}$
C. $6 M V^{2}$
D. $8 M V^{2}$

Answer: D

D Watch Video Solution
14. A disc of mass 4 kg and of radius 1 m rolls
on a horizontal surface without slipping such
that the velocity of its centre of mass is
$10 \mathrm{~cm} \mathrm{sec}^{-1}$, Its rotatonal kinetic energy is
A. 0.01 erg
B. 0.02 joule
C. 0.03 joule
D. 0.01 joule

Answer: D

15. The ratio of kinetic energies of two spheres
rolling with equal centre of mass velocities is 2
$: 1$. If their radii are in the ratio $2: 1$, then the ratio of their masses will be
A. $2: 1$
B. 1:8
C. $1: 7$
D. $2 \sqrt{2}: 1$

Answer: A

D Watch Video Solution

16. A symmetrical body of mass M and radius R
is rolling without slipping on a horizontal
surface with linear speed v. Then its angular speed is
A. v / R
B. Continuously increasing
C. Dependent on mass M

D. Independent of radius (R)

Answer: C

D Watch Video Solution

17. A solid sphere of mass 1 kg rolls on a table
with linear speed $1 \mathrm{~m} / \mathrm{s}$. Its total kinetic energy
is
A. 1 J
B. 0.5 J
C. 0.7 J
D. 1.4 J

Answer: C

D Watch Video Solution

18. A circular disc has a mass of 1 kg and radius

40 cm . It is rotating about an axis passing
through its centre and perpendicular to its
plane with a speed of $10 \mathrm{rev} / \mathrm{s}$. The work done in joules in stopping it would be-
A. 4
B. 47.5
C. 79
D. 158

Answer: D

- Watch Video Solution

19. The rotational kinctic energy of a body rotating about proportional to
A. Time period
B. (Time period)
C. (Time period)-
D. (time period)-

Answer: D

D Watch Video Solution

20. If a body completes one revolution in π sec
then the moment of inertia would be
A. Equal to rotational kinetic energy
B. Double of rotational kinetic energy
C. Half of rotational kinetic energy
D. Four times the rotational kinetic energy

Answer: C

D Watch Video Solution
21. A tangential force F is applied on a disc of
radius R, due to which it deflects through an
angle θ from its initial position. The work done by this force would be
A. FR
B. $F \theta$
C. $\frac{F R}{\theta}$
D. $F R \theta$

Answer: D
(Watch Video Solution
22. If the rotational kinetic energy of a body is increased by 300%, then determine percentage increase in its angular momentum.
A. 6
B. 1.5
C. 1
D. 15

Answer: C

D Watch Video Solution
23. A wheel of moment of inertia $10 \mathrm{kgm}^{2}$ is
rotating at 10 rotations per minute. The work done in increasing its speed to 5 times its initial value, will be
A. 100 J
B. 131.4 J
C. 13.4 J
D. 0.131 J

Answer: B

24. A flywheel has moment of inertia $4 k g-m^{2}$

and has kinetic energy of 200 J . Calculate the number of revolutions it makes before coming to rest if a constant opposing couple of $5 \mathrm{~N}-\mathrm{m}$ is applied to the flywheel
A. 12.8 rev
B. 24 rev
C. 6.4 rev
D. 16 rev

D Watch Video Solution

25. An engine develops 100 kW , when rotating
at 1800 rpm . Torque required to deliver the power is

A. $531 \mathrm{~N}-\mathrm{m}$

B. $570 \mathrm{~N}-\mathrm{m}$
C. $520 \mathrm{~N}-\mathrm{m}$
D. $551 \mathrm{~N}-\mathrm{m}$

Answer: A

D Watch Video Solution

26. A wheel of radius r rolls without slipping with a speed v on a horizontal road. When it is at a point A on the road, a small blob of mud separates from'the wheel at- its highest point and lands at point B on the road:
A. $v \sqrt{\frac{r}{g}}$
B. $2 v \sqrt{\frac{r}{g}}$
C. $4 v \sqrt{\frac{r}{g}}$
D. $\sqrt{\frac{3 r}{g}}$

Answer: C

- Watch Video Solution

27. A fly wheel of moment of inertia I is rotating at n revolutions per sec. The work needed to double the frequency would be -
A. $2 \pi^{2} \ln ^{2}$
B. $4 \pi^{2} \ln ^{2}$
C. $6 \pi^{2} \ln ^{2}$
D. $8 \pi^{2} \ln ^{2}$

Answer: C

D Watch Video Solution

28. If L, M and P are the angular momentum, mass and linear momentum of a particle respectively, which of the following represents
the kinetic energy of the particle when the particle rotates in a circle of radius R ?
A. $\frac{L^{2}}{2 M}$
B. $\frac{P^{2}}{2 M R}$
C. $\frac{L^{2}}{2 M R^{2}}$
D. $\frac{M P}{2}$

Answer: C

D Watch Video Solution

29. A uniform thin rod of length I is suspended
from one of its ends and is rotated at f rotations per second. The rotational kinetic energy of the rod will be
A. $\frac{2}{3} \pi^{2} f^{2} m l^{2}$
B. $\frac{4}{3} f^{2} m l^{2}$
C. $4 \pi^{2} f^{2} m l^{2}$
D. Zero

Answer: A
30. A body rotating at $20 \mathrm{rad} / \mathrm{s}$ is acted upon by a constant torque providing it a deceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$. At what time will the body have kinetic energy same as the initial value if thhe torque continues to act?
A. 20 sec
B. 40 sec
C. 5 sec
D. 10 sec

Answer: A

D Watch Video Solution

Practice Problems Problems Based On Rolling On

 Incline Plane1. Part of the tuning arrangement of a radio
consists of a wheel which is acted on by two
parallel constant forces as shown in the fig. If
the wheel rotates just once, the work done will
be about (diameter of the wheel $=0.05 \mathrm{~m}$)

A. 0.062 J
B. 0.031 J
C. 0.015 J
D. 0.057 J

Answer: B

- Watch Video Solution

2. A solid sphere, a hollow sphere and a ring are released from top of an inclined plane (frictionless) so that they slide down the plane. Then maximum acceleration down the plane is for (no rolling)
A. Solid sphere
B. hollow sphere
C. Ring

D. All same

Answer: D

D Watch Video Solution

3. A solid sphere (mass 2 M) and a thin spherical shell (mass M) both of the same size roll down an inclined plane, then:
A. Solid sphere will reach the bottom first
B. Hollow spherical shell will reach the bottom first
C. Both will reach at the same time
D. None of these

Answer: A

D Watch Video Solution

4. A hollow cylinder and a solid cylinder having
the same mass and diameter are released from rest simultaneously from the top of an
inclined plane. They roll without slipping which will reach the bottom firstly
A. The solid cylinder
B. The hollow cylinder
C. Both will reach the bottom together
D. The greater density

Answer: A

D Watch Video Solution

5. The speed of a homogeneous solid sphere after rolling down an inclined plane of vertical height h from rest without sliding is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{10}{7} g h} \\
& \text { B. } \sqrt{g h} \\
& \text { C. } \sqrt{\frac{6}{5} g h} \\
& \text { D. } \sqrt{\frac{4}{3} g h}
\end{aligned}
$$

Answer: A

D Watch Video Solution
6. A solid cylinder rolls down an inclined plane
from a height h. At any moment the ratio of rotational kinetic energy to the total kinetic energy would be
A. $1: 2$
B. 1:3
C. $2: 3$
D. 1:1

Answer: B
7. An inclined plane makes an angle 30° with
the horizontal. A solid sphere rolling down
this inclined plane from rest without slipping has a linear acceleration equal to
A. $\frac{g}{3}$
B. $\frac{2 g}{3}$
C. $\frac{5 g}{7}$
D. $\frac{5 g}{14}$

Answer: D

D Watch Video Solution

8. A solid cylinder of mass M and radius R
rolls down an inclined plane of height h without slipping. The speed of its centre when it reaches the bottom is.
A. $\sqrt{2 g h}$
B. $\sqrt{\frac{4}{5} g h}$
C. $\sqrt{\frac{3}{4} g h}$
D. $\sqrt{4 \frac{g}{h}}$

Answer: B

D Watch Video Solution

9. Solid cylinders of radii r_{1}, r_{2} and r_{3} roll
down an inclined plane from the same place
simultaneously. $\quad r_{1}>r_{2}>r_{3}$, which one would reach the bottom first
A. Cylinder of radius r_{1}
B. Cylinder of radius r_{2}
C. Cylinder of radius r_{3}
D. All the three cylinders simultaneously

Answer: D

D Watch Video Solution

10. A solid sphere of mass M and radius R, rolling down a smooth inclined plane, without
slipping, reaches the bottom with a velocity v .
What is the height of the inclined plane in
terms of the velocity v ?

A. A cylinder of same mass but of smaller radius
B. A cylinder of same mass but of larger radius
C. A cylinder of same radius but of smaller

mass

D. A hollow cylinder of same mass and same radius

Answer: D

D Watch Video Solution

11. A body starts rolling down an inclined plane
of length L and height h. This body reaches
the bottom of the plane in time t. The relation between L and t is?
A. $t \propto L$
B. $t \propto 1 / L$
C. $t \propto L^{2}$
D. $t \propto \frac{1}{L^{2}}$

Answer: A
(Watch Video Solution
12. A hollow cylinder is rolling on an inclined
plane, inclined at an angle of 30° to the horizontal. Its speed after travelling a distance of 10 m will be
A. $49 \mathrm{~m} / \mathrm{sec}$
B. $0.7 \mathrm{~m} / \mathrm{sec}$
C. $7 \mathrm{~m} / \mathrm{sec}$
D. Zero

Answer: C

13. If a ring, a disc, a solid sphere and a cyclinder of same radius roll down an inclined plane, the first one to reach the bottom will be:
A. Solid sphere and solid cylinder
B. Solid cylinder and disc
C. Disc and ring
D. Solid sphere and ring

Answer: B

D Watch Video Solution

14. A ball of radius 11 cm and mass 8 kg rolls
from rest down a ramp of length $2 m$. The ramp
is inclined at 35° to the horizontal. When the ball reaches the bottom, its velocity is
$(\sin 35=0.57)$
A. $2 \mathrm{~m} / \mathrm{s}$
B. $5 \mathrm{~m} / \mathrm{s}$

C. $4 \mathrm{~m} / \mathrm{s}$

D. $6 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

15. From an inclined plane a sphere, a disc, a ring and a shell are rolled without slipping.

The order of their reaching at the base will be
A. Ring, shell, disc, sphere
B. Shell, sphere, disc, ring
C. Sphere, disc, shell, ring
D. Ring, sphere, disc, shell

Answer: C

D Watch Video Solution

16. A solid cylinder 30 cm in diameter at the top of an inclined plane 2.0 m high is released and rolls down the incline without loss of
energy due to friction. Its linear speed at the bottom is
A. $5.29 \mathrm{~m} / \mathrm{sec}$
B. $41 \mathrm{~m} / \mathrm{sec}$
C. $51 \mathrm{~m} / \mathrm{sec}$
D. $51 \mathrm{~cm} / \mathrm{sec}$

Answer: A
(Watch Video Solution
17. A cylinder of mass M and radius R rolls on an inclined plane. The gain in kinetic energy is
A. $\frac{1}{2} M v^{2}$
B. $\frac{1}{2} I \omega^{2}$
C. $\frac{3}{4} M v^{2}$
D. $\frac{3}{4} I \omega^{2}$

Answer: C

- Watch Video Solution

18. A disc of radius R is rolling down an inclined plane whose angle of inclination is θ Its acceleration would be
A. $\frac{5}{7} g \sin \theta$
B. $\frac{2}{3} g \sin \theta$
C. $\frac{1}{2} g \sin \theta$
D. $\frac{3}{5} g \sin \theta$

Answer: B
19. A solid cylinder (i) rolls down (ii) slides down an inclined plane. The ratio of the accelerations in these conditions is
A. 3:2
B. 2:3
C. $\sqrt{3}: \sqrt{2}$
D. $\sqrt{2}: \sqrt{3}$

Answer: B

- Watch Video Solution

20. The acceleration of a body rolling down on
an inclined plane does not depend upon
A. Angle of inclination of the plane
B. Length of plane
C. Acceleration due to gravity of earth
D. Radius of gyration of body

Answer: B
(D) Watch Video Solution
21. If a ring, a disc, a solid sphere and a cyclinder of same radius roll down an inclined plane, the first one to reach the bottom will be:
A. Ring
B. Disc
C. Solid sphere
D. Solid cylinder

Answer: A
22. A ring is rolling on an inclined plane. The ratio of the linear and rotational kinetic energies will be
A. 2:1
B. 1:2
C. 1:1
D. $4: 1$

Answer: C

- Watch Video Solution

23. The M.I. of a solid cylinder about its axis is I.

It is allowed to rool down an incline plane without slipping. If its angular velocity at the bottom be ω, then kinetic energy of rolling cylinder will be
A. $I \omega^{2}$
B. $\frac{3}{2} I \omega^{2}$
C. $2 I \omega^{2}$
D. $\frac{1}{2} I \omega^{2}$

Answer: B

D Watch Video Solution

24. A solid cylinder of mass M and radius R
rolls down an inclined plane of height h without slipping. The speed of its centre when it reaches the bottom is.
A. $\sqrt{g R}$
B. $\sqrt{5 g R}$
C. $\sqrt{10 g R}$

D. $\sqrt{3 g R}$

Answer: C

D Watch Video Solution

25. A ring takes time t_{1} in slipping down an inclined plane of length L, whereas it takes time t_{2} in rolling down the same plane. The ratio of t_{1} and t_{2} is -
A. $\sqrt{2}: 1$
B. $1: \sqrt{2}$
C. $1: 2$
D. 2:1

Answer: B

D Watch Video Solution

26. A ring of radius $4 a$ is rigidly fixed in vertical position on a table. A small disc of mass m and radius a is released as shown in the fig. When the disc rolls down, without slipping, to the
lowest point of the ring, then its speed will be

A. $\sqrt{g a}$
B. $\sqrt{2 g a}$
C. $\sqrt{3 g a}$
D. $\sqrt{4 g a}$

Answer: D

D Watch Video Solution
27. A disc of mass M and radius R rolls on a
horizontal surface and then rolls up an inclined plane as shown in the figure. If the velocity of the disc is v, the height to which the disc will rise will be:

A. $\frac{3 v^{2}}{2 g}$
B. $\frac{3 v^{2}}{4 g}$
C. $\frac{v^{2}}{4 g}$
D. $\frac{v^{2}}{2 g}$

Answer: B

D Watch Video Solution

28. Two uniform similar discs roll down two
inclined planes of length S and 2 S respectively
as shown is the fig. The velocities of two discs
at the points A and B of the inclined planes
are related as

A. $v=v$
B. $v_{1}=2 v_{2}$
C. $v_{1}=v_{1} \frac{v_{2}}{4}$
D. $v_{1}=\frac{3}{4} v_{2}$

Answer: A

D View Text Solution

Practice Problems Problems Based On Motion Of

 Connected Mass1. A mass M is supported by a massless string
wound round a uniform cylinder ofmass M and
radius R. On releasing the mass from rest, it
will fall with acceleration?

A. g
B. $\frac{g}{2}$
C. $\frac{g}{3}$
D. $\frac{2 g}{3}$

Answer: D

D Watch Video Solution

2. A uniform disc of radius R and mass M can rotate on a smooth axis passing through its centre and perpendicular to its plane. A force

F is applied on its rim. See fig. What is the
tangential acceleration

A. $\frac{2 F}{M}$
B. $\frac{F}{M}$
C. $\frac{F}{2 M}$
D. $\frac{F}{4 M}$

Answer: A
3. A massless rope is wrapped several times on a disc of mass M and radius R. The other end is
tied to a mass m which at the beginning is at a height of h above ground as shown in the figure. When released the velocity of the mass
as it touches the ground is

A. $\sqrt{2 g h}$
B. $\sqrt{2 g h} \frac{M}{m}$
C. $\sqrt{2 g h m / M}$
D. $\sqrt{4 g h / 2 m+M}$

Answer: D

D Watch Video Solution

4. A solid cylinder of mass M and of radius R is
fixed on a frictionless axle over a well. A rope negligible mass is wrapped around the
cylinder. A bucket of uniform mass m is
suspended from it. The linear acceleration
bucket will:

$$
\begin{aligned}
& \text { A. } \frac{M g}{M+2 m} \\
& \text { B. } \frac{2 M g}{m+2 M} \\
& \text { C. } \frac{M g}{2 M+m} \\
& \text { D. } \frac{2 m g}{M+2 m}
\end{aligned}
$$

Answer: D

D Watch Video Solution
5. A solid cylinder of mass M and of radius R is
fixed on a frictionless axle over a well. A rope negligible mass is wrapped around the cylinder. A bucket of uniform mass m is
suspended from it. The linear acceleration bucket will:
A. $\frac{4 m g}{M+2 m}$
B. $\frac{4 m g}{M+4 m}$
C. $\frac{2 m g}{M+m}$
D. $\frac{2 m g}{M+2 m}$

Answer: B

- Watch Video Solution

6. In the above problem the angular velocity of
the system after the particle sticks to it will be?

> A. $\frac{1}{R} \sqrt{8 m g h /(M+4 m)}$
> B. $\frac{1}{R} \sqrt{8 m g h /(M+m)}$
> C. $\frac{1}{R} \sqrt{m g h /(M+m)}$
> D. $\frac{1}{R} \sqrt{8 m g h /(M+2 m)}$

Answer: A

- Watch Video Solution

7. A metre scale is suspended vertically from a
horizontal axis passing through one end of it.
Its time period would be
A. 1.64 sec
B. 2 sec
C. 2.5 sec
D. 3.2 sec

Answer: A

- View Text Solution

8. A disc is made to oscillate about a horizontal axis passing through mid point of its radius. Determine time period.
A. $2 \pi \sqrt{\frac{3 R}{2 g}}$
B. $2 \pi \sqrt{\frac{2 R}{3 g}}$
C. $2 \pi \sqrt{\frac{R}{g}}$
D. $2 \pi \sqrt{\frac{2 R}{g}}$

Answer: A

D Watch Video Solution

9. A solid cube of side I is made to oscillate about a horizontal axis passing through one of its edges. Its time period will be

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{2 \sqrt{2}}{3} \frac{l}{g}} \\
& \text { В. } 2 \pi \sqrt{\frac{2}{3} \frac{l}{g}}
\end{aligned}
$$

C. $2 \pi \sqrt{\frac{\sqrt{3}}{2} \frac{l}{g}}$
D. $2 \pi \sqrt{\frac{2}{\sqrt{3}} \frac{l}{g}}$

Answer: A

- Watch Video Solution

10. The string of a simple pendulum replaced by a uniform rod of length L and mass M while the bob has a mass m. It is allowed to make small oscillation. Its time period is
A. $2 \pi \sqrt{\frac{2(M+3 m) L}{3(M+2 m) g}}$
B. $2 \pi \sqrt{\frac{(M+2 m) L}{3(M+3 m) g}}$
C. $2 \pi \sqrt{\left(\frac{2 M}{3 m}\right) \frac{L}{g}}$
D. $2 \pi \sqrt{\left(\frac{M+m}{M+3 m}\right) \frac{L}{g}}$

Answer: A

