đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS (HINGLISH)

THERMODYNAMICS

Isothermal Process

1. For an ideal gas, in an isothermal process
A. Heat content remains constant
B. Heat content and temperature remain
constant
C. Temperature remains constant
D. None of the above

Answer: C

D Watch Video Solution

2. Can two isothermal curves cut each other
A. Never
B. yes
C. They will cut when temperature is $0^{\circ} C$
D. Yes, when the pressure is critical pressure

Answer: A

D Watch Video Solution

3. In an isothermal expansion
A. Internal energy of the gas increases
B. Internal energy of the gas decreases
C. Internal energy remains unchanged
D. Average kinetic energy of gas molecule decreases

Answer: C

- Watch Video Solution

4. In an isothermal reversible expansion, if the volume of 96 gm of oxygen at $27^{\circ} \mathrm{C}$ is increased from 70 litres to 140 litres, then the work done by the gas will be
A. $300 R \log _{10} 2$
B. $81 R \log _{e} 2$
C. $900 R \log _{10} 2$
D. $2.3 \times 900 R \log _{10} 2$

Answer: D

5. A vessel containing 5 litres of a gas at 0.8 m
pressure is connected to an evacuated vessel
of volume 3 litres. The resultant pressure inside with be (assuming whole system to be isolated)
A. $4 / 5 \mathrm{~m}$
B. 0.5 m
C. 2.0 m
D. $3 / 4 \mathrm{~m}$

Answer: B

D Watch Video Solution

6. For an isothermal expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is
A. $-\lambda^{1 / 2} \frac{\Delta V}{V}$
B. $\frac{\Delta V}{V}$
C. $-\lambda \frac{\Delta V}{V}$
D. $-\lambda^{2} \frac{\Delta V}{V}$

Answer: B

D Watch Video Solution

7. The gas equation $P V / T=$ constant is true for a constant mass of an ideal gas undergoing
A. Isothermal changes only
B. Adiabatic changes only
C. Both isothermal and adiabatic changes

D. Neither isothermal nor adiabatic

 changes
Answer: C

D Watch Video Solution

8. One mole of O_{2} gas having a volume equal to 22.4 litres at $0^{\circ} C$ and 1 atmospheric pressure is compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is
A. 1672.5 j
B. 1728 j
C. $-1728 j$
D. $-1572.5 j$

Answer: D

D Watch Video Solution

9. If a gas is heated at constant pressure, its isothermal compressibility
A. Remains constant
B. Increases linearly with temperature
C. Decreases linearly with temperature
D. Decreases inversely with temperature

Answer: A

D Watch Video Solution
10. Work done per mol in an isothermal change is
A. $R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
B. $R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
C. $R T \log _{e}\left(\frac{V_{2}}{V_{1}}\right)$
D. $R T \log _{e}\left(\frac{V_{1}}{V_{2}}\right)$

Answer: C

D Watch Video Solution
11. The isothermal Bulk modulus of an ideal gas at pressure P is
A. P
B. λp
C. $p / 2$
D. P / λ

Answer: A

- Watch Video Solution

12. In isothermal expansion, the pressure is determined by
A. Temperature only
B. Compressibility only
C. Both temperature and compressibility
D. None of these

Answer: B

D Watch Video Solution
13. The isothermal bulk modulus of a gas at atmospheric pressure is
A. $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
B. $1.013 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
C. $1.013 \times 10^{-11} \mathrm{~N} / \mathrm{m}^{2}$
D. $1.013 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$

Answer: A

D Watch Video Solution

14. In an isothermal change, an ideal gas obeys
A. Boyle's law
B. Charle's law

C. Gaylussac law

D. None of the above

Answer: A

D Watch Video Solution

15. In isothermic process, which statement is wrong
A. Temperature is constant
B. Internal energy is constan
C. No exchange of energy
D. (a) and (b) are correct

Answer: C

D Watch Video Solution

16. An ideal gas A and a real gas B have their
volumes increases from $V \rightarrow 2 V$ under isothermal condtitions. The increase in internal energy
A. Will be same in both a And B
B. Will be zero in both the gases
C. Of B will be more than that of A
D. Of A will be more than that of B

Answer: B

D Watch Video Solution

17. The specific heat of a gas in an isothermal process is
A. infinite
B. Zero
C. Negative
D. Remains constant

Answer: A

- Watch Video Solution

18. A thermally insulated container is divided into two parts by a screen. In one part the pressure and temperature are P and T for an
ideal gas filled. In the second part it is vacuum.
If now a small hole is created in the screen, then the temperature of the gas will
A. Decrease
B. Increase
C. Remains same
D. None of the above

Answer: C

D Watch Video Solution
19. A container that suits the occurrence of an isothermal process should be made of
A. Copper
B. Glass
C. Wood
D. cloth

Answer: A

20. In an isothermal process the volume of an ideal gas is halved. One can say that
A. Internal energy of the system decreases
B. Work done by the gas is positive
C. Work done by the gas is negative

D. Internal energy of the system increases

Answer: C

- Watch Video Solution

21. A thermodynamic process in which temperature T of the system remains constant though other variable P and V may change, is called
A. Isochoric process
B. Isothermal process
C. Isobaric process
D. None of these

Answer: B
22. If an ideal gas is compressed isothermally then
A. No work is done against gas
B. Heat is relased by the gas
C. The internal energy of gas will increase
D. Pressure does not change

Answer: B

D Watch Video Solution
23. When an ideal gas in a cylinder was compreswsed isothermally by a piston, the work done on the gas found to be 1.5×10^{4} cal. During this process about
A. 1.5×10^{3} cal of heat flowed out from
the gas
B. 1.5×10^{3} cal of heat flowed into the gas
C. 1.5×10^{4} cal of heat flowed out from
the gas

D. $1.5 \times 10^{4} \mathrm{cal}$ of heat flowed out from

 the gas
Answer: A

- Watch Video Solution

24. When heat is given to a gas in an isothermal change, the result will be
A. External work done
B. Rise in temperature

C. Increase in internal energy

D. External work done and also rise in temp.

Answer: A

- Watch Video Solution

25. When 1 g of water at $0^{\circ} \mathrm{C}$ and $1 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$ pressure is converted into ice of volume $1.091 \mathrm{~cm}^{3}$. The external work done will e

A. 0.00091 joule

B. 0.0182joule
C. -0.0091 joule
D. -0.0182 joule

Answer: A

D Watch Video Solution
26. The latent heat of vaporisation of water is
$2240 \mathrm{~J} / \mathrm{gm}$. If the work done in the process of
A. 2408 j
B. 2240 j
C. 2072j
D. 1904j

Answer: C
(Watch Video Solution
27. 540 calories of heat convert 1 cubic centimeter of water at C o100 into 1671 cubic centimeter of steam at C o100 at a pressure of one atmosphere. Then the work done against the atmospheric pressure is nearly
A. 540 cal
B. 40 cal
C. Zero cal
D. 500 cal

Answer: B

- Watch Video Solution

28. One mole of an ideal gas expands at a constant temperature of $300 K$ from an initial
volume of 10 litres to a final volume of 20
liters. The work done in expanding the gas is
($R=8.31 J /$ mole $-K)$ (in joules)
A. 750 joules
B. 1728joules
C. 1500joules

D. 3456joules

Answer: B

D Watch Video Solution

29. A cylinder fitted with a piston contains 0.2 moles of air at temperature 27°. The piston is
pushed so slowly that the air within the cylinder remains in thermal equilibrium with
the surroundings. Find the approximate work
done by the system if the final volume is twice the initial volume
A. 543 j
B. 345 j
C. 453 j
D. 600 j

Answer: B
(Watch Video Solution
30. The volume of an ideal gas is 1 litre and its pressure is equal to 72 cm of mercury column.

The volume of gas is made 900 cm 3 by compressing it isothermally. The stress of the gas will be
A. 8 cm (mercury)
B. 7 cm (mercury)
C. 6 cm (mercury)
D. 4 cm (mercury)
31. During an isothermal expansion of an ideal gas
A. Its internal energy decreases
B. Its internal energy does not change
C. The work done by the gas is equal to the
quantity of heat absorbed by i
D. Both (b) and (c) are correct

Answer: D

- Watch Video Solution

Adiabatic Process

1. If a cylinder containing a gas at high pressure explodes, the gas undergoes
A. Reversible adiabatic change and fall of
B. Reversible adiabatic change and rise of temperature
C. Irreversible adiabatic change and fall of
temperature
D. Irreversible adiabatic change and rise of
temperature

Answer: C

D Watch Video Solution
2. Statement-1 : In an adiabatic process,
change in internal energy of a gas is equal to
work done on/by the gas in the process.
Statement-2 : This is because temp.of gas
remains constant in an adiabatic process.
A. Change is pressure
B. Change is volume
C. Change in temperature
D. None of the above
3. How does internal energy of a gas change in adiabatic expansion?
A. $\Delta U=0$
B. $\Delta U=$ negative
C. $\Delta U=$ positive
D. $\Delta W=$ zero

Answer: B
4. The pressure in the tyre of a car is four times the atmospheric pressure at 300 K . if this tyre suddenly bursts, Its new temperature will the $(\gamma=1.4)$
A. $300(4)^{1.4 / 0.4}$
B. $300\left(\frac{1}{4}\right)^{1.4 / 0.4}$
C. $300(2)^{-1.4 / 0.4}$
D. $300(4)^{-1.4 / 0.4}$

Answer: D

D Watch Video Solution

5. A gas at NTP is suddenly compressed to one-
fourth of its original volume. If. λ is supposed
to be $\frac{3}{2}$, then the final perssure is
A. 4 atmosphere
B. $\frac{3}{2}$ atomsphere
C. 8 atmosphere
D. $\frac{1}{4}$ atmosphere

D Watch Video Solution

6. A monoatomic gas $(\gamma=5 / 3)$ is suddenly compressed to $(1 / 8)$ of its volume adiabatically then the pressure of the gas will change to
A. $\frac{24}{5}$
B. 8
C. $\frac{40}{3}$

D. 32 times its initial perssure

Answer: D

D Watch Video Solution

7. The pressure and density of a diatomic gas
($\gamma=7 / 5$) change adiabatically from (p, d) to
$\left(p^{\prime}, d^{\prime}\right)$. If $\frac{d^{\prime}}{d}=32$, then $\frac{P^{\prime}}{P}$ should be
A. $1 / 128$
B. 32

C. 128

D. None of the above

Answer: C

- Watch Video Solution

8. An ideal gas at $27^{\circ} C$ is compressed adiabatically to $8 / 27$ of its original volume. If
$\gamma=5 / 3$, then the rise in temperature is
A. 450 k
B. 375 k
C. 225 k
D. 405 k

Answer: B

D Watch Video Solution
9. Two identical samples of gases are allowed
to expand to the same final volume
A. More in the isothermal process
B. More in the adiabatic process
C. Neither of them
D. Equal in both processes

Answer: A

D Watch Video Solution
10. Which is the correct statement
A. For an isothermal change $\mathrm{PV}=$ constant
B. In an isothermal process the change in internal energy must be equal to the
work done
C. For an adiabatic change $\frac{P_{2}}{P_{1}}=\left(\frac{V_{2}}{V_{1}}\right)^{\lambda}$
where λ is the ratio of specific heats
D. In an adiabatic process work done must
be equal to the heat entering the system

Answer: A

11. The ratio of slopes of adiabatic and isothermal curves is
A. γ
B. $\frac{1}{\gamma}$
C. γ^{2}
D. γ^{3}

Answer: A
(Watch Video Solution
12. An ideal gas undergoing adiabatic change
has the following pressure-temperature relationship
A. $P T^{\lambda}=$ constant
B. $P T^{1+\lambda}=\mathrm{constant}$
C. $P^{\lambda-1} T^{\lambda}=$ constant
D. $P^{1-\lambda} T^{\lambda}=$ constant

Answer: D

13. The amount of work done in an adiabatic expansion from temperature T to T_{1} is
A. $R\left(T-T_{1}\right)$
B. $\frac{R}{\lambda-1}\left(T-T_{1}\right)$
C. RT

$$
\text { D. } R\left(T-T_{1}\right)(\lambda-1)
$$

Answer: B

D Watch Video Solution

14. During the adiabatic expansion of 2 moles
of a gas, the internal energy of the gas is
found to decrease by 2 joules, the work done during the process on the gas will be equal to
A. 1J
B. $-1 j$
C. $2 j$
D. $-2 j$

Answer: D

15. The adiabatic elasticity of hydrogen gas $(\gamma=1.4)$ at $N T P$
A. $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
B. $1 \times 10^{-8} N / m^{2}$
C. $1.4 \times N / m^{2}$
D. $1.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

Answer: D
16. If λ denotes the ratio of two specific heats
of a gas, the ratio of slopes of adiabatic and
isothermal PV curves at their point of intersection is
A. $1 / \lambda$
B. λ
C. $\lambda-1$
D. $\lambda+1$

Answer: B

D View Text Solution

17. A gas is contained in a metallic cylinder
fitted with a piston. The piston is suddenly moved in to compress the gas and is maintained at this position. As time passes the pressure of the gas in the cylinder
A. The pressure decreases
B. The pressure increases
C. The pressure remains the same
D. The pressure may increase or decrease depending upon the nature of the gas

Answer: A

D Watch Video Solution

18. When a gas expands adiabatically
A. No energy is required for expansion

B. Energy is required and it comes from the

wall of the container of the gas
C. Internal energy of the gas is used in doing work
D. Law of conservation of energy does not
hold

Answer: C

- Watch Video Solution

19. One gm mol of a diatomic gas $(\gamma=1.4)$ is compressed adiabatically so that its
temperature rises from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. The work done will be
A. 2077.5joules
B. 207.5joules
C. 207.5joules
D. None of the above

Answer: A
(Watch Video Solution
20. Compressed air in the tube of a wheel of a
cycle at normal temperature suddenly starts
coming out from a puncture. The air inside
A. Starts becoming hotter
B. Remains at the same temperature
C. Starts becoming cooler
D. May become hotter or cooler depending
upon the amount of water vapour present

Answer: C

- Watch Video Solution

21. The adiabatic Bulk modulus of a perfect gas
at pressure is given by
A. P
B. $2 P$
C. $\frac{P}{2}$
D. λP

Answer: D

- Watch Video Solution

22. An adiabatic process occurs at constant
A. Temperature
B. Pressure
C. Heat
D. Temperatuer and Pressure

Answer: C
23. A polyatomic gas $\left(\lambda=\frac{4}{3}\right)$ is compressed
to $\frac{1}{8}$ of its voulme Adiabatically. If initial pressure is P_{0}, Its mew perssure will be
A. $8 P_{0}$
B. $16 P_{0}$
C. $6 P_{0}$
D. $2 P_{0}$

Answer: B

- Watch Video Solution

24. For adiabatic processes $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$
A. $P^{\lambda} V=$ constant
B. $T^{\lambda} V=$ Constant
C. $T V^{\lambda-1}=$ constant
D. $T V^{\lambda}=$ constant
25. An ideal gas is expanded adiabatically at an initial temperature of 300 K so that its volume is doubled. The final temperature of the hydrogen gas is $\lambda=1.40$)
A. 227.36 k
B. 500.30 k
C. 454.76 k
D. -47°

Answer: A

D Watch Video Solution

26. A given system undergoes a change in
which the work done by the system equals to
the decrease in its internal energy. The system must have undergone an
A. Isothermal change
B. Adiabatic change
C. Isobaric change

D. Isochoric change

Answer: B

D Watch Video Solution

27. During the adiabatic expansion of 2 moles
of a gas, the internal energy was found to
have decreased by 100 J . The work done by the gas in this process is
A. Zero
B. $-100 j$
C. $200 j$
D. $100 j$

Answer: D

D Watch Video Solution

28. In an adiabatic expansion of a gas initial
and final temperatures are T_{1} and T_{2}
respectively, then the change in internal
energy of the gas is
A. $\frac{R}{\lambda}\left(T_{2}-T_{1}\right)$
B. $\frac{R}{\lambda-1}\left(T_{1}-T_{2}\right)$
C. $R\left(T_{1}-T_{2}\right)$
D. Zero

Answer: A

D Watch Video Solution

29. Helium at $27^{\circ} C$ has a volume of 8 litres. It is suddenly compressed to a volume of 1 litre.

The temperature of the gas will be $[\gamma=5 / 3]$
A. 108°
B. $9327^{\circ} C$
C. $1200^{\circ} C$
D. $927^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

30. A cycle tyre bursts suddenly. This
represents an
A. Isothermal process
B. Isobaric process
C. Isochoric process
D. Adiabatic process

Answer: D

D Watch Video Solution

31. One mole of helium is adiabatically expanded from its initial state $\left(P_{i}, V_{i}, T_{i}\right)$ to its final state $\left(P_{f}, V_{f}, T_{f}\right)$. The decrease in the
internal energy associated with this expansion
is equal to

$$
\begin{aligned}
& \text { A. } C_{V}\left(T_{i}-T_{f}\right) \\
& \text { B. } C_{P}\left(T_{i} T_{f}\right) \\
& \text { С. } \frac{1}{2}\left(C_{P}+C_{V}\right)(T i-T f) \\
& \text { D. }\left(C_{p}+C_{V}\right)\left(T_{i}-T_{f}\right)
\end{aligned}
$$

Answer: A
32. At N.T.P. one mole of diatomic gas is compressed adiabatically to half of its volume
$\lambda=1.41$. The work done on gas will be
A. $1280 j$
B. $1610 j$
C. $1815 j$
D. $2025 j$

Answer: C

D Watch Video Solution
33. For adiabatic process, wrong statement is

$$
\text { A. } d Q=0
$$

B. $d U+d W$
C. $Q=$ constant

D. Entropy is not constant

Answer: D

34. A diatomic gas initially at 18° is compressed adiabatically to one- eighth of its original volume. The temperature after compression will b
A. 10°
B. 887°
C. 668 k
D. 144°

Answer: C

35. A gas is being compressed adiabatically.

The specific heat of the gas during compression is
A. Zero
B. Infinite
C. Finite but non zero
D. Undefined

Answer: A
36. The process in which no heat enters or leaves the system is termed as
A. Isochoric
B. Isobaric
C. Isothermal
D. Adiabatic

Answer: D

37. Two moles of an ideal monoatomic gas at 27° Coccupies a volume of V . If the gas is expanded adiabatically to the volume, 2 V then
the work done by the gas will be $[\lambda=5 / 3, R=8.31 j / \mathrm{molK}]$
A. $-2767.23 j$
B. $2767.23 j$
C. $2500 j$
D. $-2500 j$

Answer: B

- Watch Video Solution

38. At 27° a gas is suddenly comperssed such
that its pressure become $\frac{1}{8} t h$ of original pressure. Temperature of the gas will be $(\lambda=5 / 3)$
A. 420 k
B. $327^{\circ} \mathrm{C}$
C. 300k

D. -142°

Answer: D

D Watch Video Solution

39. $\Delta U+\Delta W=0$ is valid for
A. Adiabatic process
B. Isothermal process
C. Isobaric process
D. Isochoric process

Answer: A

D Watch Video Solution

40. An ideal gas at pressure of 1 atmosphere and temperature of $27^{\circ} \mathrm{C}$ is compressed adiabatically until its pressure becomes 8 times the initial pressure, then the final temperature is $(\gamma=3 / 2)$
A. $627^{\circ} C$
B. $527^{\circ} C$
C. $427^{\circ} \mathrm{C}$
D. $327^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

41. Air is filled in a motor tube at $27^{\circ} C$ and at
a pressure of 8 atmospheres. The tube
suddenly bursts, then temperature of air is
[Given γ of air $=1.5$]
A. $27.5^{\circ} C$
B. $75^{\circ} \mathrm{K}$
C. 150 k
D. $150^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

42. If $\lambda=2.5$ and volume is equal to $\frac{1}{8}$ times to the initial volume then perssure p^{\prime} is equal to (initial pressure $=p$)
A. $p^{\prime}=p$
B. $p^{\prime}=2 p$
C. $p^{\prime}=p \times(2)^{15 / 2}$
D. $p^{\prime}=7 p$

Answer: C

D Watch Video Solution
43. In an adiabatic process, the state of a gas
is changed from P_{1}, V_{1}, T_{1}, to P_{2}, V_{2}, T_{2}.

Which of the following relation is correct

$$
\begin{aligned}
& \text { A. } T_{1} V_{1}^{\lambda-1}=T_{2} T_{2}^{\lambda-1} \\
& \text { B. } P_{1} V_{1}^{\lambda-1}=P_{2} V_{2}^{\lambda-1} \\
& \text { C. } T_{1} P_{1}^{\lambda}=T_{2} P_{2}^{\lambda} \\
& \text { D. } T_{1} V_{1}^{\lambda}=T_{2} V_{2}^{\lambda}
\end{aligned}
$$

Answer: A

D Watch Video Solution

44. During an adiabatic process, the pressure of a gas is found to be proportional to the
cube of its absolute temperature. The ratio
C_{P} / C_{V} for the gas is

> A. $\frac{3}{2}$
> B. $\frac{4}{3}$
C. 2
D. $\frac{5}{3}$

Answer: A

- Watch Video Solution

45. In adiabatic expansion of a gas
A. Its pressure increases
B. Its density increases
C. Its thermal energy increases
D. Its thermal energy increase

Answer: B
46. One mole of an ideal gas at an initial temperature true of $T K$ does $6 R$ joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of the gas will be

D Watch Video Solution

47. A gas is suddenly compressed to $\frac{1}{4} t h$ of its original volume. Caculate the rise in
temperature when original temperature is

$$
27^{\circ} C \cdot \gamma=1.5
$$

A. 273 k
B. 573 k
C. 373 k
D. 473 k

Answer: A

D Watch Video Solution
48. A gas $(\lambda=1.3)$ is enclosed in an insulated
vessel fitted with insulating piston at a
pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$. On suddenly pressing
the piston the volume is reduced to half the
initial volume. The final pressure of the gas is
A. $2^{0.7} \times 10^{5}$
B. $2^{1.3} \times 10^{5}$
C. $2^{1.4} \times 10^{5}$
D. None of these
49. The internal energy of the gas increases in
A. Adiabatic expansion
B. Adiabatic compression
C. Isothermal expansion

D. Isothermal compression

Answer: B

50. We consider a thermodynamic system. If
ΔU represents the increase in its internal energy and W the work done by the system, which of the following statements is true?
A. $\Delta U=-W$ in an adiabatic process
B. $\Delta U=W$ in an isothermal process
C. $\Delta U=-w$ in an isothermal process
D. $\Delta U=W$ in an isothermal process
51. A gas is suddenly compressed to one fourth of its original volume. What will be its
final pressure, if its initial pressure is p
A. Less then p
B. Moer then P
C. p
D. Either(a) or ©
52. A gas for which $\gamma=1.5$ is suddenly compressed to $1 / 4$ th of the initial volume.

Then the ratio of the final to initial pressure is
A. $1: 16$
B. 1:8
C. 1:4
D. 8:1
53. One mole of an ideal gas with $\gamma=1.4$ is adiabatically compressed so that its temperature rises from $27^{\circ} \mathrm{C}$ to $34^{\circ} \mathrm{C}$. The change in the internal energy of the gas is
$\left(R=8.3 \mathrm{Jmol}^{-1} k^{-1}\right)$
A. $-166 j$
B. $166 j$
C. $-168 j$

D. $168 j$

Answer: B

D Watch Video Solution

54. The volume of a gas is reduced adibatically to $(1 / 4)$ of its volume at $27^{\circ} C$. if $\gamma=1.4$.

The new temperature will be
A. $340 \times 4^{0.4} K$
B. $300 \times 4^{0.4} K$
C. $150 \times 4^{0.4} K$
D. None of these

Answer: B

D Watch Video Solution

55. During an adiabatic expansion of 2 moles
of a gas, the change in internal energy was
found -50 J . The work done during the process is
A. Zero
B. $100 j$
C. $-50 j$
D. $50 j$

Answer: D

D Watch Video Solution

56. Adiabatic modulus of elasticity of a gas is
$2.1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. What will be isothermal
modulus if elasticity $\left(\frac{C_{p}}{C_{v}}=1.4\right)$

A. $1.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
B. $1.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
C. $1.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
D. $1.2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

Answer: B
57. For an adiabatic expansion of a perfect gas,
the value of $\frac{\Delta P}{P}$ is equal to

$$
\begin{aligned}
& \text { A. }-\sqrt{\lambda} \frac{\Delta V}{V} \\
& \text { B. }-\frac{\Delta V}{V} \\
& \text { C. }-\lambda \frac{\Delta V}{V} \\
& \text { D. }-\lambda^{2} \frac{\Delta V}{V}
\end{aligned}
$$

Answer: C

D Watch Video Solution

Isobaric And Isochoric Processes

1. A gas expands under constant pressure P
from volume V_{1} to V_{2} The work done by the gas is
A. $P\left(V_{2}-V_{1}\right)$
B. $P\left(V_{1}-V_{2}\right)$
C. $P\left(V_{1}^{\lambda}-V_{2}^{\lambda}\right)$
D. $P \frac{V_{1} V_{2}}{V_{2}-V_{1}}$

- Watch Video Solution

2. When heat in given to a gas in an isobaric process, then
A. The work is done by the gas
B. Internal energy of the gas increases
C. Both (a) and (b)

D. None from (a) and (b)

Answer: C

D Watch Video Solution
3. One mole of a perfect gas in a cylinder fitted with a piston has a pressure P , volume V and temperature T . if the temperature is increased by 1 K keeping pressure constant, the increase in volume is
A. $\frac{2 V}{273}$
B. $\frac{V}{91}$
C. $\frac{V}{273}$
D. V

Answer: C

D Watch Video Solution

4. A gas is compressed at a constant pressure of $50 \mathrm{~N} / \mathrm{m}^{2}$ from a volume $10 \mathrm{~m}^{3}$ to a volume of $4 m^{3} \cdot 100$ J of heat is added to the gas then its internal energy is
A. Increased by 400 J
B. Increased by 200 J
C. Increased by 100 J

D. Decreased by 200j

Answer: A

D Watch Video Solution

5. Work done by 0.1 mole of a gas at $27^{\circ} C$ to double its volume at constant pressure is $\left(R=2\right.$ cal mol $\left.{ }^{-1} .^{\circ} K^{-1}\right)$
A. 54 cal
B. 600 cal

C. 60cal

D. 546cal

Answer: A

D Watch Video Solution

6. Unit mass of liquid of volume V_{1} completely
turns into a gas of volume V_{2} at constant atmospheric pressure P and temperature T.

The latent heat of vaporization is "L". Then the change in internal energy of the gas is
A. Zero

$$
\begin{aligned}
& \text { B. } P\left(V_{1}-V_{2}\right) \\
& \text { C. } L-P\left(V_{2}-V_{1}\right) \\
& \text { D. L }
\end{aligned}
$$

Answer: C

D Watch Video Solution

7. A gas expands $0.25 m^{2}$ at constant perssure $10^{3} \mathrm{~N} / \mathrm{m}^{2}$, the work done is
A. 2.5 ergs
B. 250 j
C. 250 W
D. 340 N

Answer: C

D Watch Video Solution

8. 2 kg of water is converted into steam by boiling at atmospheric pressure. The volume
changes from $2 \times 10^{-3} m^{-3}$ to $3.34 m^{3}$. The work done by the system is about
A. $-340 k j$
B. $-170 k j$
C. $170 k j$
D. $340 k j$

Answer: B
(Watch Video Solution
9. An ideal gas has volume V_{0} at $.27^{\circ} C$ It is
heated at constant pressure so that its
volume becomes $.2 V_{0}$. The final temperature
is
A. $54^{\circ} C$
B. $32.6^{\circ} C$
C. $327^{\circ} \mathrm{C}$
D. 150 k

Answer: D
10. If 300 ml of a gas at 27° is cooled to 7° at constant pressure, then its final volume will be
A. 540 ml
B. 350 ml
C. 280 ml
D. 135 ml

Answer: C
11. Which of the following is correct in terms of increasing work done for the same initial and final state?
A. Adiabatic It Isothermal It Isobaric
B. Isobaric It Adiabatic It Isothermal
C. Adiabatic It Isobaric It Isothermal
D. None of these

Answer: C

12. A sample of gas expands from volume V_{1} to
V_{2}. The amount of work done by the gas is greatest when the expansion is
A. Isothermal
B. Isobaric
C. Adiabatic
D. Equal in all cases

Answer:

D Watch Video Solution
13. Which of the following is a slow process
A. Isothermal
B. Adiabatic
C. Isobaric
D. None of these

Answer: A

D Watch Video Solution

14. How much work to be done in decreasing the volume of an ideal gas by an amount of $2.4 \times 10^{-4} \mathrm{~m}^{3}$ at constant normal pressure of $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} ?$
A. 28 joule
B. 27 joule
C. 25 joule
D. 24 joule

Answer:
15. A Container having 1 mole of a gas at a temperature 27° has a movable piston which maintains at constant pressure in container of

1 atm . The gas is compressed until temperature becomes 127°. The work done is (C for gas is $7.03 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$)
A. 703 j
B. 814 j
C. 121 j
D. 2035 j

Answer: D

D Watch Video Solution

16. In a reversible isochoric change
A. $\Delta W=0$
B. $\Delta Q=0$
C. $\Delta T=0$
D. $\Delta U=0$

Answer: B

D Watch Video Solution

17. Entropy of a thermodynamic system does
not change when this system is used for
A. Conduction of heat from a hot reservoir
to a cold reservoir
B. Conversion of heat into work isobarically

C. Conversion of heat into internal energy

isochorically

D. Conversion of work into heat

 isochoricallyAnswer: A

D Watch Video Solution
18. The work done in which of the following processes is zero
A. Isothermal process
B. Adiabatic process
C. Isochoric process
D. None of these

Answer: D

D Watch Video Solution

19. In which thermodynamic process, volume remains same
A. Isobaric
B. Isothermal
C. Adiabatic
D. Isochoric

Answer: C

D Watch Video Solution

20. In an isochoric process if $T_{1}=27^{\circ} C$ and $T_{2}=127^{\circ} C$ then P_{1} / P_{2} will be equal to
A. $\frac{9}{59}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. None of these

Answer: C

D Watch Video Solution

21. Which is incorrect
A. In an isobaric process $\Delta p=0$
B. In an isochoric process, $\Delta W=0$
C. In an isothermal process $\Delta T=0$
D. In an isothermal process $\Delta Q=0$

Answer: D

D Watch Video Solution

22. Which relation is correct for isometric process

$$
\text { A. } \Delta Q=\Delta U
$$

B. $\Delta W=\Delta U$
C. $\Delta Q=\Delta W$
D. None of these

Answer: D

D Watch Video Solution

Heat Engine Refrigerator And Second Law Of
Thermodynamics

1. A Carnot engine working between 300 K and 600 K has work output of 800 J per cycle. What
is amount of heat energy supplied to the engine from source per cycle
A. 1800 j cycle
B. 1000 j cycle
C. 2000 j cycle
D. 1600 j cycle

Answer: D

2. The coefficient of performance of a Carnot

 refrigerator working between $30^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ isA. 10
B. 1
C. 9
D. 0

Answer: C
3. If the door of a refrigerator is kept open, then which of the following is true
A. Room is cooled
B. Room is heated
C. Room is either cooled or heated
D. Room is neither cooled nor heated

Answer: B
4. In a cyclic process, the internal energy of the gas
A. Increases
B. Decreases
C. Remains constant
D. Becomes zero

Answer: C

5. Irreversible process is

A. Adiabatic process
B. Joule-Thomson expansion
C. Ideal isothermal process

D. None of the above

Answer: B
6. For a reversible process, necessary condition
is
A. In the whole cycle of the system, the loss
of any type of heat energy should be
zero
B. That the process should be too fast
C. That the process should be slow so that
the working substance should remain in
thermal and mechanical equilibrium with
the surroundings
D. The loss of energy should be zero and it should be quasistatic

Answer: D

- View Text Solution

7. In a cyclic process, work done by the system
A. Zero
B. Equal to heat given to the system
C. More than the heat given to system
D. Independent of heat given to the system

Answer: B

- Watch Video Solution

8. An ideal heat engine exhausting heat at 77° is to have a 30% efficiency. It must take heat at
A. $127^{\circ} C$
B. $227^{\circ} \mathrm{C}$
C. $327^{\circ} C$
D. $673^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

9. Efficiency of Carnot engine is 100% if
A. $T_{2}=273 K$
B. $T_{2}=0 K$
C. $T_{1}=273 K$
D. $T_{1}=0 K$

Answer: B

D Watch Video Solution

10. A Carnot's engine used first an ideal monoatomic gas then an ideal diatomic gas. If
the source and sink temperature are
$411^{\circ} \mathrm{C}$ and $69^{\circ} \mathrm{C}$ respectively and the engine
extracts $1000 J$ of heat in each cycle, then area enclosed by the $P V$ diagram is
A. 100 j
B. 300 j
C. 500 j
D. 700 j

Answer: B
(Watch Video Solution
11. A Carnot engine absorbs an amount Q of
heat from a reservoir at an absolute
temperature T and rejects heat to a sink at a
temperature of $T / 3$. The amount of heat rejects is
A. $\mathrm{Q} / 4$
B. $Q / 3$
C. $\mathrm{Q} / 2$
D. $2 Q / 3$

Answer: B
12. The temperature of sink of Carnot engine is
$27^{\circ} \mathrm{C}$. Efficiency of engine is 25%. Then temeperature of source is
A. $227^{\circ} \mathrm{C}$
B. $327^{\circ} C$
C. $127^{\circ} \mathrm{C}$
D. $27^{\circ} \mathrm{C}$
13. An ideal Carnot's engine whose efficiency
40% receives heat of 500 K . If the efficiency is
to be 50% then the temperature of sink will be
A. 300 k
B. 400 k
C. 500k
D. 700 k
14. In a Carnot engine when $T_{2}=0^{\circ} C$ and
$T_{1}=200^{\circ} C$ its efficiency is η_{1} and when
$T_{1}=0^{\circ} \mathrm{C}$ and $T_{2}=-200^{\circ} \mathrm{C}$. Its efficiency is η_{2}, then what is η_{1} / η_{2} ?
A. 0.577
B. 0.733
C. 0.638
D. Can not be calculated

D Watch Video Solution

15. A carnot's engine works between a source
at a temperature of $27^{\circ} C$ and a sink at
$-123^{\circ} C$. Its efficiency is
A. 0.5
B. 0.24
C. 0.0075
D. 0.004

D Watch Video Solution

16. A Carnot engine operates between $277^{\circ} C$
and $.27^{\circ} \mathrm{C}$ Efficiency of the engine will be
A. $\frac{1}{3}$
B. $\frac{2}{5}$
C. $\frac{3}{4}$
D. $\frac{3}{5}$

D Watch Video Solution

17. A measure of the degree of disorder of a
system is known as
A. Isobaric
B. Isotropy
C. Enthalpy
D. Entropy

Answer: B

D Watch Video Solution

18. A Carnot engine has the same efficiency
between $800 K$ to $500 K$ and $x K \rightarrow 600 K$. The
value of x is
A. 1000 k
B. 960 k
C. 846 k
D. 754 k

Answer: D

D Watch Video Solution

19. A scientist says that the efficiency of his
heat engine which operates at source temperature $127^{\circ} \mathrm{C}$ and sink temperature $27^{\circ} \mathrm{Cis} 26 \%$, then
A. It is impossible
B. It is possible but less probable
C. It is quite probable

D. Data are incomplete

Answer: B

D Watch Video Solution

20. A Carnot's engine is made to work between
$200^{\circ} \mathrm{C}$ and $0^{\circ} C$ first and then between $0^{\circ} C$
and $-200^{\circ} C$. The ratio of efficiencies of the engine in the two cases is
A. $1.73: 1$
B. 1:1.73
C. 1:1
D. 1:2

Answer: A

- Watch Video Solution

21. Efficiency of a Carnot engine is 50% when temperature of outlet is 500 K . In order to increase efficiency up to 60% keeping
temperature of intake the same what is temperature of outlet?
A. 200 k
B. 400 k
C. 600 k
D. 800 k

Answer: B
(Watch Video Solution
22. Even Carnot engine cannot give 100% efficiency because we cannot
A. Prevent radiation
B. Find ideal sources
C. Reach absolute zero temperature
D. Eliminate friction

Answer: B

D Watch Video Solution

23. Even Carnot engine cannot give 100% efficiency because we cannot
A. Prevent radiation
B. Find ideal sources
C. Reach absolute zero temperature
D. Eliminate friction

Answer: C

D Watch Video Solution
24. A Carnot engine takes 3×10^{6} cal of heat
from a reservoir at $627^{\circ} \mathrm{C}$ and gives it to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is:
A. $4.2 \times 10^{6} j$
B. $8.2 \times 10^{6} j$
C. $16.8 \times 10^{6} j$
D. Zero

Answer: A

- Watch Video Solution

25. The first operation involved in a Carnot cycle is
A. Isothermal expansion
B. Adiabatic expansion
C. Isothermal compression
D. Adiabatic compression

Answer: A
(D) Watch Video Solution
26. For which combination of working temperatures the efficiency of Carnot's engine is highest
A. $80 \mathrm{k}, 60 \mathrm{k}$
B. $100 \mathrm{k}, 80 \mathrm{k}$
C. $60 \mathrm{k}, 40 \mathrm{k}$
D. $40 \mathrm{k}, 20 \mathrm{k}$

Answer: A

27. The efficiency of Carnot engine when source temperature is T 1 and sink temperature is T 2 will be
A. $\frac{T_{1}-T_{2}}{T_{1}}$
B. $\frac{T_{2}-T_{1}}{T_{2}}$
C. $\frac{T_{1}-T_{2}}{T_{2}}$
D. $\frac{T_{1}}{T_{2}}$

Answer: A

D Watch Video Solution
28. An ideal heat engine working between temperature T_{1} and T_{2} has an efficiency η, the new efficiency if both the source and sink temperature are doubled, will be
A. $\frac{\eta}{2}$
B. η
C. 2η
D. 3η

Answer: B
29. An ideal refrigerator has a freezer at a temperature of $-13^{\circ} \mathrm{C}$. The coefficient of performance of the engine is 5 . The temperature of the air (to which heat is rejected) will be
A. $235^{\circ} C$
B. $325^{\circ} C$
C. $39^{\circ} C$
D. $320^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

30. In a mechanical refrigerator the low temperature coils are at a temperature of $-23^{\circ} C$ and the compressed gas in the condenser has a temperature of $27^{\circ} \mathrm{C}$. The theoretical coefficient of performance is
A. 5
B. 8
C. 6
D. 6.5

Answer: C

D Watch Video Solution

31. An engine is supposed to operate between two reservoirs at temperature $727^{\circ} \mathrm{C}$ and $227^{\circ} \mathrm{C}$. The maximum possible efficiency of such an engine is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{3}{4}$
D. 1

Answer: A

D Watch Video Solution

32. An ideal gas heat engine operates in

Carnot cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs $6 \times 10^{4} \mathrm{cals}$ of heat at higher
temperature. Amount of heat converted to work is
A. $2.4 \times 10^{4} \mathrm{cal}$
B. $6 \times 10^{4} \mathrm{cal}$
C. $1.2 \times 10^{4} \mathrm{cal}$
D. $4.8 \times 10^{4} \mathrm{cal}$

Answer: C
(Watch Video Solution
33. Which of the following processes is reversible?
A. Transfer of heat by radiation
B. Electrical heating of a nichrome wire
C. Transfer of heat by conductio

D. Isothermal compression

Answer: C

D Watch Video Solution

Objective Questions

1. When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied, which increases the internal energy of the gas, is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{7}$
D. $\frac{5}{7}$

Answer: D

D Watch Video Solution

2. $1 \mathrm{~cm}^{3}$ of water at its boiling point absorbs

540 cal of heat to become steam with a volume
of $1671 \mathrm{~cm}^{3}$. If the atmospheic pressure is
$1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \quad$ and the mechanical
equivalent of heat $=4.19 \mathrm{~J} / \mathrm{cal}$, the energy
spent in this process in overcoming intermolecular forces is
A. 540 cal
B. 40 cal
C. 500 cal
D. Zero

Answer: C

D Watch Video Solution
3. During the melting of a slab of ice at 273 K at
atmospheric pressure,
A. Positive work is done by ice-water system
on the atmosphere
B. Positive work is done on the ice-water
system by the atmosphere
C. The internal energy of the ice-water
system increases
D. The internal energy of the ice-water
system decreases

Answer: B::C

4. Two identical containers A and B with frictionless pistons contain the same ideal gas at the same temperature and the same velocity V . The mass of the gas in A is m_{A}, and that in B is m_{B}. The gas in each cylinder is now allowed to expand isothermally to the same final volume 2 V . The changes in the pressure in

A and B are found to be ΔP and $1.5 \Delta P$ respectively. Then

$$
\text { A. } 4 m_{A}=9 m_{B}
$$

B. $2 m_{A}=3 m_{B}$
C. $3 m_{A}=2 m_{B}$

$$
\text { D. } 9 m_{A}=3 m_{B}
$$

Answer: C

D Watch Video Solution

5. A monoatomic ideal gas, initially at temperature T_{1}, is enclosed in a cylinder
fitted with a friction less piston. The gas is allowed to expand adiabatically to a
temperature T_{2} by releasing the piston suddenly. If L_{1} and L_{2} are the length of the gas column before expansion respectively, then $\frac{T_{1}}{T_{2}}$ is given by
A. $\left(\frac{L_{1}}{L_{2}}\right)^{2 / 3}$
B. $\frac{L_{1}}{L_{2}}$
C. $\frac{L_{2}}{L_{1}}$
D. $\left(\frac{L_{2}}{L_{1}}\right)^{2 / 3}$

Answer: D

6. A closed hollow insulated cylinder is filled with gas at $0^{\circ} C$ and also contains an insulated piston of negligible weight and negligible thickness at the middle point. The gas on one side of the piston is heated to $100^{\circ} \mathrm{C}$. If the piston moves 5 cm the length of the hollow cylinder is
A. 13.65
B. 27.3 cm
C. 38.6 cm
D. 64.6 cm

Answer: D

D Watch Video Solution

7. A mono atomic gas is supplied with the heat
Q very slowly keeping the pressure constant.
The work done by the gas will be
A. $\frac{2}{3} Q$
B. $\frac{3}{5} Q$
C. $\frac{2}{5} Q$

$$
\text { D. } \frac{1}{5} Q
$$

Answer: C

D Watch Video Solution

8. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T.

Neglecting all vibrational modes, the total internal energy of the system is
A. 4RT
B. 15RT
C. 9RT
D. 11RT

Answer: D

D Watch Video Solution

9. An ideal gas expands isothermally from volume V_{1} to V_{2} and is then compressed to original volume V_{1} adiabatically. Initialy
pressure is P_{1} and final pressure is P_{3}. The total work done is W. Then
A. $P_{3}>P_{1} W>0$
B. $P_{3}>P_{1} W<0$
C. $P_{3}>P_{1} W>0$
D. $P_{3}=P_{1}, W=0$

Answer: C

D Watch Video Solution
10. Work done by a system under isothermal change from a volume V_{1} to V_{2} for a gas which obeys Wander Waal's equation
$(V-\beta n)\left(P+\frac{\alpha n^{2}}{V}\right) n R T$
A.

$$
n R T \log _{e}\left(\frac{V_{2}-n \beta}{V_{1}-n \beta}\right)+\alpha n^{2}\left(\frac{V_{1}-V_{2}}{V_{1} V_{2}}\right)
$$

B.

$$
n R T \log _{e}\left(\frac{V_{2}-n \beta}{V_{1}-n \beta}\right)+\alpha n^{2}\left(\frac{V_{1}-V_{2}}{V_{1} V_{2}}\right)
$$

C.

$$
n R T \log _{e}\left(\frac{V_{2}-\alpha \beta}{V_{1}-n \alpha}\right)+\beta n^{2}\left(\frac{V_{1}-V_{2}}{V_{1} V_{2}}\right)
$$

D.

$$
n R T \log _{e}\left(\frac{V_{1}-\alpha \beta}{V_{1}-n \alpha}\right)+\alpha n^{2}\left(\frac{V_{1} V_{2}}{V_{1}-V_{2}}\right)
$$

Answer: A

D Watch Video Solution

A cylindrical tube of uniform cross-sectional area A is fitted with two air tight frictionless
pistons. The pistons are connected to each other by a metallic wire. Initially the pressure of the gas is P_{0} and temperature is T_{0}, atmospheric pressure is also P_{0}. Now the temperature of the gas is increased to $2 T_{0}$, the tension in the wire will be
A. $2 P_{0} A$
B. $P_{0} A$
C. $\frac{P_{0} A}{2}$
D. $4 P_{0} A$
12. The molar heat capacity in a process of a diatomic gas if it does a work of $\frac{Q}{4}$ when a heat of Q is supplied to it is

$$
\begin{aligned}
& \text { A. } \frac{2}{5} R \\
& \text { B. } \frac{5}{2} R \\
& \text { C. } \frac{10}{3} R \\
& \text { D. } \frac{6}{7} R
\end{aligned}
$$

- Watch Video Solution

13. An insulator container contains 4 moles of an ideal diatomic gas at temperature T . Heat Q is supplied to this gas, due to which 2 moles of
the gas are dissociated into atoms but temperature of the gas remains constant.

Then
A. $Q=2 R T$
B. $\mathrm{Q}=\mathrm{RT}$
C. $Q=3 R T$

D. $Q=4 R T$

Answer: B

D Watch Video Solution

14. The volume of air increases by 5% in its
adiabatic expansion. The precentage decrease
in its pressure will be
A. 5%
B. 6%
C. 7%
D. 8%

Answer: C

D Watch Video Solution

15. The temperature of a hypothetical gas
increases to $\sqrt{2}$ times when compressed
adiabatically to half the volume. Its equation
can be written as
A. $P V^{3 / 2}=$ constant
B. $P V^{5 / 2}=$ constant
C. $P V^{7 / 3}=$ constant
D. $P V^{4 / 3}=$ constant

Answer: A

D Watch Video Solution

16. Two Carnot engines are operated in succession. The first engine receives heat from a source at $T=800 K$ and rejects to sink at
$T_{2} K$. The second engine receives heat rejected
by the first engine and rejects to another sink at $T_{3}=300 K$. If work outputs of the two engines are equal, then find the value of T_{2}.
A. 100 k
B. 300 k
C. 550 k
D. 700 k

Answer: C

17. When an ideal monoatomic gas is heated at constant pressure, fraction of heat energy
supplied which increases the internal energy
of gas, is

> A. $\frac{2}{5}$
> B. $\frac{3}{5}$
> C. $\frac{3}{7}$
> D. $\frac{3}{4}$
18. When an ideal gas $(\gamma=5 / 3)$ is heated
under constant pressure, what percentage of
given heat energy will be utilized in doing external work?
A. 40%
B. 30%
C. 60%
D. 20%

Answer: A

D Watch Video Solution

19. Which one of the following gases possesses the largest internal energy
A. 2 moles of helium occupying $1 m^{2} a t 300 k$
B. 56 kg nitrogen at $107 \mathrm{Nm}^{2}$ and 300 k
C. 8 grams of oxygen at 8 atm and 300 k

D. 6×10^{26} moleculer of oxygen occupying

$40 m^{2}$ at 900 k

Answer: B

D Watch Video Solution

20. Two sample A and B of a gas initially at
the same pressure and temperature are compressed from volume V to $V / 2$ (A isothermally and B adiabatically). The final pressure of A is
A. Greater than the final pressure of B
B. Equal to the final pressure of
C. Less than the final pressure of B
D. wice the final pressure of B

Answer: C

D Watch Video Solution

21. Initial pressure and volume of a gas are P and V respectively. First it is expanded isothermally to volume 4 V and then
compressed adiabatically to volume V . The
final pressure of gas will be (given $\gamma=\frac{3}{2}$)
A. $1 p$
B. $2 p$
C. $4 p$
D. $8 p$

Answer: B
(Watch Video Solution
22. A rigid container with thermally insulated
walls contains a coil of resistance 100Ω,
carrying current 1A. Change in internal energy
after 5 min will be
A. 0 kj
B. 10 kj
C. 20 kj
D. 30 kj

Answer: D

23. A reversible engine converts one-sixth of
the heat input into work. When the temperature of the sink is reduced by $62^{\circ} \mathrm{C}$,
the efficiency of the engine is doubled. The temperatures of the source and sink are
A. $80^{\circ} C, 37^{\circ} C$
B. $95^{\circ} C, 28^{\circ} C$
C. $90^{\circ} C, 37^{\circ} C$
D. $99^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

24. An engineer claims to have made an engine
delivering 10 kW power with fuel consumption
of $1 \mathrm{~g} / \mathrm{sec}$. The calorific value of the fuel is 2 $\mathrm{kcal} / \mathrm{g}$. Is the claim of the engineer
A. Valid
B. Invaild
C. Depends of engine design

D. Depends on the load

Answer: B

D View Text Solution

25. 100 gram of ice at $0^{\circ} C$ is converted into water vapour at $100^{\circ} \mathrm{C}$ Calculate the change in entropy.
A. $-4.5 \mathrm{cal} / \mathrm{K}$
B. $+4.5 \mathrm{cal} / \mathrm{K}$

C. $+5.4 \mathrm{cal} / \mathrm{K}$
 D. $-5.4 c a l / K$

Answer: B

D Watch Video Solution

26. An ideal gas expands in such a manner that
its pressure and volume can be related by equation $P V^{2}=$ constant. During this process, the gas is
A. heated
B. Cooled
C. Neither heated nor cooled
D. First heated and then cooled

Answer: B

D Watch Video Solution
27. A Carnot engine whose low temperature reservoir is at $7^{\circ} \mathrm{C}$ has an efficiency of 50%. It is desired to increase the efficiency to 70% By
low many degrees should the temperature of
the high temperature reservoir be increased
A. 840 k
B. 280 k
C. 560 k
D. 380 k

Answer: D

- Watch Video Solution

28. P-V diagram of a diatomic gas is a straight
line passing through origin. The molar heat capacity of the gas in the process will be
A. 4 R
B.
C. 3R
D. $\frac{4 R}{3}$

Answer: C

- Watch Video Solution

29. Following figure shows on adiabatic cylindrical container of volume V_{0} divided by an adiabatic smooth piston (area of crosssection = A) in two equal parts. An ideal gas
$\left(C_{p} / C_{y}=\lambda\right)$ is at pressure P and temperature T in left part and gas at pressure

P and temperature T in right part. The piston
is slowly displaced and released at a position where it can stay in equilibrium. The final pressure of the two parts will be (Suppose $x=$
displacement of the piston)

A. P_{2}
B. P_{1}

$$
P_{1}\left(\frac{V_{0}}{2}\right)^{\lambda}
$$

C.

$$
\overline{\left(\frac{V_{0}}{2}+A x\right)^{\lambda}}
$$

D.

$$
P_{2}\left(\frac{V_{0}}{2}\right)^{\lambda}
$$

$$
\overline{\left(\frac{V_{0}}{2}+A x\right)^{\lambda}}
$$

Answer: C

D Watch Video Solution

30. Two cylinders A and B fitted with pistons contain equal amounts of an ideal diatomic gas at 300 K . The piston of A is free to move, while that B is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K , then the rise in temperature of the gas in B is
A. 30 k
B. 18 k
C. 50 k
D. 42 k

Answer: D

- Watch Video Solution

Graphical Questions

1. A system goes from A and B via two processes. I and II as shown in figure. If
ΔU_{1} and ΔU_{2} are the changes in internal energies in the processes I and II respectively,
then

A. $\Delta U_{I I}>\Delta U_{I}$
B. $\Delta U_{I I}<\Delta U_{I}$

C. $\Delta U_{I I}=\Delta U_{I}$

D. Relation between ΔU_{I} and $\Delta U_{I I}$ can

 not be determined
Answer: C

D Watch Video Solution

2. A thermodynamic system is taken through the cyclic $P Q R S P$ process. The net work done
by the system is

A. 10 J

B. 20 J

$$
\text { C. }-20 J
$$

D. 400 J

Answer: B
3. Anideal gas is taken around $A B C A$ as shown in the above $P-V$ diagram. The work done during a cycle is

A. 2 PV
B. PV

C. 1/2PV

D. Zero

Answer: A

- Watch Video Solution

4. The P-V diagram shows seven curved paths
(connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done
by the gas is to be at its maximum value

V
A. ac
B. cg
C. af
D. cd

Answer: C

- Watch Video Solution

5. An ideal gas of mass m in a state A goes to another state B via three different processes as shown in Fig. If Q_{1}, Q_{2} and Q_{3} denote the heat absorbed by the gas along the three paths, then

A. $Q_{1}<Q_{2}<Q_{3}$
B. $Q_{1}<Q_{2}=Q_{3}$
C. 'Q_(1)=Q_(2)ItQ_(3)
D. $Q_{1}>Q_{2}>Q_{3}$

Answer: A

- Watch Video Solution

6. Which of the following graphs correctly
represents the variation of $\beta=-\frac{d V / d P}{V}$
with P for an ideal gas at constant

temperature?

Answer: A
7. A thermodynamic process is shown in Fig.

The pressures and volumes corresponding to some points in the figure are
$P_{A}=3 \times 10^{4} P a V_{A}=2 \times 10^{-3} \mathrm{~m}^{3}$
$P_{B}=8 \times 10^{4} P a V_{D}=5 \times 10^{-3} \mathrm{~m}^{3}$

In the process $A B 600 J$ of heat is added to
the system. The change in internal energy of the system in the process $A B$ would be

A. $560 j$
B. $800 j$
C. $600 j$
D. $640 j$

Answer: A

D Watch Video Solution
8. P-V plots for two gases during adiabatic processes are shown in the figure. Plots 1 and

2 should corresponds respectively to

A. He and O_{2}
B. O_{2} and He
C. HE and Ar
D. O_{2} and N_{2}

Answer: B

- Watch Video Solution

9. Four curves A, B, C and D are drawn in Fig.
for a given amount of gas. The curves which represent adiabatic and isothermal changes

A. C and D respectively
B. D and C reslectively
C. A and B respectively
D. B and A respectively

Answer: C

D Watch Video Solution

10. In the following pressure-volume diagram,
the isochoric, isothermal and isobaric parts,
respectively, are

A. $B A, C B, D C$
B. $C D, C B, C D$
C. $A B, B C, A B$
D. $C D, D A, A B$

Answer: D

Watch Video Solution

11. The $P-V$ diagram of a system undergoing thermodynnaic transformation is
shown in Fig. The work done on the system in
going from $A \rightarrow B \rightarrow C$ is $50 J$ and 20 cal
heat is given to the system. The change in
internal erergy between A and C is

A. $34 J$
B. 70 J
C. 84 J
D. 134 J

Answer: D

D Watch Video Solution

12. An ideal gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If
the net heat supplied to the gas in the cycle is

5J, the work done by the gas in the process

CtoA is

$\mathrm{V}\left(\mathrm{m}^{3}\right){ }_{\mathrm{P}\left(\mathrm{N} / \mathrm{m}^{2}\right)}^{\substack{\text { 2 } \\ \text { - }}}$

A. $-5 J$
B. -10 J
C. $-15 J$
D. 20 J

Answer: A

- Watch Video Solution

13. In the following indicator diagram, the net amount of work done will be

A. Positive

B. Negative

C. Zero

D. Infinity

Answer: B

D Watch Video Solution

14. The cyclic process for 1 mole of an ideal gas
is shown in the V-T diagram. The work done in
$A B, B C$ and $C A$ respectively is

A. $0, R T_{2} \operatorname{In}\left(\frac{V_{1}}{V_{2}}\right), R\left(T_{1}-T_{2}\right)$
B. $R\left(T_{1}-T_{2}\right), 0, R T_{1} \operatorname{In} \frac{V_{1}}{V_{2}}$
C. $0, R T_{2} \operatorname{In}\left(\frac{V_{2}}{V_{1}}\right), R\left(T_{1}-T_{2}\right)$
D. $0, R T_{2} \operatorname{In}\left(\frac{V_{2}}{V_{1}}\right), R\left(T_{2}-T_{1}\right)$

Answer: C

D Watch Video Solution

15. A cyclic process $A B C D$ is shown in the figure

P - V diagram. Which of the following curves
represent the same process

Answer: A

D Watch Video Solution

16. Carnot cycle (reversible) of a gas represented by a pressure volume curve is
shown in the diagram

Consider the following statement

I Area $\mathrm{ABCD}=$ Work done on the gas

II Area ABCD = Net heat absorbed

III Change in the internal energy in cycle $=0$

Which of these are correct?

A. I only
B. II only
C. II and III

D. I,II and III

17. The temperature -entropy diagram of a reversible engine cycle is given in the figure.

Its efficiency is

A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: A

D Watch Video Solution

18. Work done in the given P-V diagram in the
cyclic process is

P
 $(2 P, V)$
 (2P, 2V)

A. $2 p$
B. 2 PV
C. PV/2
D. $3 p v$

Answer: A

D Watch Video Solution
19. A cyclic process $A B C A$ is shown in the
$V-T$ diagram process on the $P-V$
$v \uparrow$

$\stackrel{4}{4}$
A.
(b) P C
c. " $\square_{0}^{\prime \prime}$
D.

Answer: C

D Watch Video Solution

20. In the figure given two processes A and B are shown by which a thermodynamic system goes from initial to final state F. if ΔQ_{A} and ΔQ_{B} are respectively the heats supplied to
the systems then

A. $\Delta Q_{A}=\Delta Q_{B}$
B. $\Delta Q_{A} \leq \Delta Q_{B}$
C. $\Delta Q_{A}<\Delta Q_{B}$
D. $\Delta Q_{A}>\Delta Q_{B}$

Answer: D

- Watch Video Solution

21. In the cyclic process shown in the figure,
the work done by the gas in one cycle is

A. $28 P_{1} V_{1}$
B. $14 P_{1} V_{1}$
C. $18 P_{1} V_{1}$
D. $9 P_{1} V_{1}$

Answer: D

D Watch Video Solution

22. An ideal gas is taken around the cycle
$A B C A$ shown in $P-V$ diagram. The net work done by the gas during the cycle is equal

A. $12 P_{1} V_{1}$
B. $6 P_{1} V_{1}$
C. $3 P_{1} V_{1}$
D. $2 P_{1} V_{1}$

Answer: D
23. Heat energy absorbed by a system in going through a cyclic process shown in Fig.

A. $10 \pi J$
B. $10 \pi J$
C. $10 \pi J$

D. $10^{-3} \pi J$

Answer: C

D Watch Video Solution

24. A thermodynamic system is taken from state A to B along $A C B$ and is brought back to

A along BDA as shown in the PV diagram. The net work done during the complete cycle is
given by the area

A. PACBPP
B. ACBB'A'A
C. ACBDA
D. ADBB'A'A

- Watch Video Solution

25. In the diagrams (i) to (iv) of variation of volume with changing pressure is shown. A gas is taken along the path $A B C D$. The change in internal energy of the gas will be

A. Positive in all cases (i) to (iv)
B. Positive in cases (i), (ii) and (iii) but zero
in (iv) case
C. Negative in cases (i), (ii) and (iii) but zero
in (iv) case

D. Zero in all four cases

Answer: D

D View Text Solution

26.

A system is taken through a cyclic process represented by a circle as shown in the figure.

The heat absorbed by the system is
A. $\pi \times 10^{3} j$
B. $\frac{\pi}{2} j$
C. $4 \pi \times 10^{2} j$

D. πj

Answer: B

- Watch Video Solution

27. A thermodynamic system undergoes cyclic process $A B C D A$ as shown in figure. The work
done by the system is

A. $P_{0} V_{0}$
B. $2 P_{0} V_{0}$
C. $\frac{P_{0} V_{0}}{2}$
D. Zero

Answer: D

- Watch Video Solution

28. The P - V graph of an ideal gas cycle is
shown here as below. The adiabatic process is described by

$A . A B$ and $B C$
B. AB and CD
C. BC and DA
D. BC and CD

Answer: C

D Watch Video Solution
29. An ideal monoatomic gas is taken the cycle
$A B C D A$ as shown in following $P-V$
diagram. The work done during the cycle is

A. MV
B. 2 MV
C. 4 MV
D. Zero

Answer: C

- Watch Video Solution

30. A system changes from the state $\left(P_{1}, V_{1}\right)$
to $\left(P_{2} V_{2}\right)$ as shwon in the diagram. The workdone by the system is

A. 7.5×10^{5} joule
B. $7.5 \times 10^{5} \mathrm{erg}$
C. 12×10^{5} joule
D. 6×10^{5} joule

Answer: D

D Watch Video Solution

31. Carbon monoxide is carried around a closed cyclic processes $a b c$, in which $b c$ is an isothermal process, as shown in Fig. The gas absorbs 7000 J of heat as its temperature is
increased from $300 K$ to $1000 K$ in going from
a to b. The quantity of heat ejected by the gas during the process $c a$ is

A. $4200 j$
B. $5000 j$
C. $9000 j$
D. $9800 j$

Answer: D

D Watch Video Solution

32. A sample of an ideal monoatomic gas is
taken round the cycle $A B C A$ as shown in the
figure the work done during the cycle is

A. Zero
B. 2 PV
C. 6 PV
D. 9 PV

Answer: B

D Watch Video Solution

33. When a system is taken from state f along
path $i a f, Q=50 J$ and $W=20 J$. Along path
$i b f, Q=35 J$. If $W=-13 J$ for the curved
return path $f I, Q$ for this path is

A. $33 j$
B. $23 j$
C. $-7 j$
D. $-43 j$
34. For one complete cycle of a thermodynamic process gas as shown in the PV diagram, which of following correct?

A. $\Delta E_{\text {int }}=0, Q>O$

$$
\text { B. } \Delta E_{\text {int }}=0, Q<O
$$

C. $\Delta E_{\text {int }}>0, Q<O$
D. $\Delta E_{\text {int }}<0, Q>O$

Answer: A

D Watch Video Solution

35. An ideal gas is taken around $A B C A$ as
shown in the above P-V diagram. The work
done during a cycle is

A. Zero
B. $\frac{1}{2} P V$
C. p PV
D. PV

Answer: D
36. An ideal gas is taken from point A to the point B, as shown in the $P-V$ diagram, keeping the temperature constant. The work done in the process is

$$
\begin{aligned}
& \text { A. }\left(P_{A}-P_{B}\right)\left(V_{B}-V_{A}\right) \\
& \text { B. } \frac{1}{2}\left(P_{B}-P_{A}\right)\left(V_{B}+V_{A}\right) \\
& \text { C. } \frac{1}{2}\left(P_{B}-P_{A}\right)\left(V_{B}-V_{A}\right) \\
& \text { D. } \frac{1}{2}\left(P_{B}+P_{A}\right)\left(V_{B}-V_{A}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

37. The $P-V$ diagram of a system undergoing thermodynamic transformation is
shown in figure. The work done by the system
in going from $A \rightarrow B \rightarrow C$ is $30 J$ and $40 J$
heat is given to the system. The change in
internal energy between A and C is

A. $10 j$
B. $70 j$
C. $84 j$
D. $134 j$

Answer: A

D Watch Video Solution

38. Consider a process shown in the figure.

During this process the work done by the
system

A. Continuously increases
B. Continuously decreases
C. First increases, then decreases
D. First decreases, then increases

Answer: A

D Watch Video Solution

39. Six moles of an ideal gas performs a cycle shown in figure. If the temperature are $T_{D}=600 K, T_{B}=800 K, T_{C}=2200 K$ and
$T_{D}=1200 K$, the work done per cycle is

A. $20 k j$
B. 30 kj
C. 40 kj
D. $60 k j$

Answer: C

D Watch Video Solution

40. Which of the following $P-V$ diagrams best represents an isothermal process?
(a)
A.

C.
(c) $\stackrel{5}{ }$

Answer: B

D Watch Video Solution

41. In the following figure, four curves A, B, C and D are shown. The curves are

A. Isothermal for A and D while adiabatic
for B and C

B. Adiabatic for A and C while isothermal

for B and D
C. Isothermal for A and B while adiabatic for C and D
D. Isothermal for A and C while adiabatic

for B and D

Answer: D

D Watch Video Solution

42. $P-V$ diagram of a cyclic process $A B C A$
is as shown in Fig. Choose the correct
alternative

A. $\Delta Q_{A \rightarrow B}=$ negative
B. $\Delta U_{B \rightarrow C}=$ positive
C. $\Delta Q_{A \rightarrow B}=$ negative
D. All of these

Watch Video Solution

43. A sample of an ideal gas is taken through
the cyclic process $a b c a$. It absorbs $50 J$ of heat during the part $a b$, no heat during $b c$ and rejects 70 J of heat during ca .40 J of work is done on the gas during the part $b c$.
(a) Find the internal energy of the gas at b and c if it is 1500 J at a.
(b) Calculate the work done by the gas during
the part $c a$.

A. $1590 j$
B. $1620 j$
C. $1540 j$
D. $1570 j$

Answer: A
44. In the following $P-V$ diagram two adiabatics cut two isothermals at temperature T_{1} and T_{2} (fig). The value of $\frac{V_{a}}{V_{d}}$ will be

A. $\frac{V_{b}}{V_{c}}$
B. $\frac{V_{c}}{V_{b}}$
C. $\frac{V_{d}}{V_{a}}$
D. $V_{b} V_{e}$

Answer: A

D Watch Video Solution

Assertion Reason

1. Assertion: Reversible systems are difficult to
find in real world.

Reason: Most processes are dissipative in nature.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false

Answer: A

D Watch Video Solution

2. Assertion: Air quickly leaking out of a balloon becomes coolers.

Reason: The leaking air undergoes adiabatic expansion.
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false

- Watch Video Solution

3. Assertion: Thermodynamics process in nature are irreversible.

Reason: Dissipative effects cannot be eliminated.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

4. Assertion: When a bottle of cold carbonated drink is opened, a slight fog forms around the opening.

Reason: Adiabatic expansion of the gas causes
lowering of temperature and condersation of water vapours.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

5. Assertion: The isothermal curves intersect
each other at a certain point.
Reason: The isothermal changes takes place rapidly, so the isothermal curves have very little slope.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

D Watch Video Solution

6. Assertion: In adiabatic compression, the internal energy and temperature of the system get decreased.

Reason: The adiabatic compression is a slow process.
A. If both assertion and reason are true and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false

Answer: D

D Watch Video Solution

7. Assertion: In an isothermal process, whole of heat energy supplied to the body is converted into work.

Reason: According to first law of
thermodynamics $\Delta Q=\Delta U+P \Delta V$
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

8. Assertion : We can not change the temperature of a body without giving (or taking) heat to (or from) it. Reason : According to principle of conservation of energy, total energy of a system should remains conserved.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false

Answer: D

D Watch Video Solution

9. Statement I: The specific heat of a gas in an
adiabatic process is zwero but it is infinite in
an isothermal process.
Statement II: Specific heat of a gas is directly proportional to heat exchanged with the system and inversely proportional to change in termperature.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

10. Assertion : Work and heat are two equivalent form of energy. Reason : Work is
the transfer of mechanical energy irrespective of temperature difference, whereas heat is the transfer of thermal energy because of temperature difference only.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

11. Assertion: The heat supplied to a system is
always equal to the increase in its internal
energy
Reason: when a system changes from one
thermal equilibrium to another, some heat is absorbed by it.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false

Answer: D

D Watch Video Solution

12. Assertion : A room can be cooled by opening the door of a refrigerator in a closed room. Reason : Heat flows from lower temperature (refrigerator) to higher temperature (room).
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: D

D Watch Video Solution

13. Assertion : It is not possible for a system, unaided by an external agency to transfer heat
from a body at lower temperature to another
body at higher temperature. Reason :
According to Clausius statement, " No process
is possible whose sole result is the transfer of heat from a cooled object to a hotter object
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false

Answer: A

D Watch Video Solution

14. Assertion : If an electric fan be switched on
in a closed room, the air of the room will be cooled. Reason : Fan air decrease the temperature of the room.
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false

- Watch Video Solution

15. Assertion : The internal energy of an isothermal process does not change. Reason :

The internal energy of a system depends only on pressure of the system.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: C

D Watch Video Solution

16. Statement-1 : In an adiabatic process,
change in internal energy of a gas is equal to
work done on/by the gas in the process.

Statement-2 : This is because temp.of gas remains constant in an adiabatic process.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: C

D Watch Video Solution
17. Assertion : An adiabatic process is an isoentropic process. Reason : Change in entropy is zero in case of adiabatic process
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false

- Watch Video Solution

18. Statementl: Work done by a gas in isothermal expansion is more than the work done by the gas in the same expansion adaibatically.

Statement II: Temperature remains constant in isothermal ecpansion but not in adiabatic expansion.
A. If both assertion and reason are true and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false

Answer: B

D Watch Video Solution

19. Assertion : First law of thermodynamics is a restatement of the principle of conservation. Reason : Energy is fundamental quantity.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false

Answer: C

D Watch Video Solution

20. Assertion : Zeroth law of thermodynamic explain the concept of energy. Reason : Energy is dependent on temperature.
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

21. Assertion : Efficiency of a Carnot engine increase on reducing the temperature of sink. Reason : The efficiency of a Carnot engine is defined as ratio of net mechanical work done per cycle by the gas to the amount of heat energy absorbed per cycle from the source.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: B

D Watch Video Solution

22. Assertion : The entropy of the solids is the
highest Reason : Atoms of the solids are arranged in orderly manner.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
t he assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false

Answer: A

- Watch Video Solution

Set

1. The $P-V$ diagram of 2 gm of helium gas
for a certain process $A \rightarrow B$ is shown in the
figure. What is the heat given to the gas
during the process $A \rightarrow B$?

A. $4 P_{0} V_{0}$
B. $6 P_{0} V_{0}$
C. $4.5 P_{0} V_{0}$
D. $2 P_{0} V_{0}$

Answer: B

D Watch Video Solution

2. A certain mass of gas at 273 K is expanded
to 81 times its volume under adiabatic condition. If $\lambda=1.25$ for gas, then its final temperature is
A. $-235^{\circ} C$
B. $-182^{\circ} C$
C. $-91^{\circ} C$

$$
\text { D. }-0^{\circ} C
$$

Answer: B

D Watch Video Solution

3. In an adiabatic process 90 J of work is done
on the gas. The change in internal energy of
the gas is
A. $-90 j$
B. $+90 j$
C. 0 j

D. Depends on initial temperature

Answer: B

- Watch Video Solution

4. If a Carnot's engine functions at source temperature $127^{\circ} C$ and at sink temperature $87^{\circ} C$, what is its efficiency
A. 0.1
B. 0.25
C. 0.4
D. 0.5

Answer: D

D Watch Video Solution

5. In the case of diatomic gas, the heat given at constant pressure is that part of energy which is used for the expansion of gas, is
A. $\frac{2}{5}$
B. $\frac{3}{7}$
C. $\frac{2}{7}$
D. $\frac{5}{7}$

Answer: C

D Watch Video Solution

6. An ideal monoatomic gas is taken round the
cycle $A B C D$ A shown in the PV diagram in the
given fig. The work done the cycle is

A. $\frac{1}{2} P$
B. 2PV
C. PV
D. zero

Answer: C

Watch Video Solution

7. A gas is compressed adiabatically till its
temperature is doubled. The ratio of its final
volume to initial volume will be
A. $\frac{1}{2}$
B. more then $\frac{1}{2}$
C. less then $\frac{1}{2}$
D. Between 1 and 2

Answer: C

- Watch Video Solution

8. A tyre filled with air, $\left(27^{\circ} C, o\right.$ and 2 atm $)$ bursts, then what is temperature of air ($\lambda=1.5$)

$$
\begin{aligned}
& \text { A. }-33^{\circ} \mathrm{C} \\
& \text { B. } 0^{\circ} \mathrm{C} \\
& \text { C. } 27^{\circ} \mathrm{C} \\
& \text { D. } 240^{\circ} \mathrm{C}
\end{aligned}
$$

9. A gas expands adiabatically at constant pressure such that its temperature $T \propto \frac{1}{\sqrt{V}}$, the value of C_{P} / C_{V} of gas is
A. 1.3
B. 1.5
C. 1.67
D. 2

Answer: B

D Watch Video Solution

10. $P-V$ diagram of an ideal gas is as shown
in figure. Work done by the gas in process
$A B C D$ is

A. $4 P_{0} V_{0}$
B. $2 P_{0} V_{0}$
C. $3 P_{0} V_{0}$
D. $P_{0} V_{0}$

Answer: C

D Watch Video Solution

11. An engineer claims to have made an engine delivering 10 kW power with fuel consumption of $1 \mathrm{gs}^{-1}$. The calorific value of fuel is 2 k cal / g. His claim
A. Is non-valid
B. Is valid
C. Depends on engine

D. Depends on load

Answer: A

- Watch Video Solution

12. An ideal gas heat engine operates in a

Carnot cycle between $27^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs $6 k c a l$ at the higher temperature. The amount of heat (in kcal) converted into work is equal to
A. 3.5
B. 1.6
C. 1.2
D. 4.8

Answer: C

D Watch Video Solution

13. A gas expands with temperature according to the relation $V=k T^{2 / 3}$. What is the work done when the temperature changes by $30^{\circ} \mathrm{C}$
A. 10 R
B. 20 R
C. 30 R
D. 40 R

Answer: B

D Watch Video Solution

14. An ideal gas $(l m$ and $a=1.5)$ is expanded adiabatically. How many times has
the gas to be expanded to reduce the root mean square velocity of molecules 2.0 times
A. 4 times
B. 16 times
C. 8 times
D. 2 times

Answer: B

D View Text Solution
15. Three samples of the same gas A, B and C ($\gamma=3 / 2$) have initially equal volume. Now the volume of each sample is doubled. The process is adiabatic for A. Isobaric for B and isothermal for C. If the final pressures are equal for all three samples, find the ratio of their initial pressures
A. $2 \sqrt{2}: 2: 1$
B. $2 \sqrt{2}: 1: 2$
C. $\sqrt{2} 1: 2$

D. $2: 1 \sqrt{2}$

Answer: B

D Watch Video Solution

16. Volume versus temperature graph of two
moles of helium gas is as shown in figure. The
ratio of heat absorbed and the work done by
the gas in process $1-2$ is

A. 3
B. $\frac{5}{2}$
C. $\frac{5}{3}$
D. $\frac{7}{2}$

Answer: B

- Watch Video Solution

17. In the $P-V$ diagram shown in figure
$A B C$ is a semicircle. The work done in the process $A B C$ is
$P(\mathrm{~atm}) \uparrow$
A. Zero
B. $\frac{\pi}{2} a t m-l t$
C. $-\frac{\pi}{2} a t m-l t$
D. 4 atm-lt

Answer: B

- Watch Video Solution

18. Heat is supplied to a diatomic gas at constant pressure.

The ratio of $\Delta Q: \Delta U: \Delta W$ is
A. $5: 3: 2$
B. 5:2:3
C. 7:5:2
D. $7: 2: 5$

Answer: C

D Watch Video Solution

19. A gas undergoes a change of state during which 100 J of heat is supplied to it and it does

20J of work. The system is brough back to its
original state through a process during which

20 J of heat is released by the gas. What is the work done by the gas in the second process?
A. 60 J
B. 40 J
C. 80 J
D. 20 J

Answer: A

D Watch Video Solution
20. N moles of an ideal diatomic gas are in a cylinder at temperature T. suppose on supplying heat to the gas, its temperature remain constant but n moles get dissociated into atoms. Heat supplied to the gas is
A. zERO

$$
\begin{aligned}
& \text { B. } \frac{1}{2} n R T \\
& \text { C. } \frac{3}{2} n R T \\
& \text { D. } \frac{3}{2}(N-n) R T
\end{aligned}
$$

Watch Video Solution

21. Three moles of an ideal gas $\left(C_{p}=\frac{7}{2} R\right)$
at pressure, P_{A} and temperature T_{A} is isothermally expanded to twice its initial volume. It is then compressed at constant pressure to its original volume. Finally gas is compressed at constant volume to its original pressure P_{A}.
(a) Sketch P-V and P-T diagrams for the complete process.
(b) Calculate the net work done by the gas,
and net heat supplied to the gas during the complete process.

Answer: A
22. A cylinder of mass 1 kg is given heat of

20000 J at atmospheric pressure. If initially temperature of cylinder is $20^{\circ} \mathrm{C}$ then work done by the cylinder will be (Given that

Specific heat of cylinder $=400 \mathrm{~J} \mathrm{k} \mathrm{g}-1$,
Coefficient of volume expansion $9 \times 10{ }^{\circ} C$

Atmospheric pressure $=10 \mathrm{~N} / \mathrm{m}$ and density of cylinder 9000 kg/m
A. 0.02 j
B. 0.05 j
C. 0.08 j

D. 0.1 j

Answer: B

D View Text Solution

23. In a thermodynamic process pressure of a
fixed mass of a gas is changed in such a manner that the gas releases 30 joules of heat and 10 joules of work was done on the gas. If the initial internal energy of the gas was 30 joules, then the final internal energy will be
A. 2 j
B. -18 j
C. $10 j$
D. $58 j$

Answer: C

D Watch Video Solution

24. In an adiabatic change, the pressure and temperature of a monoatomic gas are related with relation as $P \propto T^{C}$, Where C is equal to:

- Watch Video Solution

25. The internal energy of an ideal gas increases during an isothermal process when the gas is
A. Expanded by adding more molecules to
it
B. Expanded by adding more heat to it
C. Expanded against zero pressure
D. Compressed by doing work on it

Answer: A

D Watch Video Solution

Others

1. First law of thermnodynamics is given by
A. $d Q=d U+P d V$
B. $d Q=d U \times P d V$
C. $d Q=(d U+d V) P$

$$
\text { D. } d Q=P d V+d V
$$

Answer: A

D Watch Video Solution

2. The internal energy of an ideal gas depends

upon

A. specific volume
B. pressure
C. Temerature

D. Density

Answer: C

D Watch Video Solution

3. In changing the state of thermodynamics
from A to B state, the heat required is Q and
the work done by the system is W . The change in its internal energy is

$$
\text { A. } Q=W
$$

B. $\mathrm{Q}-\mathrm{W}$
C. Q
D. $\frac{Q-W}{2}$

Answer: B

- Watch Video Solution

4. Heat given to a system is 35 joules and work done by the system is 15 joules. The change in the internal energy of the system will be
A. $-50 j$
B. 20 j
C. 30 j
D. 50 j

Answer: B

D Watch Video Solution
5. During the adiabatic expansion of 2 moles
of a gas, the internal energy of the gas is
found to decrease by 2 joules, the work done during the process on the gas will be equal to
A. Decrease
B. Increase
C. Remains constant
D. Depends on the molecular motion

Answer: C

D Watch Video Solution

6. The first law of thermodynamics is concerned with the conservation of
A. momentum
B. Energy
C. Mass
D. Temperature

Answer: B

D Watch Video Solution
7. A thermodynamic system goes from states
(i) $P_{1} \vee$ to $2 P_{1}, \mathrm{~V}$ (ii) P, V to $\mathrm{P}, 2 \mathrm{~V}$. Then work done in the two cases is
A. Zero zero
B. Zero, $P V$
C. $P V_{1}$,Zero

$$
\text { D. } P V_{1}, P V
$$

Answer: B
8. If the amount of heat given to a system be

35 joules and the amount of work done on the
system be 15 joules, then the change in the internal energy of the system is

$$
\text { A. }-50 J
$$

B. 20 J
C. 30 J
D. 50 J

Answer: D

9. A system is given 300 calories of heat and it does 600 joules of work. How much does the internal energy of the system change in this process ($\mathrm{j}=4.18 \mathrm{joules} / \mathrm{cal}$)
A. 654joule
B. 156.5joule
C. $-300 j$ joule
D. -528.2 joule
10. Work done on or by a gas, in general depends upon the
A. Initial state only
B. final state only
C. Both state and final states only

D. Intial state, final state and the path

Answer: D
11. If $R=$ universal gas constant, the amount of
heat needed to raise the temperature of 2 mole of an ideal monoatomic gas from 273 K to 373 K when no work is done
A. 100 R
B. 150 R
C. 300 R
D. 500 R

Answer: C

- Watch Video Solution

12. Find the change in internal energy of the
system when a system absorbs 2 kilocalorie of
heat and at the same time does 500 joule of work
A. 7900 J
B. 8200 J
C. 5600 J

D. 6400 J

Answer: A

D Watch Video Solution

13. A system performs work ΔW when an amount of heat is ΔQ added to the system,
the corresponding change in the internal energy is ΔU. A unique function of the initial and final states (irrespective of the mode of change) is
A. ΔQ
B. ΔW
C. ΔU and ΔU
D. ΔU

Answer: D

- Watch Video Solution

14. A container of volume $1 m^{3}$ is divided into two equal compartments by a partition. One of these compartments contains an ideal gas
at 300 K . The other compartment is vacuum.

The whole system is thermally isolated from
its surroundings. The partition is removed and
the gas expands to occupy the whole volume of the container. Its temperature now would be
A. 300 k
B. 239 k
C. 200 k
D. 100 k
15. 110 J of heat is added to a gaseous system, whose internal energy change is 40 j . then the amount of external work done is
A. $150 j$
B. $70 j$
C. $110 j$
D. $40 j$
16. Which of the following is not thermodynamical function
A. Enthalpy
B. Work done
C. Gibb's energy
D. Internal energy

Answer: C
17. When the amount of work done is 333 cal
and change in internal energy is 167 cal , then
the heat supplied is
A. 166 cal
B. 333 cal
C. 500 cal
D. 400 cal

18. First law of thermodynamics states that

A. System can do work
B. System has temperature
C. System has pressure
D. Heat is a from of energy

Answer: D

19. A thermo-dynamical system is changed
from state $),\left(P_{1}, V_{1}\right)$ to $\left(P_{2}, V_{2}\right)$ by two different process. The quantity which will remain same will be
A. ΔQ
B. ΔW
C. ΔQ and ΔW
D. $\Delta Q-\Delta W$

Answer: D
20. In thermodynamic process, 200 Joules of heat is given to a gas and 100 Joules of work is also done on it. The change in internal energy of the gas is
A. $100 j$
B. $300 j$
C. $419 j$
D. $24 j$

Answer: B

D Watch Video Solution

21. A perfect gas contained in a cylinder is kept
in vacuum. If the cylinder suddenly bursts,
then the temperature of the gas
A. Remains constant
B. Become zero
C. Increase
D. Decrease

Answer: A

- Watch Video Solution

22. If 150 J of heat is added to a system and the
work done by the system is 110 j . then change
in internal energy wil be
A. $260 j$
B. $150 j$
C. $110 j$
D. $40 j$

Answer: D

D Watch Video Solution

23. If ΔQ and ` represent the heat supplied to
the system and the work done on the system respectively, then the first law of thermodynamics can be written as
A. $\Delta Q=\Delta U+\Delta W$
B. $\Delta Q=\Delta U-\Delta W$
C. $\Delta Q=\Delta W-\Delta U$

D. $\Delta Q=\Delta W+\Delta U$

Answer: B

D Watch Video Solution

24. For free expansion of the gas which of the following is true
A. $\Delta W, \Delta Q$ and $\Delta E_{\int}=E$
B. $Q=0, W>0$ and $\Delta E_{\text {int }}=0$
C. $W>0, Q>0$, and $\Delta E_{\text {int }}=0$

D. $W>0, Q<0$, and $\Delta E_{\text {int }}=0$

Answer: A

D Watch Video Solution

25. Which of the following can not determine
the state of a thermodynamic system
A. Pressure and volume
B. Volume and temperature
C. Temperature and pressure
D. Any one of pressure, volume or

temperature

Answer: D

D Watch Video Solution

26. Which of the following is not a thermodynamics co-ordinate
A. P
B. T
C. V
D. R

Answer: D

- Watch Video Solution

27. In a given process for an ideal gas $\mathrm{dW}=0$ and $d Q>0$. Then for the gas
A. The temperature will decrease
B. The volume will increase
C. The pressure will remain constant
D. The temperature will increase

Answer: A

D Watch Video Solution

28. The specific heat of hydrogen gas at constant pressure is
$C_{P}=3.4 \times 10^{3} \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}$ and at constant volume is $C_{V}=2.4 \times 10^{3} \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}$. If one kilogram hydrogen gas is heated from $10^{\circ} \mathrm{C}$
to $20^{\circ} C$ at constant pressure the external work done on the gas to maintain it at cosntant pressure is
A. $10^{5} \mathrm{cal}$
B. $10^{4} \mathrm{cal}$
C. 10^{3}
D. $5 \times 10^{3} \mathrm{cal}$

Answer: B

D Watch Video Solution
29. Which of the following parameters does not characterize the thermodynamic state of matter?
A. Volume
B. Temperature
C. Pressure
D. Work

Answer: D
30. In a thermodynamic system working
substance is ideal gas, its internal energy is in
the form of
A. Kinetic energy only
B. inetic and potential energy
C. Potential energy
D. None of these

Answer: A

31. Which of the following statements is correct for any thermodynamic system
A. The internal energy changes in all
processes
B. Internal energy and entropy are state
functions
C. The change in entropy can never be zero
D. The work done in an adiabatic process is
always zero

Answer: B

D Watch Video Solution

32. A system is provided with 200 cal of heat and the work done by the system on the surrounding is 40 j . Then its internal energy
A. Increases by 600 J
B. Decreases by 800
C. Increases by 800 J
D. Decreases by 5 j

Answer: A

- Watch Video Solution

33. In thermodynamic process, pressure of a
fixed mass of a gas is changes in such a manner that the gas molecules gives out 20 J of heat and 10 J of work is done in the gas. If the initial internal energy of the gas was 40 J , then the final internal energy will be
A. 30 j
B. 20 j
C. 60 j
D. 40 j

Answer: A

- Watch Video Solution

34. Heat is not being exchanged in a body. If
its internal energy is increased, then
A. Its temperature will increase
B. Its temperature will decrease
C. Its temperature will remain constant
D. None of these

Answer: A

D Watch Video Solution

35. Out of the following which quantity does
not depend on path

A. Temperature

B. Energy
C. Work
D. Nome of these

Answer: A

- Watch Video Solution

36. First law of thermodynamics is a special case of
A. Newton's law

B. Law of conservation of energy

C. Charle's law
D. Law of heat exchange

Answer: B

D Watch Video Solution

37. One mole of an ideal monoatomic gas is heated at a constant pressure of one atmosphere from 0° to $100^{\circ} \mathrm{C}$. Then the change in the internal energy is
A. 6.56 joules
B. 8.32×10^{2} joules
C. 12.48×10^{2} joules
D. 20.80 joes s

Answer: C

D Watch Video Solution

38. If the ratio of specific heat of a gas of constant pressure to that at constant volume
is γ, the change in internal energy of the mass
of gas, when the volume changes from V to $2 V$ at constant pressure p is
A. $R(\lambda-1)$
B. pV
C. $P V(\lambda-1)$
D. $\lambda p V(\lambda-1)$

Answer: C
(Watch Video Solution
39. If $C_{v}=4.96 \mathrm{cal} / \mathrm{mole} K$, then increase in internal energy when temperature of 2 moles of this gas is increased from 340 K to 342 K
A. 27.80 cal
B. 19.84 cal
C. 13.90 cal
D. 9.92 cal

Answer: B

D Watch Video Solution
40. Temperature is a measurement of coldness
or hotness of an object. This definition is
based on
A. Zeroth law of thermodynamics
B. First law of thermodynamics
C. Second law of thermodynamics
D. Newton's law of cooling

Answer: A

D Watch Video Solution
41. . When heat energy of 1500 Joules , is supplied to a gas at constant pressure $2.1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, there was an increase in its volume equal to $2.5 \times 10^{-3} \mathrm{~m}^{3}$. The increase in internal energy of the gas in joules is
A. 45
B. 525
C. 975
D. Zero

Answer: C
42. If heat given to a system is 6 kcal and work done is 6 kJ . Then change in internal energy is
A. 19.1kj
B. 12.5 kj
C. 25 kj
D. Zero

Answer: A
43. In a thermodynamic process, pressure of a
fixed mass of a gas is changed in such a manner that the gas release 20 J of heat and
$8 J$ of work is done on the gas. If initial internal energy of the gas was 30 J , what will be the final internal energy?
A. 18 j
B. 9 j
C. 4.5 j

D. 36 j

Answer: A

D Watch Video Solution

44. A monoatomic gas of n-moles is heated from temperature T to T under two different conditions (i) at constant volume and (ii) at constant pressure. The change in internal energy of the gas is
A. More for
B. More for (ii)
C. Same in both cases
D. Independent of number of moles

Answer: A

D Watch Video Solution

45. The state of a thermodynamic system is
represented by
A. Pressure only
B. Volume only
C. Pressure, volume and temperature
D. Number of moles

Answer: C

D Watch Video Solution

46. A perfect gas goes from a state A to another state B by absorbing $8 \times 105 \mathrm{~J}$ of heat and doing $6.5 \times 105 \mathrm{~J}$ of external work. It is now transferred between the same two states in
another process in which it absorbs 105 J of heat. In the second process
A. Wrok done on the gas $0.5 \times 10^{5} j$
B. work done by gas is $0.5 \times 10^{5} j$
C. work done on gas is $10^{5} j$
D. Work done by gas is $10^{5} j$

Answer: C

D Watch Video Solution

47. If a system undergoes contraction of volume then the work done by the system will be
A. Zero
B. Negligible
C. Negative
D. positive

Answer: A

D Watch Video Solution
48. If a system undergoes contraction of volume then the work done by the system will be
A. It introduces the concept of the internal energy
B. It introduces the concept of the entropy
C. It is not applicable to any cyclic process
D. None of the above

Answer: C

